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A nonlinear wave equation

From Maxwell’s equations:
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Neglects frequency dependence of radial modes

Neglects retardation of nonlinear response

Good model to study approximations of Maxwell’s
equations from theoretical point of view

Numerics can be easily realized
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Derivation of the NLSE

e Multiple scales x, = e¢"xand fy = t, t; = €t.
E(x,t) = eAo(x1, X2, ... )e/(ﬁxo_a)lb) +c.C.

e Linear equation easy:




e Order by order
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Solvability Conditions
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¢ Next order often important, in particular for short pulses

e Generalized NLS with higher-order terms: Higher-order
dispersion, Raman- and self-steepening terms




A particular susceptibility

e Particular approximation of the susceptiblity

e Linear part in Fourier domain
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e Back in Time domain and after rescaling
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Short-Pulse Equation

e Short pulses

€
1
Eyw = ZA0¢¢+€A1¢¢+26A0X1¢+...
1
Ey = ;Ao¢¢—|—€A1¢¢+...

e Short pulse equation (S. and Wayne 2004)
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Comparison to Maxwell’s equations
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(Chung, Jones, S., Wayne 2005)




Soliton solutions of the SPE

e Sakovich and Sakovich were able to prove integrability and
to construct solitary solutions to the SPE

msin sinh ¢ + ncos 1y cosh ¢
m? sin? ¢ + n2 cosh? ¢

msin 2y — nsinh2¢

m? sin? ¢ + n? cosh? ¢

¢ =m(y+1),0=n(y—t),n=~1-—m?

» Conditions for nonsingular pulse: m < m,, = sinn/8, for
small m NLS-soliton-like pulse:

u=4mn

X=y+2mn

u(x,t) = 4mcos(x — t)sech(m(x + t))

The shortest solitary wave is about three cycles.




Higher-order SPE

¢ As for the NLSE, we can derive higher-order corrections
¢ Result: Higher-order SPE: (Chung, Kurt, S., in progress)
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e Numerics: Dispersive term seems dominant for Sakovich
soliton.




Nonlocal multiple scales

Leading order:
Eo(Xo, X1, w) = AA()(X1 s w)ei“’x + BAo (X1 s w)efiwx

First order:

82 2 S 8 8 A 2.+(1) a w2
Fundamental solutions of I.h.s: {exp(iwxp), exp(—iwXg)}

Fredholm alternative: account for all possible frequency
combinations in the nonlocal term that create resonances.

Result: nonlocal equations for Ay and By.




A pair of nonlocal equations

e Here they are: (Chung, S., 2007)
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e Ap and By are coupled very weakly.
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Pulse stabilization

¢ Nonlinearity and nonlocality are preserved:
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e We can try to balance them to solve 0Ay/0x; =0
Ag + /Xm(t —71)Ao(xq,7)dT = 0.

e Example: Lorentz profile

Aol = T G
~(1) 102 2 2
0w = —gpW? +38 1wl +307).

8




A stochastic term in the susceptibility

e Stochastic wave equation:

0’E  O°E 0?
= — 3)

e Stochastic linear susceptibility modeled as white noise

(E(x)E(X)) = o(x = x')

e How can we derive an averaged equation?

E(x, ).




Techniques for coarse-graining noise

Deterministic case: Use multi-scale expansion.
Stochastic case: We have to find a way to combine
multi-scale techniques and randomness.

Three methods:

@© Random solvability conditions
@ Asymptotic expansion of the Fokker-Planck equation
© Path integrals

(S., Moore, 2011)




A simple toy problem

A linear SDE with a periodic coefficient
x =d(t)x +vg(x(t)) + o&(t), x(0) = a,

Scales: 02 ~v ~cand T ~ O(1).

Both nonlinearity and randomness will come into play for
times on the scale of O(1/e).

