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The Physical Model

The protagonist of the seminar will be the following Quasilinear
Schrödinger Equation:

i∂tφ(t, x) + ∆φ(t, x) + λφ(t, x)∆|φ(t, x)|2 + |φ(t, x)|p−1φ(t, x) = 0

where i is the imaginary unit, N ≥ 1, p > 1, λ > 0, (t, x) ∈ (0,∞)× RN

and φ : R× RN → C.

The Physical Model

This equation is more accurate for a lot of physical phenomena than the
classical semilinear one (λ = 0). It appears in different models, such as
the superfluid film equation in plasma physics. The Quasilinear term has
a stabilizing effect.
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The Initial Value Problem

There are no satisfactory results for the short time dynamics. The main
difficulty which arises in the study of the Cauchy problem is the presence
of the quasilinear term, which causes the phenomenon called loss of
derivatives. In particular there are no local wellposedness results in the
natural energy space

XC =
{
u ∈ H1(RN ,C) :

∫
RN
|u|2|∇|u||2dx <∞

}
.

and so a Gagliardo-Nirenberg type inequality which is present [CJS]∫
RN
|u|p+1dx ≤ K

(∫
RN
|u|2dx

)1−θ(∫
RN
|u|2|∇u|2dx

) θN
N−2

. (1)

with
θ =

(p − 1)(N − 2)

2(N + 2)

and some K > 0 depending only on N cannot guarantee global
wellposedness. CJS proved blow-up for p > 3 + 4

N .
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The best result available at the moment is the following:

Theorem

[Colin-Jeanjean-Squassina] Let N ≥ 1, s = 2E (N
2 ) + 2 and assume that

a0 ∈ Hs+2(RN). Then there exists a positive T and a unique solution to
the Cauchy problem (1) satisfying

φ(0, x) = a0(x),

φ ∈ L∞(0,T ;Hs+2(RN)) ∩ C ([0,T ];Hs(RN)),

and the conservation laws

‖φ(t)‖2 = ‖a0‖2, (2)
E(φ(t)) = E(a0), (3)

for all t ∈ [0,T ].

The proof of Theorem is based on energy methods and to overcome the
loss of derivatives induced by the quasilinear term, gauge transforms are
used. I’ve cheated in the statement...



References

For the main results on the CP we refer to Colin,
Colin-Jeanjean-Squassina, Kenig-Ponce-Vega, Lange, Poppenberg...
I apologize for the not complete set of references!



Stationary solutions

Despite we still have not a satisfactory theory of local wellposedness,
people have been able to prove the existence of standing waves
φ(t, x) = u(x)e iωt . Here u : RN → C solves the quasilinear elliptic
equation:

−∆u − λu∆|u|2 + ωu − |u|p−1u = 0, (4)

while ω > 0 is the time-frequency and λ > 0. Equation (4) is variational
and is the Euler-Lagrange equation of the associated energy functional
Eλω which is

Eλω(u) =
1
2

∫
RN
|∇u|2dx +

λ

4

∫
RN
|∇|u|2|2dx + (5)

+
ω

2

∫
RN
|u|2dx − 1

p + 1

∫
RN
|u|p+1dx . (6)



Thanks to the variational structure, solutions of equation (4) can be
found by means of critical point theory. But... Is this quasilinear
functional Frechet differentiable in the energy space? In principle I should
care about this, but I do not, because... We perform a MAGIC change of
unknown by setting v = r−1(u), where the function r : R→ R is the
unique solution to the Cauchy problem

r ′(s) =
1√

1 + 2λr2(s)
, r(0) = 0. (7)

Here u ∈ XC is assumed to be real valued. Then, in [CJ] it is proved
that, if v ∈ H1(RN) ∩ C 2(RN) is a real solution to

−∆v =
1√

1 + 2λr2(v)

(
|r(v)|p−1r(v)− ωr(v)

)
, (8)

then u = r(v) ∈ XC ∩ C 2(RN) and it is a real solution of (4). Now
thanks to Berestycki-Lions we have the following theorem:
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Theorem (CJS)

For all ω > 0, λ = 1 and 1 < p < 3N−2
N−2 for N ≥ 3 there exists a ground

state u(x) of the form

u(x) = e iθ|u(x)|, x ∈ RN ,

for some θ ∈ S1. In particular, the ground states are, up to a constant
complex phase, real-valued and non-negative. Furthermore any real
non-negative ground state u satisfies the following properties
i) u > 0 in RN ,
ii) u is a radially symmetric decreasing function,
iii) u ∈ C 2(RN),
iv) for all α ∈ NN with |α| ≤ 2, there exists (cα, δα) ∈ (R∗+)2 such that

|Dαu(x)| ≤ Cαe−δα|x|, for all x ∈ RN .

