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Generalized Euler-Poincaré equations on homogeneous spaces

3 Applications

F. Tiglay Fields Institute, May 2011 slide 2/54



Outline
Introduction

Hamiltonian approach
Lagrangian Approach

Applications

J. Lenells, G. Misio lek and F. T., Integrable evolution
equations on spaces of tensor densities and their peakon
solutions, Commun. Math. Phys. 299, 129–161 (2010).

F. T. and C. Vizman, Generalized Euler-Poincaré Equations
on Lie Groups and Homogeneous Spaces, Orbit Invariants and
Applications, Lett. Math. Phys., published online Feb. 6,
2011.

F. Tiglay Fields Institute, May 2011 slide 3/54



Outline
Introduction

Hamiltonian approach
Lagrangian Approach

Applications

A family of equations on b densities
µDP: Lax pair and bihamiltonian structure
Cauchy problem
µB: Lax pair and bihamiltonian structure
µBurgers’ equation and the L2-geometry of Diffs → Diffs/S1

V. Arnold’s approach

G Lie group ’configuration space’

g its Lie algebra with an inner product 〈 , 〉 ’kinetic energy’

〈 , 〉 equippes G with a right invariant metric and the motions of
the system can be studied through:

geodesic equations defined by the right invariant metric, or

Hamiltonian reduction on the Lie algebra g.

(·, ·) a natural pairing between g and g∗

A : g→ g∗ the associated inertia operator s.t. (Au, v) = 〈u, v〉.
The Euler equation on g∗:

mt = −ad∗A−1mm, m = Au ∈ g∗, (E)
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Diff(S1) and density modules—quadratic case

G := Diff(S1), g = vect(S1)
“regular part” of the dual g∗r ' F2 =

{
m(x)dx2 : m ∈ C∞(S1)

}
with the pairing

(
mdx2, v∂x

)
=
∫ 1

0 m(x)v(x) dx

the coadjoint representation of the action of vect(S1)
vect(S1) on the regular part ←→ on the space of

of its dual space quadratic differentials

ad∗u∂x
mdx2 = (umx + 2ux m) dx2

and the Euler equation (E) on g∗r is

mt = −ad∗A−1mm = −umx − 2ux m, m = Au. (1)
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On g∗r :
mt = −umx − 2ux m, m = Au. (2)

On vect(S1):
Aut + 2ux Au + uAux = 0 (3)

with inertia operator

A =


1− ∂2

x for CH,

µ− ∂2
x for µCH,

−∂2
x for HS.

(4)
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Diff(S1) and density modules—general set-up

replace F2 by Fb

a tensor density of weight b ≥ 0 (respectively b < 0) on S1 is

a section of the bundle
⊗b T ∗S1 (respectively

⊗−b TS1)

Fb =
{

m(x)dxb : m(x) ∈ C∞(S1)
}
.

action of Diff(S1) on each density module Fb is given by

Fb 3 mdxb → m ◦ ξ (∂xξ)bdxb ∈ Fb, ξ ∈ Diff(S1), (5)

which generalizes Ad∗ : Diff(S1)→ Aut
(
F2

)
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the infinitesimal generator of the action in (5)

Lb
u∂x

(mdxb) = (umx + bux m) dxb (6)

determines the action of vect(S1) on Fb

the equation for the flow of the vector field defined by (6) is

mt = −umx − bux m (7)

substituting m = Au transforms (7) into

Aut + bux Au + uAux = 0 (8)

for b = 3 the inertia operator is

A =


1− ∂2

x for DP,

µ− ∂2
x for µDP,

−∂2
x for µB.

(9)
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µDP—Lax pair

{
ψxxx = −λmψ,

ψt = − 1
λψxx − uψx + uxψ,

(10)

λ ∈ C is a spectral parameter,

ψ(t, x) is a scalar eigenfunction and

m = µ(u)− uxx

for

µ(ut)− utxx + 3µ(u)ux − 3ux uxx − uuxxx = 0. (µDP)
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µDP—Bihamiltonian structure

mt = J0
δH0

δm
= J2

δH2

δm
,

with Hamiltonian functionals

H0 = −9

2

∫
m dx and H2 = −

∫ (
3

2
µ(u)

