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Abstract

We prove that multi-soliton solutions of the Toda lattice are both linearly and
nonlinearly stable. Our proof uses neither the inverse spectral method nor
the Lax pair of the model but instead studies the linearization of the
Bäcklund transformation which links the (m-1)-soliton solution to the
m-soliton solution. We use this to construct a conjugation between the Toda
flow linearized about an m-solition solution and the Toda flow linearized
about the zero solution, whose stability properties can be determined by
explicit calculation.

This is joint work with Nick Benes of the Boston University and Aaron
Hoffman of Olin College.

Work supported in part by the US National Science Foundation.

Fields Institute; Workshop on Short Pulse Eqn. Stability of the Toda m-soliton



Introduction

I want to describe a general method for studying the stability of
pulse-like solutions in dispersive equations:

1 Has been used mostly in integrable systems with a Bäcklund
transform which relates different soliton like solutions either to
each other, or to the zero state (e.g. KdV, Toda, NLS, ...)

2 Can sometimes serve as the basis for a perturbative argument for
stability in nearly integrable systems which do not admit
Bäcklund transforms (e.g. the FPU model).
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History

1 Ideas similar to those I’ll describe have been used non-rigorously
for some time.

2 First reference I have found is E. Mann; The perturbed
Korteweg-de Vries equation considered anew, J. Math. Phys. 38
p. 3772 (1997), who studies perturbations of the KdV equation
and uses the Bäcklund transform to help compute the Green’s
function for the KdV equation linearized about the 1-soliton.

3 Closer in spirit to our work is the paper of Tsigaridis, et al,
Evolution of near-soliton initial conditions..., Chaos, Solitons
and Fractals, 23 p. 1841 (2005).
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History
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Overview

1 The first rigorous use of this idea (that I’m aware of) was my
Merle and Vega, L2 stability of solitons for the KdV equation,
IMRN p. 735 (2003), who used a Miura transformation to
establish the stability of the KdV soliton by mapping to a kink
solution for the mKdV equation (whose stability was already
known).

2 Mizumachi and Pego Asymptotic stability of Toda lattice
solitons, Nonlinearity, 21, p. 2099 (2008), used this idea in the
Toda model.

3 We’ll apply a rigorous version of this same idea to compute the
stability of the m-soliton solution of the Toda model.
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The Toda Model

The Toda model is model of a system of point masses, which interact
with their nearest neighbors through an exponential force law:

Q̈j = e−(Qj−Qj−1) − e−(Qj+1−Qj)
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The Toda Model

1 Was first investigated in an attempt to better understand the
Fermi-Pasta-Ulam experiments.

2 Was found to be completely integrable.

3 In particular, there exist m-soliton solutions for any
m = 1, 2, 3, . . . .

4 These soliton solutions can be constructed via a Bäcklund
transformation.
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Soliton Solutions

1 The one-soliton solution has the explicit form:

Q1
n(t; κ,γ) = log

cosh(κn − t sinh κ+ γ)
cosh(κ(n + 1) − t sinh κ+ γ)

− κ

2 Note the following important properties:
(a) There is a two-parameter family of such solutions parameterized

by γ and κ.
(b) limn→−∞ Q1

n(t; κ,γ) = 0 .
(c) limn→∞ Q1

n(t; κ,γ) = −2κ .
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m-solitons

1 There are also families of m-soliton solutions characterized by
2m parameters, γk, κk, k = 1, . . . , m.

2 As time goes to infinity (or minus infinity) these solutions
“decompose” into a sum of m, one-soliton solutions.

lim
t→±∞

∣∣∣∣∣∣Qm
n (t) −

m∑
j=1

Q1
n(t; κj,γ±j )

∣∣∣∣∣∣ = 0
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The Hamiltonian formalism
Instead of writing the equations of motion in terms of the
displacements Qn, we can use the relative displacements
Rn = Qn+1 − Rn. If we then set U = (R, P), we can rewrite the Toda
equations as the Hamiltonian system

U̇ = JH ′(U)

where
H =

∑
n

(
1
2

P2
n + V(Rn))

with potential energy function V(R) = e−R − 1 + R, and the
symplectic operator

J =

(
0 S − I

I − S−1 0

)
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Function Spaces and Stability

If we are to have stability in this Hamiltonian system we must choose
the function spaces in which we work appropriately.

1 One the basis of numerical experiments, general solutions
resolve themselves into finitely many solitons, plus a small,
dispersive tail that trails behind the solitary waves, which
become increasingly well separated and distinct.

