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Introduction

Models for the unidirectional propagation of small
amplitude, long waves on the surface of an ideal fluid

@ 1895- Korteweg- de Vries

U + Uy + €Uxec + 2€uu, = 0.

@ 1972- Benjamin-Bona-Mahony

Ut + Uy — €Upx + 2€uuy, = 0.

@ 1976- Hirota-Satsuma

o0

/
Ur + Uy — Elp — EUUE + eux/ urdx’ = 0.

X
u=u(x,t) €R, x, t € R, and € is a small parameter.
Note that u; = —ux + O(€) = these models are formally
equivalent.
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Introduction

Hirota-Satsuma equation

We fixe=1. =

U + Uy — Upe — ULz + ux/ urdx’ = 0. (HS)

X

The 2 following quantities are conserved by the flow of (HS):

£0) = [ (50007 + 56007 - Go0?) o

and

F0) = [ (367 + 3" — S0 + L) = S0/ )
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Introduction

Objectives

1— Well-posedness theory in the energy space H!(R).

2— Existence and stability of solitary wave solutions.
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Well-posedness

Equation on the quasilinear form

Observing that

—+00 —+00
Ox <u/ utdx'> = ux/ urdx’ — uug,
X X

we transform (HS) on the quasilinear equation
vy = —0x (1 — 92 — u)tu, (1)

1

as long as (1 — 02 — u)~! exists.

= U={peH'(R) : ~1¢0(-0;—9¢)},

Q; is an open subspace of H'(R).
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Well-posedness

Local well-posedness

For all ¢ € Q1, let us denote

ri(¢) == 104(=0; — o+ 1) Mgz, J=0,1,2,
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ri(¢) == 104(=0; — o+ 1) Mgz, J=0,1,2,

Theorem (I6rio, —)

Let up € Q1. Then 3 T = T(up) >0, 3! u € C([0, T]; HX(R))
solution of (HS) such that u(-,0) = ug. Moreover the flow map
solution ug — u is smooth.
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Well-posedness

Local well-posedness

For all ¢ € Q1, let us denote

ri(¢) == 104(=0; — o+ 1) Mgz, J=0,1,2,

Theorem (I6rio, —)

Let up € Q1. Then 3 T = T(up) >0, 3! u € C([0, T]; HX(R))
solution of (HS) such that u(-,0) = ug. Moreover the flow map
solution ug — u is smooth.

Observation: T = T(||uol| 12, rj(uo)), j=0,1,2.
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Well-posedness

Local Well-Posedness - Proof

Let ug € €.
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Well-posedness

Local Well-Posedness - Proof

Let ug € 1. Consider the integral equation

u(t) = F(u)(t) = to —/O Be(1— & — u(t)) " u(t')d.
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Well-posedness

Local Well-Posedness - Proof

Let ug € 1. Consider the integral equation

t
u(t) = F(u)(t) == uo —/ B (1 — 02— u(t))) tu(t')dt’
0
Then F is a contraction in the space

Xt(uo) := {u € C([0, T]: H/(R)) : P lu(t) = wollm < o},
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Well-posedness

Local Well-Posedness - Proof

Let ug € 1. Consider the integral equation

t
u(t) = F(u)(t) == uo —/ B (1 — 02— u(t))) tu(t')dt’
0
Then F is a contraction in the space

Xt(uo) := {u € C([0, T]: H/(R)) : P lu(t) = wollm < o},

_ 1 _ . ;
where a = T ) and T = T(rj(uo), ||uo|l;2) is small enough.
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Well-posedness

Local Well-Posedness - Proof

Let u € X*+(ug) and t € [0, T]. Then
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Well-posedness

Local Well-Posedness - Proof

Let u € X*+(ug) and t € [0, T]. Then
IF(u)(t) = wollpr = [|F(u)(t) — woll2 + [[0x(F(u)(t) — wo)ll 2

<\/6RW mmﬁw/aztw(wwg

r1(uo) + ra(uo) AN
< T (ulu(e) — wol I

< 2T(r(uo) + r2(uo)) (e + ||uoll12)-
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Well-posedness

Local Well-Posedness - Proof

Let u € X*+(ug) and t € [0, T]. Then
IF(u)(t) = wollpr = [|F(u)(t) — woll2 + [[0x(F(u)(t) — wo)ll 2

<\/6RW mmﬁw/aztw(wwg

r1(uo) + ra(uo) AN
< T (ulu(e) — wol I

< 2T(r(uo) + r2(uo)) (e + ||uoll12)-

= If T is small enough, T = T(ro(uo), r1(wo), r2(uo), ||uol|2)
F(XF(uo)) € XF(uo).
O
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Well-posedness

Structure of €4

Let ¢* the solution of —¢" + ¢ — ¢?> = 0. Then
o o* € Fi:=H(R)\ Q.
@ the best constant C* in the Sobolev embedding
loll3 < C*||@||yt, is attained for p*.