(
A−1∂x u

)2
+

1

6
u3

)
dx

the operators J0 and J2 are given by

J0 = −m2/3∂x m1/3∂−3
x m1/3∂x m2/3 and J2 = −∂3

x A = ∂5
x

and m = µ(u)− uxx .
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µDP—Periodic Cauchy problem

Λ−2
µ v(x) =

(
x2

2
− x

2
+

13

12

)∫ 1

0
v(x) dx +

(
x − 1

2

)∫ 1

0

∫ x

0
v(y) dydx

−
∫ x

0

∫ y

0
v(z) dzdy +

∫ 1

0

∫ x

0

∫ y

0
v(z) dzdydx .

is the inverse of the elliptic operator

Λ2
µ : Hs(S1)→ Hs−2(S1), Λ2

µv = µ(v)− vxx .

We use Λ−2
µ to rewrite µDP in the nonlocal form

ut + uux + 3µ(u) ∂x Λ−2
µ u = 0
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µDP—Local wellposedness and persistence

ut + uux + 3µ(u) ∂x Λ−2
µ u = 0 (11)

u(0, x) = u0(x) (12)

Theorem (Local wellposedness and persistence)

Assume s > 3/2. Then for any u0 ∈ Hs(T) there exists a T > 0
and a unique solution

u ∈ C
(
(−T ,T ),Hs

)
∩ C 1

(
(−T ,T ),Hs−1

)
of the Cauchy problem (26)-(12) which depends continuously on
the initial data u0. Furthermore, the solution persists as long as
‖u(t, ·)‖C 1 stays bounded.
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µDP—Blow-up

Theorem

Given any smooth periodic function u0 with zero mean there exists
Tc > 0 such that the corresponding solution of the µDP equation
stays bounded for t < Tc and satisfies ‖ux (t)‖∞ ↗∞ as t ↗ Tc .

Proof.

ξ̇ = u ◦ ξ implies ∂x ξ̇ = (ux ◦ ξ) ∂xξ and setting w = ∂x ξ̇/∂xξ we
find that

w(t, x) =
1

t +
(
1/u0x (x)

) .
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µDP—Global existence

Theorem

Let s > 3. Assume that u0 ∈ Hs(S1) has non-zero mean and
satisfies the condition

Λ2
µu0 ≥ 0 (or ≤ 0).

Then the Cauchy problem for µDP has a unique global solution u
in C (R,Hs(S1)) ∩ C 1(R,Hs−1(S1)).
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µBurgers—Lax pair

{
ψxxx = −λmψ,

ψt = − 1
λψxx − uψx + uxψ,

(13)

λ ∈ C is a spectral parameter,

ψ(t, x) is a scalar eigenfunction and

m = −uxx

for
−utxx − 3ux uxx − uuxxx = 0. (µB)
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µBurgers—Bihamiltonian structure

mt = J0
δH0

δm
= J2

δH2

δm
,

with Hamiltonian functionals

H0 = −9

2

∫
m dx and H2 = −1

6

∫
u3dx

the operators J0 and J2 are given by

J0 = −m2/3∂x m1/3∂−3
x m1/3∂x m2/3 and J2 = ∂5

x

and m = −uxx .
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Burgers’ equation

ut + uux = 0 (B)

Diffs(S1) circle diffeomorphisms of Sobolev class Hs

L2 inner product on TηDiffs(S1) induces a weak Riemannian
metric on Diffs(S1)

a geodesics η(t) in Diffs(S1) satisfy the equation

∇η̇η̇ = η̈ =
(
ut + uux

)
◦ η = 0 (14)

and hence correspond to (classical) solutions of the Burgers
equation. Here η(t) is the flow of u(t, x), i.e.

η̇(t, x) = u(t, η(t, x))
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L2-geometry of Diffs → Diffs/S1

homogeneous space Diffs
0 = Diffs/S1 is a smooth Hilbert

manifold for s > 3/2 with T[e]Diffs
0 = Hs

0(S1).