First method: Random solvability conditions
Multi-scale expansion of the SDE using t, = €*t.

x(t) = xo(to, t1) + ex1(fo, t1) + ...
Leading order O(1):

xo(fo, 1) = X(t)ef @) R'(t) = d(to)




Random Solvability Conditions

Next order can be written as
g 14
Lxy = x14, — d(fo)x1 = —Xot, + ;f(fo) + gg(Xo(To, ty)).

Ker(L™) is generated by exp(—R(ty))
Fredholm alternative yields

First term: Slow noise on the t;-scale:

X'=g(x(t)) +6=(t).




Asymptotic expansion of the FPE

Can we obtain the same result by borrowing tools from the
PDE world? Yes!

Fokker-Planck equation:

2
Pt = 0% [(d(O)x +vg(x)Pl+ G- 0up,  P(0,x) = 5(x—a).

Multi-scale expansion:
p(t, x) = po(to, ti, x) + ep1(to, t, X) + ...

Leading order is solved by characteristics:

Po(t, To, x) = e~ Rp (1, e=Flb)x)

Ker(L") is generated by ¢(x, ty) = 1 (xe (b))



Fredholm Alternative

e Solvability condition:
T oo
/ / P(xeAlb)) (—e’R(’U)ﬁﬁ (t1,Xe’R(fﬂ))
(g0 @ (1130 + glx)e )y (15,5070
+ %eisﬁ(t")ﬁxx (H,XC m)) dx dlty

e Since © is an arbitrary function, this leads to an explicit
equation for py given by

Py = 6_,_/ p+g (xe )) e~ F0)p, di

<ET/ 72R(t0 dtO) ,bxx
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Path integrals

e Stratonovich SDE:
= f(x, ;) +Veg(x, H)é(t), x(0)=a

e Path integral representation:

p(X7 t) = / DX(T) e fO 7),X(7),7) dr
C(x,t|a,0)

= [ Dx(n)P(x()
C(x,t|a,0)
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Decomposition of paths

¢ Introduce two time scales

M
p(x,tla,0) = /(HP(Xk+17tk+1!Xk7fk)> axy...dxy

k=0

o Decomposition of paths: ' € C(x, t|a,0) can be written as
M=ok Mk € C(Xkt1, Bt [ X, B)-
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Path integral hierarchy

¢ Evolution within on period: 1-period propagator

(et et [Xi 1) = / P(x(r))Dx(7)

C(Xkg15tk+1 Xk, B)

e Continuum limit:

M
yim_ ( P(Xic1, t k1) X t1k)> = P(X(t))-
’ k=1

e Path integral hierarchy

p(x, t|a,0) = / <|imH / P(X(Tg))DX(TO)> DX(71)




Application to toy problem
1-period propagator
1

f+1
POx(s)) = oxp (~g0z [ (5(5) - d(9)x(s) - valx(t) Pos

multi-scale expansion: x(t) = Xo(70,71) + €x1(70,71) + ...
Scale separation in the Lagrangian:

1 2
L= <ex'(ﬁ) RS 4 ¢ (x5 — d(8)x1) — vg (X(T1 )e”<s)))
Use semi-classical method to calculate 1-period

propagator

ter . 1,
| Lnessre,s)ds = 5p (X'~ G00)
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Back to the stochastic wave equation:

e Use a coordinate transform for appropriate short-pulse

scaling
E(x,t) _A<¢E t_X,x>

€

2 1
_EA¢X = (a+vE{(X))A - Ax + :ZX(S)(AB)M)

e Use now a multi-scale expansion of the form
A(¢a X) = 6M0(¢a Xo, X1, "')+62M1 (¢7 X0, X1, )a Xn = e"x
e Leading order implies My = My(¢, X1, X2, ...) @s

_2M0¢X0 - 0




Stochastic Short Pulse Equation

First nontrivial order:
—2Mh 55y = 2Mogx, + (o + vE(X0)) Mo + X (M) g
Solvability condition for M:
—2Mogx, = (v + v=(x1)) Mo + XO (M) 46
Slow noise: (remember x; = ex)
|
=(xy) = Ve /0 £(x)dx
Result: Stochastic Short Pulse Equation (Kurt, S., preprint