Moreover, in the case N = 1, there exists a unique positive ground state
to (4) up to translations.



Main open problems for the elliptic equation

Uniqueness of the ground state for N ≥ 2
Nondegeneracy of the ground state (later for the precise definition)
Orbital stability of the ground state (not just elliptic indeed)

One can easily have some partial results on the first two questions
(unfortunately the trasformation does not work well with also the time
derivative), because...
We notice that for small λ the transformed equation (8) is a perturbation
of the semilinear one (λ = 0). Can we deduce uniqueness and
nondegeneracy from the properties of the ground state of the semilinear
equation?
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Theorem (Uniqueness)
(S., 2010) Let 1 < p < 2∗. There exists λ̄ such that for 0 < λ < λ̄ there
exists only one real, positive, radial and exponentially decaying ground
state uλ(x) of equation (4). Moreover suppose v ∈ Gλω, then there exists
ξ ∈ RN and θ ∈ [0, 2π] such that vλ(x) = uλ(x − ξ)e iθ, where uλ(x) is
the only real, positive, radial and exponentially decaying ground state of
(4).

Theorem (Nondegeneracy)
(S., 2010) Let 1 < p < 2∗. There exists λ̄ such that for 0 < λ < λ̄ the
ground state uλ of equation (4) is nondegenerate.

Actually in the same paper we proved also that for any λ > 0, the ground
state is also C∞: [CJS] forgot to do it, but it is almost obvious thanks to
standard bootstrap. Slightly slower bootstrap due the quasilinear term.



joint work with Jeanjean
We want to remove the innatural request of H1-subcriticality and
generalize the problem to λ = 1, namely not small. We have the
following results:

Theorem

(almost complete) Let 3 ≤ p < 3N−2
N−2 and λ = 1. Then there exists only

one real, positive, radial and exponentially decaying ground state
u(x) := u1(x) of equation (4). Moreover suppose v is another ground
state, then there exists ξ ∈ RN and θ ∈ [0, 2π] such that
v(x) = u(x − ξ)e iθ, where u(x) is the only real, positive, radial and
exponentially decaying ground state of (4).

Theorem

(complete) Let 3 ≤ p < 3N−2
N−2 and λ = 1. Then the ground state u(x) of

equation (4) is nondegenerate, namely the following properties are true
(Notation: I (u) := E1

1 (u)):

(ND) ker[I ′′(u)] = span
{
iu(x), ∂u(x)

∂xj
j = 1, · · · ,N

}
;

(Fr) I ′′(u) is an index 0 Fredholm map.
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Remark
IMPORTANT! I cannot show you in the talk, but the 80/100 of the
proof of uniqueness is 95/100 of the proof of nondegeneracy!

Remark
Why nothing in the range 1 < p < 3? For 3 ≤ p < 3N−2

N−2 the ground
state is a mountain pass, in the other range not so clear geometry... I’m
wondering... Is there a relationship between the MP geometry and the
Uniqueness of the ground state?
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Scheme of the proof of uniqueness
The proof of this result relies heavily on the analysis of Kwong and
McLeod in the semilinear case. The argument we have used in the proof
is exposed in the book of Tao who found the highway: a monotonicity
formula!

The shooting method

Without loss of generality we consider the case ω = 1 and so

−∆u − u∆|u|2 + u − |u|p−1u = 0. (9)

Since by [CJS] the ground state is radial, real up to phase shift and
positive, we reduce to prove uniqueness for the following boundary value
problem:

u′′(r) +
N − 1

r
u′(r) + u

(
(u2)′′(r) +

N − 1
r

(u2)′(r)

)
− u + up = 0 (10)

with u > 0 and the boundary conditions u′(0) = 0 and
limr→+∞ u(r) = 0.



We classify the set of intial data in the folllowing way:
subcritical if inft>0 uy (t) > 0,
critical if inft>0 uy (t) = 0,
supercritical if inft>0 uy (t) < 0.

We have rephrased Theorem (UNIQUENESS): we need to show that
there exists only one critical position.
The strategy is the following:

prove that the sets of supercritcal and subcritical positions are open.
This implies that there exists a minimal critical position y∗ > 0
prove that all y > y∗ > 0 are supercritical.

INSIDE: a big mess of ODE techniques which I do not completely
understand, but everything works!