π : Diffs → Diffs
0 is a Riemannian submersion with each

tangent space decomposing as

TξDiffs = Pξ(TξDiffs)⊕L2 Qξ(TξDiffs).

the two orthogonal projections Pξ : TξDiffs → Tπ(ξ)Diffs
0 and

Qξ : TξDiffs → R are given explicitly by the formulas

Pξ(W ) = W −
∫ 1

0 W (x) dx and Qξ(W ) =
∫ 1

0 W (x) dx .

a curve η(t) in Diffs(S1) is an L2 geodesic (and hence
correspond to a solution of Burgers’ equation) ⇐⇒

Pη∇η̇η̇ = Qη∇η̇η̇ = 0.
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Theorem

A smooth function u = u(t, x) is a solution of the µB equation

utxx + 3ux uxx + uuxxx = 0

if and only if the horizontal component of the acceleration of the
associated flow η(t) in Diffs(S1) is zero i.e. Pη∇η̇η̇ = 0. In fact,
given any u0 ∈ Hs(S1) the flow of u has the form
η(t, x) = x + t

(
u0(x)− u0(0)

)
+ η(t, 0) for all sufficiently small t.

integrating the µB equation twice in x gives

ut + uux = µ(ut), (15)

integrating η̈(t, x) =
∫ 1

0 η̈ ◦ η
−1(t, x) dx = η̈(t, 0) twice in t

gives the explicit formula for the flow.
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Corollary

Suppose that u(t, x) is a smooth solution of the µB equation and
let u(0, x) = u0(x).

1 The following integrals are conserved by the flow of u∫ 1

0

(
u − µ(u)

)p
dx =

∫ 1

0

(
u0 − µ(u0)

)p
dx , p = 1, 2, 3 . . . .

2 There exists Tc > 0 such that ‖ux (t)‖∞ ↗∞ as t ↗ Tc .
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Peakons

µ(ut)− utxx + bµ(u)ux = bux uxx + uuxxx , b ∈ Z (16)

b = 2 =⇒ µCH and b = 3 =⇒ µDP.

Theorem

For any c ∈ R and b 6= 0, 1, equation (16) admits the peaked
period-one traveling-wave solution u(t, x) = ϕ(x − ct) where

ϕ(x) =
c

26
(12x2 + 23) (17)

for x ∈ [−1
2 ,

1
2 ] and ϕ is extended periodically to the real line.

one-peakon solutions of (16) are the same for any b,
they travel with a speed equal to their height.
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Multi-peakons

m(t, x) =
N∑

i=1

pi (t)δ(x − qi (t)) (18)

Theorem

The multi-peakon (18) satisfies the µ-equation (16) in the nonlocal
form in distributional sense if and only if {qi , pi}N

1 evolve according
to

q̇i = u(qi ) , ṗi = −(b − 1)pi{ux (qi )} (19)

where {ux (qi )} denotes the regularized value of ux at qi defined by
{ux (qi )} :=

∑N
j=1 pj g

′(qi − qj ) and the Green function is given by

g(x) = 1
2 x(x − 1) + 13

12 for x ∈ [0, 1) ' S1.
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Shock-peakons for µDP

u =
N∑

i=1

(
pi g(x − qi ) + si g

′(x − qi )
)

(20)

Theorem

The shock-peakon (20) satisfies µDP in distributional sense if and
only if {qi , pi , si}N

1 evolve according to

q̇i = u(qi ), ṗi = 2
(
si{uxx (qi )} − pi{ux (qi )}

)
,

ṡi = −si{ux (qi )}, (21)

where
{ux (qi )} =

∑N
j=1 pj g

′(qi−qj )+
∑N

j=1 sj , {uxx (qi )} =
∑N

j=1 pj .
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Euler-Poincaré equations

G Lie group and g its Lie algebra

L : TG → R right invariant Lagrangian determined by l : g→ R

The Euler-Lagrange equation for L

d

dt

δl

δu
= − ad∗u

δl

δu
(EP)

is called the right Euler-Poincaré equation

u = γ̇γ−1 is the logarithmic derivative of the curve γ in G

(ad∗ξ α, η) = (α, adξ η) for α ∈ g∗ and ξ, η ∈ g.
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Orbit invariants

The group coadjoint operator Ad∗g is given by the formula

(Ad∗g α, ξ) = (α,Adg ξ), ∀ξ ∈ g.

Along solutions u of the EP equation the quantity

Ad∗γ m = Ad∗γ
δl

δu
= const. (22)

is conserved for any curve γ in G satisfying u = γ̇γ−1.
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Examples of EP equations

1. Burgers’ equation
∂tu = −3uu′ (23)

m = δl
δu = u

orbit invariant Ad∗γ u = (u ◦ γ)(γ′)2 is conserved.