2011)
For NLSE: Difficult (need higher order)




Stochastic Hamiltonian Systems

e Hamiltonian Dynamics and Noise:

. OH
X = By + a&1(t)

. oH
y - —87 + Ufg(t)

e Conditional Probability Density

C(vav t) = P((X7yv t)|(X0,yo, tO))

o Fokker-Planck Equation

Cf+U1CX+U20y:l{AC, K= —




Advection-Diffusion Equation

Advection-Diffusion equation with time-dependent velocity
field:

ct+(Uu-V)e—kV2c=0.
Specific form of the stream function:
V(g ) = V(EI(1)
equations of stream lines reduce to

t
ﬁ:v%(g) F(t):/o f(t') ot

integrability — action-angle variables

¢t — f(Hw(J)ey — k(M VV +6-V)c=0

(S., Poje, Vukadinovic, 2010)



A modulated vortex

e Example: A modulated vortex:

V(t,x,y)=In (\/&2 + X2 +y2> f(t)
o After averaging:
V., + (- V)V=K:VVV
e Advection:
wixy) = (R (5 o) 125 )y e 2P

lo(x; y)
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Numerical Simulations




Understanding Advection and Diffusion

Cole-Hopf transform for Burger’s equation
Ct + CCX - K’CXX

Gaussian initial condtion: « > 0: no singularity
Transformation to heat equation

Vv,

Transformation is singular




1-d

parabolic equations

Symmetrization of 1-d parabolic equations

Ct + U(X, t)Cx - /iCXx

Can we ‘remove’ the advection term?

Let’s use a simple point tra

c(x,t) =
C =
CX —

Result:

Vi + (U — 26x)Vx =

nsform:

e?®Dy(x, 1)
¢te¢ vV + C¢ Vi
dxe?V + e®vy

<—¢t — Ux + K(dxx + </5)2()) 4

+K Vxx




The point transform is singular

Hence the 'correct’ choice for ¢ is simply

1 1 (X , ,
ox = 5-U, o= 2/ U(X , t)dX

2Kk K J_so

And the transformation is somewhat similar to Cole-Hopf:

1 X

1 ! !
V=e 2 ) u(x ,t)dxC

Can we do something similar to the Fokker-Planck
equation?
Let’s try it out:

Ct + 2u1Cx + 2UpCy = KAC, c=e?ry




Point Transform yields...

As equation for v we find

1
vi+ By = —fv+kAv
K

f = |Vo|2—2u-Vo
B = 2(u—V¢)-V—-Ap

Note: Bt = —B, and B = 0 if u has a potential.
For 'real’ fluids we need to do more.
Idea: Use a Lie transform

w, LT =L

As x — 0, we can expand the result in powers of .




Baker-Campbell-Hausdorff...

Transformed equation for w:

Wi

+ Bw+k[B,Llw =
(ler .0+ 21T L],L]> w

Killing skew-symmetric terms:

What shall we choose for L? There are a lot of choices...

B =[f, L]

Maybe a symmetric second-order differential operator?

L
by
bo

0118)2( + 20128X8y + nga}% + b1Ox + bgay
Ci1x + Cr2y
Ci2x + Co2y




Balance Equations

¢ Result: Conditions for L and ¢:

Ciify + ci2fy = éx — U
Ciafy + Co2fy = ¢y — U

e Evolution equation for w:
w; = KAwW

1 1
A = —S[BL+A+ Sf

e (S., Poje, Vukadinovic, preprint)




Summary & Acknowledgment

NLSE and SPE approximate Maxwell’s equations over a
wide range. 'Overlap’ when incorporating higher order
terms?

Non-local solitons as alternative approach for engineered
susceptibilites.

Variety of methods to coarse-grain noise in multi-scale
systems.

Stochastic SPE has been derived, stochastic NLSE
requires higher-order expansion.

New idea to use a combination of a point transform and a
Lie transform to transform the Fokker-Planck to a new,
symmetric equation.
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