_1
= E* = E(¢*) = 3]l¢"[IFn and C* = [lp*]|,,¢ -

B(O, ll¢*[lm) = {6 € H'(R) : [I6lln < 0*llpn} € Q.

Proof. Let ¢ € HY(R) \ Q1. Then there exists 1 € H?(R) such
that —¢" +v¢ — ¢p = 0. =

lliin = /Rdnfdx < lollallel?s < Nl enllvlZn.

Didier Pilod Fields Institute 05/2011



Well-posedness

Energy trapping

Let 0 < 0o < 1. If p € B(O, ||p*|| 1) and E(¢) < (1 — o) E(¢*).
Then 3 § = 6(dp) > 0 such that

16l < (1= 0)ll¢™[[m  and  E() > 0.
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Well-posedness

Energy trapping

Let 0 < 0o < 1. If p € B(O, ||p*|| 1) and E(¢) < (1 — o) E(¢*).
Then 3 § = 6(dp) > 0 such that

19l < (L= d)ll¢™[[m  and  E(¢) > 0.
3
Proof. Let f(y) =1y — & y?andy = 117

= f(y) < E(¢) < (1—00)E(¢").
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Well-posedness

Energy trapping

Let 0 < 0o < 1. If p € B(O, ||p*|| 1) and E(¢) < (1 — o) E(¢*).
Then 3 § = 6(dp) > 0 such that

19l < (L= d)ll¢™[[m  and  E(¢) > 0.
3
Proof. Let f(y) =1y — & y?andy = 117

= f(y) < E(¢) < (1—00)E(¢").

Moreover,
flly)=0<y=4¢*l;p and F([|l¢*[[}n) = E(¢").
0



Well-posedness

Global well-posedness

Theorem (l6rio,—)

Let up € B(0, ||¢*||y1) such that E(ug) < E(¢*). Then the local
solution u of (HS) extends globally in time.
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Global well-posedness

Theorem (l6rio,—)
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Well-posedness

Global well-posedness

Theorem (l6rio,—)

Let up € B(0, ||¢*||y1) such that E(ug) < E(¢*). Then the local
solution u of (HS) extends globally in time.

Proof. Let u € C([0, Tmax); H*(R)) the maximal solution of (HS)
— 36 > 0 such that

(@[ < (1= O)ll@™llr = u(t) € Q1 Vit €0, Trmax)-

— a priori bounds on rj(u(t)) = 10L(—02 — u(t) + 1)_1||B(,_2),
j=0,1,2.

g
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Well-posedness

A priori bounds on rj(u(t))
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o Let —\ < 0 € ev(—02 — u(t)), = Y € H?(R) such that
—p" + Mp — u(t)y = 0.
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Well-posedness

A priori bounds on rj(u(t))

o Let —\ < 0 € ev(—02 — u(t)), = Y € H?(R) such that
—p" + Mp — u(t)y = 0.

= W+ AT < el lu) ¢l < Q=)
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Well-posedness

A priori bounds on rj(u(t))

o Let —\ < 0 € ev(—02 — u(t)), = Y € H?(R) such that
—p" + Mp — u(t)y = 0.

= [+ < el mllvlia < (=6l
sothat 0 < A <1-4.
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Well-posedness

A priori bounds on rj(u(t))

o Let —\ < 0 € ev(—02 — u(t)), = Y € H?(R) such that
—p" + Mp — u(t)y = 0.

= [+ Me12 < e lptlu()mllvli: < (1=8) Y[,
sothat 0 < A <1-—4. Then

IRu(e) (= D)lls(e2) = sPr(Ru(e)(—1)) = d(0(Hyr)), —1)"F <671
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Well-posedness

A priori bounds on rj(u(t))

o Let —\ < 0 € ev(—02 — u(t)), = Y € H?(R) such that
—p" + Mp — u(t)y = 0.