2. Camassa-Holm equation

∂tu − ∂tu′′ + 3uu′ − uu′′′ − 2u′u′′ = 0 (24)

is the geodesic equation on Diff(S1) for the right invariant H1

metric.

’momentum’ is m = δl
δu = u − u′′

orbit invariant Ad∗γ m = (m ◦ γ)(γ′)2 is conserved.
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3. µHS equation (introduced by Khesin, Lenells and Misio lek)

∂tu′′ = 2µ(u)u′ − 2u′u′′ − uu′′′, (25)

where µ(u) =
∫

S1 udx is the geodesic equation on Diff(S1) for
the right invariant metric defined by

〈u1, u2〉µ =

∫
S1

(µ(u1)µ(u2) + u′1u′2)dx = 〈u1, (µ− ∂2
x )u2〉L2 .

m = µ(u)− u′′

orbit invariant Ad∗γ m = (m ◦ γ)(γ′)2 is conserved.
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Generalized Euler-Poincaré equations

A generalized Euler-Poincaré equation associated to a right
invariant Lagrangian function L : TG → R with value l : g→ R at
the identity and to a G –action Θ on g is

d

dt

δl

δu
= −θ∗u

δl

δu
, (gEP)

where

u is the right logarithmic derivative of a curve γ in G ,

θ is the infinitesimal action associated to the (left) group
action Θ,

θ∗ξ is the adjoint of θξ for ξ ∈ g.

For m = δl
δu the gEP equation d

dt m = −θ∗um.
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Orbit invariants for gEP

Proposition

The quantity

Θ∗γ(m) = Θ∗γ

( δl

δu

)
= const.

is conserved along solutions u of the generalized Euler-Poincaré
equation for any curve γ in G satisfying u = γ̇γ−1.
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An abstract Noether theorem for gEP

Theorem

Given a G –manifold C and a G–equivariant map κ : C → g∗∗, i.e. it
satisfies κ(γ · c) = Θ∗∗γ κ(c) for all c ∈ C, with Θ∗∗γ the adjoint of

Θ∗γ , the Kelvin quantity I (c , u) =
(
κ(c), δl

δu

)
defined by κ is

conserved for u solution of the generalized right Euler-Poincaré
equation, where c = γ · c0, c0 ∈ C, for γ a curve in G with
u = γ′γ−1.
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Examples of gEP equation

1. Degasperis-Procesi equation

∂tu − ∂tu′′ + 4uu′ − uu′′′ − 3u′u′′ = 0 (DP)

It has a geometric interpretation on the space of tensor
densities on the circle: Let Θ be the left action of Diff(S1) on
F−2 and Θ∗ the right action of Diff(S1) on F3 its dual. The
corresponding generalized EP equation on Diff(S1) for the
right invariant H1 Lagrangian is the DP equation:

∂tm = −um′ − 3u′m, m = u − u′′.

orbit invariant is conserved

Θ∗γ(m) = (m ◦ γ)(γ′)3, m = u − u′′

for γ̇γ−1 = u.
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Examples of gEP equation

2. µDP equation

µ(∂tu)− ∂tu′′ + 3µ(u)u′ − 3u′u′′ − uu′′′ = 0 (26)

coadjoint action ad∗u replaced by θ∗u = u∂x + 3u′

orbit invariant is conserved:

Θ∗γ(m) = (m ◦ γ)(γ′)3, m = µ(u)− u′′

for γ̇γ−1 = u.

3. generalized EPDiff equation

∂tm + u · ∇m + (∇u)> ·m + (b − 1)m(div u) = 0. (27)

In the special case b = 3 and m = u −∆u it extends the
Degasperis-Procesi equation to higher dimensions.
the Kelvin quantity

∫
c

1
f m

[ is conserved along generalized
EPDiff.
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Given a smooth curve γ̄ : I = [0, 1]→ G/H, we compare the left
logarithmic derivatives of two smooth lifts γ, γ1 : I → G of γ̄, i.e.
γ̄ = π ◦ γ = π ◦ γ1. There exists a smooth curve h : I → H such
that γ1 = γh, hence

u1 = δlγ1 = δl (γh) = h−1γ−1(γ′h + γh′) = Ad(h−1)u + δl h

for u = δlγ : I → g.