2 All solitary waves (or components of an m-soliton) travel with
speed greater than c = 1.

3 Small dispersive disturbances propagate according to the
linearized equation and travel with a speed less than or equal to
one.
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Function Spaces and Stability

This suggests that we work in weighted sequence spaces which
concentrate the norm on parts of the solution moving with the solitons
and with this in mind we define the weighted norm

‖x‖a = ‖x‖2
`2

a
=

∑
n∈ZZ

e2anx2
n

and let `2a denote the associated weighted Hilbert Space. Note that we
will use ‖x‖ to denote the standard `2 norm.
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Zero eigenvalues

Can we expect solitons to be asymptotically stable in these spaces
w.r.t. all perturbations? No - there are zero eigenvalues associated
motion along the 2m-dimensional manifold of m-solitons
corresponding to changes in amplitude and phase.
However, we can compute an explicit basis for the zero eigenspace:

1 ∂γiU
m - i = 1, . . . , m, eigenfunction corresponding to changes in

phase.

2 ∂κiU
m - i = 1, . . . , m, generalized eigenfunction corresponding

to change in amplitude.

Fields Institute; Workshop on Short Pulse Eqn. Stability of the Toda m-soliton



Function Spaces

With this in mind, we expect stability (if at all) in spaces of the
following type:

Xm(t) := {u ∈ `2a × `2a|〈u, J−1∂κiU
m(t)〉

= 〈u, J−1∂γiU
m(t)〉 = 0, i = 1, . . . , m}.

Our main result is that in such spaces, the m-soliton solution of the
Toda-equation is actually stable.
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Main Theorem

Theorem
Let γi ∈ R and κi > 0 be given for i = 1, · · · , m. Define
κmin = min{κi|i = 1, . . . , m}. Let c > 1, let a ∈ (0, 2κmin), and let
β := ca − 2 sinh(a/2). Let Φ(t, x) be the evolution operator for the
linearization of the Toda equations about an m-soliton solution with
parameters κi and γi, i = 1, . . . , m.
Then there exists a constant K > 0 such that for any u0 ∈ Xm(s) and
for all t > s,

||ea(n−ct−T)Φ(t, s)u0|| 6 Ke−β(t−s)||ea(n−cs−T)u0||.
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Remarks about the Theorem

1 The condition c > 1 insures that the weight in the norm moves
with a speed greater than that of dispersive tails in the solution.
The conditions on a and β insure that it moves more slowly than
the slowest soliton in the m-soliton solution.

2 Given this theorem it is relatively easy to show that the m-soliton
solutions are nonlinearly stable by using a variation of constants
approach, and allowing the phase and speed of the solitons to
vary in such a way to insure that the orthogonality conditions are
satisfied at all times.
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The Bäcklund Transform

The proof is based on the Bäcklund Transform:

P + e−(Q ′−Q−κm) + e−(Q−Q ′−+κm) = 2 coshκm

P ′ + e−(Q ′−Q−κm) + e−(Q+−Q ′+κm) = 2 coshκm.

One can show that it (P, Q) is a solution of the Toda-equation, and if
(P ′, Q ′) is related to (P, Q) via the Bäcklund transform, then (P ′, Q ′)
is also a solution of the Toda-equation.
To crucial special cases of this are:

1 If (P, Q) is an m-soliton (m > 1) then (P ′, Q ′) is an
m − 1-soliton.

2 If (P, Q) is a 1-soliton, then (P ′, Q ′) is the zero solution.
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Outline of the proof:

There are three main steps in the proof:

(i) that the linearized Bäcklund transformation commutes with the
linearized Toda flow,

(ii) that the linearized Bäcklund transformation and the linearized
Toda flow preserves orthogonality with the neutral modes of the
linearized Toda system, and

(iii) that the linearized Bäcklund transformation is an isomorphism
between the spaces Xm−1(t) and Xm(t) defined above.
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Outline of the proof:

Pictorially, we want to show that the following diagram commutes:

um(s) ∈ Xm(s)
Φm(t,s)

// um(t) ∈ Xm(t)

um−1(s) ∈ Xm−1(s)
Φm−1(t,s)

//

Bm(s)

OO

um−1(t) ∈ Xm−1(t)

Bm(t)

OO

Figure: Commuting diagram used in the induction step
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Linearized BT commutes with linearized
Toda Flow

From now on, (Q ′, P ′) denotes the m − 1-soliton and (Q, P) denotes
the n-soliton.
Linearize the BT:

pn + (αn − βn)qn + (βnq ′n−1 − αnq ′n) = 0

p ′n + (αnqn − βn+1qn+1) + (βn+1 − αn)q ′n = 0 ,

where we have introduced the new variables:

αn := e−(Q ′n−Qn−κm) , βn := e−(Qn−Q ′n−1+κm)
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Linearized BT commutes with linearized
Toda Flow