= [+ Me12 < e lptlu()mllvli: < (1=8) Y[,
sothat 0 < A <1-—4. Then

IRu(e) (= D)lls(e2) = sPr(Ru(e)(—1)) = d(0(Hyr)), —1)"F <671

® D2Ry(t)(—1) = =1 — u(t)Ry(e)(—1) + Rye)(—1).
= (|02 Rue) (= Dllsz) = O, [|©* || 1n)-
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Well-posedness

A priori bounds on rj(u(t))

o Let —\ < 0 € ev(—02 — u(t)), = Y € H?(R) such that
—p" + Mp — u(t)y = 0.

= [+ Me12 < e lptlu()mllvli: < (1=8) Y[,
sothat 0 < A <1-—4. Then

IRu(e) (= D)lls(e2) = sPr(Ru(e)(—1)) = d(0(Hyr)), —1)"F <671

® D2Ry(t)(—1) = =1 — u(t)Ry(e)(—1) + Rye)(—1).
= (|02 Rue) (= Dllsz) = O, [|©* || 1n)-

N =

o 9xRs(~Dlls2) < (IRs(~Dllsez)|02Rs(~Dllsz)? . O



Solitary waves

Solitary waves

@ For ¢ > 0, (HS) admits special solutions of the form

ue(x,t) = ¢u(x — (1 +c)t), with lim  ¢,(x) =0,

[x| =400
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@ For ¢ > 0, (HS) admits special solutions of the form

ue(x,t) = ¢u(x — (1 +c)t), with lim  ¢,(x) =0,

[x| =400

where ¢, is solution to

¢t pup— 2 =0, with u= ?CC € (0,1).
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Solitary waves

Solitary waves

@ For ¢ > 0, (HS) admits special solutions of the form

ue(x,t) = ¢u(x — (1 +c)t), with lim  ¢,(x) =0,

[x| =400

where ¢, is solution to
/1 2 . c
— =0 th = 0,1).
"+ pp— ¢ . wi B=1C €(0,1)

© [lgullpn < ll@*[ln and E(,) < E(p").
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Solitary waves

Solitary waves

@ For ¢ > 0, (HS) admits special solutions of the form

ue(x,t) = ¢u(x — (1 +c)t), with lim  ¢,(x) =0,

[x| =400

where ¢, is solution to

¢t pup— 2 =0, with u= ?CC € (0,1).

o [[fullpn < ll¢*llm and E(du) < E(g”).
@ = Question: Stability of these solitary waves?
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Solitary waves

lll-posedness in ¢*

Observe that

c—-+00
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Solitary waves

lll-posedness in ¢*

Observe that
¢ — ¢ in HY(R).

c—-+00

Then if the flow map data — solution for (HS) extends
continuously in ¢*,
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Solitary waves

lll-posedness in ¢*

Observe that
* - 1
by~ ¢ in HY(R).
Then if the flow map data — solution for (HS) extends
continuously in ¢*, then the corresponding solution u* would

satisfy
ue =S¢, — u* in LR x][0,T])
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Solitary waves

lll-posedness in ¢*

Observe that
* - 1
by~ ¢ in HY(R).
Then if the flow map data — solution for (HS) extends
continuously in ¢*, then the corresponding solution u* would
satisfy
ue =S¢, — u* in LR x][0,T])

which is a contradiction since for all R > 0,

ue — 0 in L®((=R,R) x (0, T*]).

c—-+o0o
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Solitary waves

Stability result

Theorem (Bona,—)

Let ¢ > 0 and p = 1. Then the solitary wave solution uc is

orbitally stable in H?(R),
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Solitary waves

Stability result

Theorem (Bona,—)

Let ¢ > 0 and p = 1. Then the solitary wave solution uc is

orbitally stable in H2(R), i.e.
Ve>0,36 >0, such that if

luo — Gulle <6,
then V't >0, 3v = y(t) € R satisfying

Ju( 1) = Gul- + Nl <

where u is the solution emanating from ug.
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Solitary waves

Stability result

Theorem (Bona,—)

Let ¢ > 0 and p = 1. Then the solitary wave solution uc is

orbitally stable in H2(R), i.e.
Ve>0,36 >0, such that if

luo — Gulle <6,
then V't >0, 3v = y(t) € R satisfying

Ju( 1) = Gul- + Nl <

where u is the solution emanating from ug.
Moreover, v can be chosen as a C function satisfying
Y (t)+ (14 )| <ce Vit >0.
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Techniques to obtain stability
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Requires a full understanding of the spectrum of a linearized ODE
associated to the solitary wave.
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@ Study the minimizers of the variational problem.