We notice that u1 is obtained from u via a right action of the
group element h ∈ C∞(I ,H):

u · h = Ad(h−1)u + δl h. (28)

It is a right action because of the identity
δl (h1h2) = Ad(h−1

2 )δl h1 + δl h2.
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This means one can define the left logarithmic derivative δ̄l of a
curve γ̄ in G/H as an orbit under the right action (28) of
C∞(I ,H) on C∞(I , g), namely the orbit u · C∞(I ,H) of the left
logarithmic derivative u of an arbitrary lift γ : I → G of γ̄, so

δ̄l : C∞(I ,G/H)→ C∞(I , g)/C∞(I ,H), δ̄l γ̄ = δlγ · C∞(I ,H).

When the subgroup H is trivial, we recover the ordinary
logarithmic derivative δl for curves in G .
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Proposition

The following are equivalent data:

1 left G –invariant function L̄ on T (G/H);

2 right TH–invariant and left G –invariant function L on TG ;

3 h–invariant and Ad(H)–invariant function l on g;

4 Ad(H)–invariant function l̄ on g/h.
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Theorem

A solution of the Euler-Lagrange equation for a left G –invariant
Lagrangian L̄ : T (G/H)→ R is a curve γ̄ in G/H such that the
left logarithmic derivative u = γ−1γ̇ of a lift γ of γ̄ satisfies the
left Euler-Poincaré equation

d

dt

δl

δu
= ad∗u

δl

δu
, (29)

for l the (h–invariant and Ad(H)–invariant) restriction of
L = L̄ ◦ Tπ to g.
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Orbit invariants on homogeneous spaces

Proposition

The quantity Ad∗γ−1
δl
δu ∈ g∗ is conserved along the left Euler

Poincaré equation (29) on G/H with h–invariant and
Ad(H)–invariant Lagrangian function l on g, where γ is any lift of
γ̄ and u = δlγ.

The independence on the choice of the lift γ is immediate: for
γ1 = γh,

Ad∗
γ−1

1

δl

δu1
= Ad∗(γh)−1 Ad∗h

δl

δu
= Ad∗γ−1

δl

δu
.
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An abstract Noether theorem for homogeneous spaces

Theorem

Considering a G–manifold C and a map κ : C → g∗∗ which is
G –equivariant, the Kelvin quantity

I : C×g→ R, I (c , u) =
(
κ(c),

δl

δu

)
(30)

is conserved along solutions γ̄ of the Euler-Lagrange equation on
G/H with left invariant Lagrangian L̄, namely for γ a curve in G
lifting γ̄, u its left logarithmic derivative and c = γ−1 · c0, c0 ∈ C.
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The H–equivariance of A ensures the Ad(H)–invariance of l
and l descends to an Ad(H)–invariant Lagrangian
l̄ : g/h→ R.

m = δl
δu = Au, so the left Euler-Poincaré equation on G/H

writes d
dt Au = ad∗u(Au). It is the image under the inertia

operator A of the Euler equation, the left invariant version of
the Euler equation:

d

dt
u = ad(u)>u.

This can be interpreted as the geodesic equation on G/H for
the left invariant Riemannian metric coming from the
degenerate inner product 〈ξ, η〉 = (Aξ, η) on g.
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Examples of EP equations on homogeneous spaces

1. The Hunter-Saxton equation

∂tu′′ = −2u′u′′ − uu′′′ (31)

is a geodesic equation on the homogeneous space
S1 \ Diff(S1) of right cosets with the right invariant metric
defined by 〈u1, u2〉 =

∫
S1 u′1u′2dx on X(S1).

It fits into our framework above when A(u) = −u′′. The two
conditions are easily verified: the kernel of A is R, the Lie
algebra of the subgroup of rigid rotations, and A is
S1–equivariant.
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In this case l(u) = 1
2〈u, u〉 = 1

2

∫
S1(u′)2dx , so m = δl

δu = −u′′

satisfies
∂tm = −um′ − 2u′m,

which gives Hunter-Saxton equation.