Proof of Nondegeneracy

The strategy is to study the linearized operator by decomposing it into
spherical harmonics. It turns out that the harmonics can be divided into
three different groups according to the method with which one analyzes
them:

ODE harmonics: This are usually the lowest harmonics, the most
difficult to treat but they are not always present. One rules out the
possibility of having solutions through comparison principle and
monotonicty formulas.
Solution Harmonics: These are interemediate harmonics and one
identifies here all the possible solutions.
Variational harmonics: Through variational methods, mainly
Perron-Frobenius theory one exclude solutions of higher harmonics



The linearized equation

The linearization of (4) around the ground state u is the following

L(u)w := −∆w − w∆|u|2 − 2u∆uRe(w)− 4∇uRe(∇w) +

−2uRe(∆w) + w − |u|p−1w − (p − 1)|u|p−1Re(w). (11)

We want to characterize the kernel of L(u). In order to do this we split w
into its real and imaginary parts w := w1 + iw2, with w1,w2 real valued,
and we decompose L into two operators L+(u), L−(u) acting on w1 and
w2. They are defined as follows

L+(u)w1 := −∆w1 − w1∆|u|2 − 2u∆uw1 − 4∇u∇w1 + (12)
− 2u∆w1 + ωw1 − p|u|p−1w1 (13)

and

L−(u)w2 := −∆w2 − w2∆|u|2 + ωw2 − |u|p−1w2. (14)



Decomposition into spherical harmonics

We introduce some notation

r := |x | ∈ R+

is the radial variable, while

Ω :=
x
r
∈ SN−1

is the angular variable. The operators ∆r and ∆SN−1 are respectively the
radial and the angular Laplacian and are defined as follows

∆r :=
∂2

∂r2 +
N − 1

r
∂

∂r
and

∆SN−1 :=
1
√
g

∑
i,j

∂

∂yj

(
√
gg ij ∂

∂yi

)
.

Here ds2 := gijdy idy j denotes the standard metric on SN−1,
g := det(gij) and [g ij ] := [gij ]

−1.



Consider the spherical harmonics Yk(Ω), which are the eigenvectors of
the angular Laplacian ∆SN−1 :

−∆SN−1Yk = λkYk , (15)

where
λk := k(N + k − 2), k = 0, 1, 2, . . .

are the eigenvalues of −∆SN−1 with multiplicities Mk −Mk−2:

Mk :=
(N + k − 1)!

(N − 1)!(k)!
(k ≥ 0), Mk = 0 ∀k < 0.

We split each v ∈ XC into spherical harmonics

v(x) :=
∑
k≥0

vk(r)Yk(Ω), where vk(r) :=

∫
SN−1

v(rΩ)Yk(Ω)dΩ ∈ XC.

so that L+ becomes



Ahwh := −(1 + 2u2)∆rwh + (1 + 2u2)
λh

r2 wh + ωwh − 2u∆uwh +(16)

−4uu′w ′h − p|u|p−1wh (17)

for h = 0, 1, 2, · · · , while L− becomes

Bkvk := −∆rvk +
λk

r2 vk + vk − vk∆|u|2 − |u|p−1vk = 0 (18)

for k = 0, 1, 2, · · · .



The disconjugacy interval

Definition
(Disconjugacy Interval)[Kwong] Consider the following second order
linear equation

U ′′(x) + f (x)U ′(x) + g(x)U(x) = 0, x ∈ [0,+∞) (19)

with f and g continuous real valued function. Suppose that (19) has
solutions which do not vanish in a neighborhood of +∞. The largest
neighborhood (c ,+∞) of +∞ of which there exists a solution of (19)
without zeros is called the disconjugacy interval of (19).

Remark

No non-trivial solution of (19) can have more than one zero in (c ,+∞).
On the other hand, unless c = 0, any solution of (19) that has a zero
before c must have another zero in (c ,+∞).



Lemma

(Unboundedness)[Kwong] Let (c ,+∞) be the disconjugacy interval of
(19) with

f (x) =
N − 1

r
+

4u′

1 + 2u2

and

g(x) = −1−∆|u|2 − u∆u − p|u|p−1

1 + 2u2 .

Every solution of (19) with a zero in (c ,+∞) is unbounded. Conversely,
if the last zero of the unbounded solution of (19) is ρ, than ρ is an
interior point of the disconjugacy interval (ρ > c).



We will discuss now just the Ah’s because Bk ’s are very similar, actually
easier.

Lemma

[ODE harmonic] There are no non-trivial solution of the equation
A0w = 0.

Proof.
Consider the equation

A0w0 := −(1 + 2u2)∆rw0 + (1 + 2u2)
λ0

r2 w0 + ωw0 =

−2u∆uw0 − 4uu′w ′0 − p|u|p−1w0 (20)

which becomes

A0w0 = −(1 + 2u2)∆rw0 + ωw0 − 2u∆uw0 − 4uu′w ′0 − p|u|p−1w0 (21)

since λ0 = 0. By Tao’s highway w0 has to change sign once in [0,+∞).