— ¢y, is a local minimizer of the variational problem. (Benjamin,
Bona, Weinstein)

Requires a full understanding of the spectrum of a linearized ODE
associated to the solitary wave.

— Study the global minimizers of the variational problem.
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Solitary waves

Techniques to obtain stability

@ ¢, is a solution to the Euler-Lagrange equation associated to
a minimization problem with constraint.

@ The two functionals involved are invariant by the flow of the
PDE.

@ Study the minimizers of the variational problem.
— ¢y, is a local minimizer of the variational problem. (Benjamin,
Bona, Weinstein)
Requires a full understanding of the spectrum of a linearized ODE
associated to the solitary wave.

— Study the global minimizers of the variational problem.
(Cazenave-Lions)

Involves global analysis like the “concentration compactness
method”.
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Solitary waves

Strategy of the proof

e Consider the functional A(¢) := F(¢) + nE(¢).
Then, N'(¢) =0 < ¢ is a solution to —¢” + ¢ — ¢* = 0.
(] /\//(¢N)(h1, h2) = (Muhlv h2)L2a where Mﬂ = HH£N + Cl“
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Solitary waves

Strategy of the proof

e Consider the functional A(¢) := F(¢) + nE(¢).
Then, N'(¢) =0 < ¢ is a solution to —¢” + ¢ — ¢* = 0.
o /\//(¢N)(h1, h2) = (Muhlv h2)L2a where Mﬂ = HMC + Cl“

2
Hy=— dx2 — Pp, u**%+/‘*2¢w and G, := (;S#dx ¢Z'
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Solitary waves

Strategy of the proof

e Consider the functional A(¢) := F(¢) + nE(¢).
Then, N'(¢) =0 < ¢ is a solution to —¢” + pu¢p — ¢? = 0.

o N'(¢u)(hi, o) = (Myhi, h)2, where M, = H, L, +C,,
Hu:—j—;+lf¢#, E#:—j—; +p—2¢,, and C,, 1= —d)Ld%JrqﬁZ.
= N (G2 %) = —d"() <0, where  d(1) = A(9,):
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Solitary waves

Strategy of the proof

e Consider the functional A(¢) := F(¢) + nE(¢).
Then, N'(¢) =0 < ¢ is a solution to —¢” + pu¢p — ¢? = 0.

o N'(¢u)(hi, o) = (Myhi, h)2, where M, = H, L, +C,,
Hu:—j—;+lf¢#, E#:—j—; + =20y, and Cy = =), L + ¢
= N() (e G) = —d"(1) <0, where d(i) = A(6,.).

@ Variational problem:
(V) { Minimize F(¢) on the admissible set of functions
A

Ih={d € H*(R) | E(¢) =X and [[p]lm < [[¢*[lm}-

Didier Pilod Fields Institute 05/2011



Solitary waves

Strategy of the proof

e Consider the functional A(¢) := F(¢) + nE(¢).
Then, N'(¢) =0 < ¢ is a solution to —¢” + pu¢p — ¢? = 0.

o N'(¢u)(hi, o) = (Myhi, h)2, where M, = H, L, +C,,
Hu:*c%:z+1 ¢w£u:*%+ﬂf2¢wandcu: ¢#dx+¢//

= N() (e G) = —d"(1) <0, where d(i) = A(6,.).

@ Variational problem:
(V) { Minimize F(¢) on the admissible set of functions
A

Ih={d € H*(R) | E(¢) =X and [[p]lm < [[¢*[lm}-

Problem: E and F involve higher-order derivatives and are not homogeneous...
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Solitary waves

Strategy of the proof

e Consider the functional A(¢) := F(¢) + nE(¢).
Then, N'(¢) =0 < ¢ is a solution to —¢” + pu¢p — ¢? = 0.

o N'(¢u)(hi, o) = (Myhi, h)2, where M, = H, L, +C,,
Hu:—j—;+lf¢#, E#:—j—; + =20y, and Cy = =), L + ¢
= N() (e G) = —d"(1) <0, where d(i) = A(6,.).

@ Variational problem:
(V) { Minimize F(¢) on the admissible set of functions
A

Ih={d € H*(R) | E(¢) =X and [[p]lm < [[¢*[lm}-

Problem: E and F involve higher-order derivatives and are not homogeneous...