A conserved quantity for the Hunter-Saxton equation is

Ad∗γ m = −(u′′ ◦ γ)(γ′)2,

where γ : I → Diff(S1) is any lift of the curve γ̄.
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Examples of EP equations on homogeneous spaces

2. Let K be a Lie group with Lie algebra k possessing a
K –invariant inner product 〈 , 〉k. The Lie algebra of the loop
group LK := C∞(S1,K ) is the loop algebra Lk = C∞(S1, k).
The subgroup of constant loops, identified with K , defines the
homogeneous space of right cosets K \ LK .
Each k–invariant and Ad(K )–invariant Lagrangian l on Lk
determines a right Euler-Poincaré equation on K \ LK :

∂tm = [u,m], m =
δl

δu
. (32)

Here m is a curve in Lk, since the inner product 〈 , 〉k permits
the identification of the regular dual of Lk with Lk.
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In the special case K = SO(3) and Ḣ−1 Lagrangian

l(u) =
1

2

∫
S1

〈∂−1
x u, ∂−1

x u〉kdx = −1

2

∫
S1

〈∂−2
x u, u〉kdx

we obtain the Landau-Lifschitz equation

∂tL = L×L′′,

where one identifies the Lie algebras (so(3), [ , ]) and (R3,×).

This equation is equivalent to the vortex filament equation
∂tc = c ′×c ′′, for L = c ′ the tangent vector to the filament, a
closed arc-parametrized time-dependent curve c in R3.
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Generalized Euler-Poincaré equations on homogeneous
spaces

Proposition

Let H be a subgroup of G with Lie algebra h, and let θ∗ be a Lie
algebra action of g on g∗. If the map θ∗ : g×g∗ → g∗ is
H–equivariant and if the action θ∗ restricted to h equals the
coadjoint action ad∗ restricted to h, then C∞(I ,H) is a symmetry
group of the equation d

dt
δl
δu = −θ∗u δl

δu , for the left action
h · u = Ad(h)u + δr h.
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Example of generalized EP equation on homogeneous
spaces

µBurgers equation

− ∂tu′′ − 3u′u′′ − uu′′′ = 0 (33)

is a generalized EP equation on homogeneous space S1 \Diff(S1).

The Lagrangian is given here by the Ḣ1 inner product:

l(u) =
1

2

∫
S1

(u′)2dx . (34)

Orbit invariant

Θ∗γ(m) = (m ◦ γ)(γ′)3, m = −u′′,

is conserved for any lift γ : I → Diff(S1) of the solution curve
γ̄ : I → S1 \ Diff(S1) whose right logarithmic derivative is
ū = C∞(I , S1) · u, i.e. γ̇ ◦ γ−1 = u.
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Orbit invariants in global existence results

The four integrable equations: CH, µCH, DP and µDP are special
cases of the equation

∂tm = −um′ − λu′m, m = Φu, (35)

where the operator Φ on the space of smooth functions on the
circle is either

a linear differential operator of the form
∑r

j=0(−1)j∂2j
x , or

the linear operator µ− ∂2
x , where µ(u) is the mean of the

function u on S1.

The equation (35) is a generalized EP equation on the group of
diffeomorphisms of the circle for the reduced Lagrangian

l(u) =
1

2

∫
S1

uΦudx .
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In this case the Diff(S1) action Θ∗ is the action on λ–densities on
the circle, with associated infinitesimal action θ∗uf = uf ′ + bu′f .
The coadjoint action is obtained for b = 2 and in this special case
(35) is the geodesic equation on Diff(S1) with respect to the right
invariant metric defined by the H r inner product.

We consider the periodic Cauchy problem for (35):

∂tu + uu′ = −Φ−1
(
[u,Φ]u′ + λu′Φu

)
, x ∈ S1, t ∈ R+ (36)

u(0, x) = u0(x) (37)

where Φ : Hs → Hs−r , Φ =
∑r

j=0(−1)j∂2j
x and λ is an arbitrary

real number.
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We prove the following global (in time) existence and uniqueness
theorem using orbit invariants.

Theorem

Let s > 2r + 1
2 . Assume that the initial data u0 ∈ Hs(S1) satisfies

Φu0 ≥ 0.

Then the Cauchy problem (36)-(37) has a unique global solution u
in
C (R+,Hs(S1)) ∩ C 1(R+,Hs−1(S1)).
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