Proof.
Then by the definition of disconjugacy interval, w0 has to change sign
once also in its disconjugacy interval and so by Lemma
(UNBOUNDEDNESS) w0 is unbounded. This means that there are no
non-trivial solution w0 ∈ XC of (21) apart from w0 = 0. This completes
the proof.



Now we prove that the only solutions of A1w1 = 0 are w1(r) = u′(r).

Lemma

[Solutions harmonics] The only solution of A1w1 = 0 and of B0v0 = 0 are
respectively w1(r) = u′(r) and v0(r) = u(r).

Proof.
We consider

A1w1 : = −(1 + 2u2)∆rw1 + (1 + 2u2)
N − 1
r2 w1 + ωw1 + (22)

− 2u∆uw1 − 4uu′w ′1 − p|u|p−1w1 = 0. (23)

By differentiating (4) with respect to r , it is easy to see that
w1(r) = u′(r) is a solution of (22). We try now to find solutions of the
form w̃1(r) := d(r)w1(r). Apart from w̃1(r) := d0w1(r) with d0 ∈ R, d
must satisfy the following ODE

d ′′

d ′
=

N − 1
r

+
4u′

1 + 2u
+ 2

u′′

u′
.



Proof.
The solution of these ODE is

d ′(r) =
1

rN−1|u′(r)|2(1 + 2u(r))2 .

This means that d ′(r) ' e2δr as r → +∞ and so

w̃1(r) = u(r)d(r) ' e−δre2δr ' eδr .

Hence w̃1 cannot belong to XC if d ′(r) is not identically zero and this
completes the proof of the lemma.



By variational techniques we prove that there are no other solutions.

Lemma

[Variational harmonics] The only solutions of Bkvk = 0 for k ≥ 1 and of
Ahwh = 0 for h ≥ 2 are vk = 0 and wh = 0.

Proof.
We have proved in the previous lemma that the only solution of
A1w1 = 0 is w1(r) = u′(r). Since w1 have constant sign in its domain of
definition which is R+ = (0,+∞), then A1 is a non-negative operator.
Why? If ν is the smallest eigenvalue of A1, then any corresponding
eigenfunction vν does not change sign in R+. If ν < 0, then vν should be
orthogonal to w1(r) = u′(r) > 0, which is impossible. Hence ν ≥ 0 which
implies that A1 is non-negative.
We now prove that Ah is a positive operator for h ≥ 2. We can write Ah
as Ah = A1 + γh

r2 (1 + 2u2) with γh := λh − λ1 which is positive for h ≥ 2.
As before this implies that Ah is a positive operator for h ≥ 2 and so
Ahwh = 0 implies wh = 0 for h ≥ 2.

We are now ready to prove Theorem (NONDEGENERACY)



Proof.
(NONDEGENERACY)First of all we have that
z(x) := w(x) + iv(x) ∈ KernelI ′′(u) (here w and v are real valued) if and
only if w ∈ Kernel(L+(u)) and v ∈ Kernel(L−(u)). By ODE,
SOLUTIONS and VARIATIONAL Lemmas we have that each solution of
L+(u)w = 0 is a multiple of u′(r)Y1(Ω) and each solution of L−(u)v = 0
is a multiple of u(r)Y0(Ω). Here Y0(Ω) belongs to the 1-dimensional
kernel of −∆SN−1 (M0 = 0) while Y1(Ω) belongs to the N-dimensional
kernel of −∆SN−1 − λ1 (M1 = N). If we define Y1,j , · · · ,YN,j as the
basis of the kernel of −∆SN−1 − λ1, we have that

w ∈ span{u′(r)Y1,j : j = 1, · · · ,N} = span{u′(r)Y1,j : j = 1, · · · ,N}

and
w ∈ span{u(r)Y0} = span{u(r)}

which proves (ND).



Proof.
For what concerns (Fr) we can write I ′′(u) in the following way

(I ′′(u)z , z)2 = (z , z)XC − (|u|p−1w + (p − 1)|u|p−1Re(w),w)2

with P(x)w := |u|p−1w + (p − 1)|u|p−1Re(w). Since u is exponentially
decaying, then P(x) is a compact operator and so I ′′(u) is a compact
perturbation of the identity.



Open problems for the complete evolution

Local wellposedness in the energy space XC

Orbital stability of the ground state (also elliptic indeed)
Illposedness for initial data with low regularity

Remark
I could go on because more or less everything is unknown... Well, I can
prove Morawetz and Intercation Morawetz estimates in the defocusing
case because the quasilinear term helps the quantum flux of the
semilinear equation to disperse mass: same proof!
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Thank you for your attention!