How to prevent a minimizing sequence from dichotomizing?
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Solitary waves

Lopes theorem

Theorem (Lopes)

Let E, F : H*(R) — R be translation invariant, C? functionals
satisfying
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Solitary waves

Lopes theorem

Theorem (Lopes)
Let E, F : H*(R) — R be translation invariant, C? functionals
satisfying some technical conditions +
(C) If a minimizing sequence for (Vy), ¢n — ¢ # 0 in H?, where
¢ is solution to N'(¢) = F'(¢) + pE'(¢) =0, then
Jh € H2(R) s.t. N’(¢)(h,h) <O0.
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Solitary waves

Lopes theorem

Theorem (Lopes)

Let E, F : H*(R) — R be translation invariant, C? functionals
satisfying some technical conditions +

(C) If a minimizing sequence for (Vy), ¢n — ¢ # 0 in H?, where
¢ is solution to N'(¢) = F'(¢) + pE'(¢) =0, then
Jhe H2(R) s.t. N"(¢)(h, h) < 0.
Then Let (¢,) a minimizing sequence for (Vy).

(Gn—d#£0in H?) = (¢n— ¢ in WP, 2 < p < ).

Moreover, ¢ is a solution to the Euler-Lagrange equation
F'(¢) + nE'(¢) = 0, for some u € R.
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Solitary waves

Technical results

Let (¢,) a bounded sequence of H2. Then

(¢n('+cn) —0in H27 V(C,,) C R) = (¢" —01in WLP’ 2< P < o).
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Solitary waves

Technical results

Lemma

Let (¢,) a bounded sequence of H2. Then

(¢n('+cn) —0in H27 V(C,,) C R) = (¢" —01in WLP’ 2< P < o).

Lemma

If {¢n} is @ minimizing sequence for (V) such that ¢, — ¢ in
HY(R), then |4l < [l¢* |-

A\
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Solitary waves

Technical results

Lemma (Monotonicity)

(i) e:(0,1) = (0,€e*), p— E(¢u) is a strictly increasing
bijection.

(i) f:(0,1) = (f*,0), p > F(¢,) is a strictly decreasing
bijection.

where e* := E(¢*) and f* := F(¢*).
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Solitary waves

Existence of global minimizers

Let X € (0,€e*), and (¢,) a minimizing sequence for (V). Then,
d(cn) CR, T€R s.L.

¢n(' + Cn) - ¢M( + 7—)’ in H2(R)7

with = e ().
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Let X € (0,€e*), and (¢,) a minimizing sequence for (V). Then,
d(cn) CR, T€R s.L.

¢n(' + Cn) - ¢M( + 7—)’ in H2(R)7

with = e ().

Proof

o Let (¢,) a minimizing sequence for (V). Then (¢,) is
bounded in H?(R).
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Solitary waves

Existence of global minimizers

Let X € (0,€e*), and (¢,) a minimizing sequence for (V). Then,
d(cn) CR, T€R s.L.

¢n(' + Cn) - ¢M( + 7—)’ in H2(R)7

with = e ().

Proof

o Let (¢,) a minimizing sequence for (V). Then (¢,) is
bounded in H?(R).

° EI(Cn)r ¢ € Hz(R) st Y = ¢n( + Cn) — ¢ 7& 0, in H?.
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Solitary waves

Existence of global minimizers

Let X € (0,€e*), and (¢,) a minimizing sequence for (V). Then,
d(cn) CR, T€R s.L.

¢n(' + Cn) - ¢M( + 7—)’ in H2(R)7

with = e ().

Proof

o Let (¢,) a minimizing sequence for (V). Then (¢,) is
bounded in H?(R).

e 3(cn), ¢ € H2(R) s.t. Yy = dn(- +cn) — ¢ #0, in H2,
@ (1) is still a minimizing sequence. Lopes theorem =
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Solitary waves

Existence of global minimizers

Let X € (0,€e*), and (¢,) a minimizing sequence for (V). Then,
d(cn) CR, T€R s.L.

¢n(' + Cn) - ¢M( + 7—)’ in H2(R)7

with = e ().