The fact that the linearized BT commutes with the linearized TF can
now be proven by writing out the evolution equation for the difference
between the (q ′(t), p ′(t)) and (q(t), p(t)) and showing these satisfy a
linear evolution equation - hence if their difference is originally zero,
it will remain so for all time.
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Linearize BT and linearized TF preserve
orthogonality

This insures that the linearized BT maps from and to the functions
spaces we have defined, and that the linearized TF preserves these
spaces. The proof consists of two steps, both of which are
straightforward computations:

1 First rewrite the orthogonality conditions for u = (q, p) in terms
of the components: i.e. if ∂U represents the derivative of U w.r.t.
either κi or γi, we show that

〈u, J∂U〉 = 〈p,∂Q〉− 〈q,∂P〉

2 Next show, using the linearized BT that

〈p,∂Q〉 = 〈q ′,∂P ′〉− 〈p ′,∂Q ′〉+ 〈q,∂P〉

which by the preceding remark is equivalent to
〈u ′, J∂U ′〉 = −〈u, J∂U〉 = 0
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Linearize BT and linearized TF preserve
orthogonality

To see how the last point is proven, note that we can rewrite the
linearized BT as:

Cq ′ = Lq + p

p ′ = Ĉq + Mq ′.

where the linear operators C = α− βS−1, Ĉ = α− Sβ = α− β+S,
L = α− β, and M = α− β+. (Here the subscript ” + ” means that
the index on that term is shifted by 1 -i.e. n→ n + 1, which a similar
convention for a ” − ” subscript.
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Linearize BT and linearized TF preserve
orthogonality

Then

〈p,∂Q〉 = 〈Cq ′ − Lq,∂Q〉
= 〈q ′, Ĉ∂Q〉− 〈q, L∂Q〉
= 〈q ′,∂P ′ − M∂Q ′〉− 〈q, C∂Q ′ − ∂P〉
= 〈q ′,∂P ′〉− (〈q ′, M∂Q ′〉+ 〈q, C∂Q ′〉) + 〈q,∂P〉
= 〈q ′,∂P ′〉− 〈p ′,∂Q ′〉+ 〈q,∂P〉 (1)

(2)

A similar calculation shows that the linearized TF preserves the
orthogonality conditions.
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The linearized BT is an isomorphism

The final (and hardest) step in the proof is to show that the linearized
BT is an isomorphism. Basically, we must show two things:

1 Given (q ′, p ′), solve Ĉq = p ′ − Mq ′ for q and then set
p = Cq ′ − Lq, and

2 given (q, p), solve Cq ′ = Lq + p for q ′ and then let
p ′ = Ĉq + Mq ′.

Obviously, we need to understand the solvability conditions
associated with the operators C and Ĉ.
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The linearized BT is an isomorphism

These two operators just define first order linear difference equations
and by more or less explicit computation of their solutions, and using
the formulas for the m-solitons.

For example, one finds that if q and q are in `2a, then
(Lq + p) ∈ ran(C) if and only if 〈u, J−1∂γmU〉 = 0.

In like fashion, the fact that the inverse transformation is well defined
depends on the second orthogonality condition, 〈u, J−1∂κmU〉 = 0.

These calculations also show that the linearized BT and its inverse are
uniformly bounded in time.
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Outline of the proof (redux):
The three steps in the proof:

(i) that the linearized Bäcklund transformation commutes with the
linearized Toda flow,

(ii) that the linearized Bäcklund transformation and the linearized
Toda flow preserves orthogonality with the neutral modes of the
linearized Toda system, and

(iii) that the linearized Bäcklund transformation is an isomorphism
between the spaces Xm−1(t) and Xm(t) defined above.

um(s) ∈ Xm(s)
Φm(t,s)

// um(t) ∈ Xm(t)

um−1(s) ∈ Xm−1(s)
Φm−1(t,s)

//

Bm(s)

OO

um−1(t) ∈ Xm−1(t)

Bm(t)

OO
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Linearized BT as a general strategy for
proving stability

There are by now a number of examples showing that the linearized
BT transforms provide a powerful tool to prove stability of localized
traveling waves in dispersive systems.

1 The Toda model: Mizumachi & Pego; Benes, Hoffman & Wayne

2 The KdV and gKdV equation: Merle & Vega; Mizumachi

3 The gKP-II equation: Mizumzchi & Tzvetkov

4 The NLS equation: Mizumachi & Pelinovsky

5 The FPU model: Hoffman & Wayne; Mizumachi
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Future work (and a connection to this
workshop!)

Hoffman and I are currently studying the stability of kink type
solutions in the Sine-Gordon equation (which are linked to the zero
solution via an auto-Bäcklund transformation) and plan to use those
results to then study the stability of the soliton solutions of the short
pulse equation which can be obtained from the Sine-Gordon kinks via
a second Bäcklund transform.
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