Proof

o Let (¢,) a minimizing sequence for (V). Then (¢,) is
bounded in H?(R).

o J(cn), ¢ € HA(R) s.t. ¥y = ¢n(-+cn) = ¢ £ 0, in H2.
@ (1) is still a minimizing sequence. Lopes theorem =
Yy — ¢ in WHP, 2 < p< o0, and ¢ = ¢, for a € (0,1).
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Solitary waves

Proof of the proposition

@ Passing to the limit,

F(¢a) <liminf(F(¥n)) = Fxand E(¢q) < liminf(E(¢n)) = A
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Proof of the proposition

@ Passing to the limit,

F(¢a) <liminf(F(¥n)) = Fxand E(¢q) < liminf(E(¢n)) = A

=0<a< .
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Solitary waves

Proof of the proposition

@ Passing to the limit,

F(¢a) <liminf(F(¥n)) = Fxand E(¢q) < liminf(E(¢n)) = A

=0<a< .
o If0 <<y,
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Solitary waves

Proof of the proposition

@ Passing to the limit,

F(¢a) <liminf(F(¥n)) = Fxand E(¢q) < liminf(E(¢n)) = A

=0<a< .

e If 0 < & < 1, monotonicity lemma =
f(a) = F(¢a) > F(dp) 2 Fi.
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Solitary waves

Proof of the proposition

@ Passing to the limit,

F(¢a) <liminf(F(¥n)) = Fxand E(¢q) < liminf(E(¢n)) = A

=0<a< .

e If 0 < & < 1, monotonicity lemma =
f(a) = F(¢a) > F(¢u) > Fy. contradiction.
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Solitary waves

Proof of the proposition

@ Passing to the limit,
F(¢a) <liminf(F(¥n)) = Fxand E(¢q) < liminf(E(¢n)) = A

=0<a< .

e If 0 < & < 1, monotonicity lemma =
f(a) = F(¢a) > F(¢u) > Fy. contradiction.

@ Then
= [, F(%) = F, E(%) = A, and [[¢n][p2 n_>—+>oo H%HH%

g
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Solitary waves

Proof of the theorem

@ By contradiction.
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Solitary waves

Proof of the theorem

o By contradiction. Suppose that 3¢ > 0, (1,) C H?(R),
(tn) C R, s.t.

Yo — ¢, in H? and ig& (- tn) — Gu(- + 7)|I2 > e

n—-+oo
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Solitary waves

Proof of the theorem

o By contradiction. Suppose that 3¢ > 0, (1,) C H?(R),
(tn) C R, s.t.
Yo — ¢, in H?, and inf (s t0) = S+ )12 2 €.

n—-+oo

@ Define f, := u,(-, tp).
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Solitary waves

Proof of the theorem

o By contradiction. Suppose that 3¢ > 0, (1,) C H?(R),
(tn) C R, s.t.

Yo — ¢, in H? and ig& (- tn) — Gu(- + 7)|I2 > e

n—-+oo
o Define f, := up(-, t,). Then

alle < ", E(f) —= A and F(f) — Fy.

n——+o0
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Solitary waves

Proof of the theorem

o By contradiction. Suppose that 3¢ > 0, (1,) C H?(R),
(tn) C R, s.t.

Yo — ¢, in H? and ig& (- tn) — Gu(- + 7)|I2 > e

n—-+oo

o Define f, := up(-, t,). Then

alle < ", E(f) —= A and F(f) — Fy.

n——+o0

@ 3 f +#0 e H*R) such that f, = fin H? and 3 h € C§°(R)
such that E'(f)h # 0.
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Solitary waves

Proof of the theorem

o Consider the polynomial
P.(t) = E(f, + th) = a, + bpt + c,t* + dt>.

Then a, — A, by — E'(f)h # 0 and ¢, — SE"(f)(h, h).
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Solitary waves

Proof of the theorem

o Consider the polynomial
P.(t) = E(f, + th) = a, + bpt + c,t* + dt>.

Then a, — A, by — E'(f)h # 0 and ¢, — SE"(f)(h, h).
o = 3 (t,) s.t. Py(ty) =Aand t, — 0,
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Solitary waves

Proof of the theorem

o Consider the polynomial
P.(t) = E(f, + th) = a, + bpt + c,t* + dt>.

Then a, — A, by — E'(f)h # 0 and ¢, — SE"(f)(h, h).
e = 3 (t,) s.t. Py(ty) =Aand t, — 0, so

E(fy+toh) =X and lim F(f, + tzh) = lim F(f) = F

n—o0
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Solitary waves

Proof of the theorem

o Consider the polynomial
P.(t) = E(f, + th) = a, + bpt + c,t* + dt>.

Then a, — A, by — E'(f)h # 0 and ¢, — SE"(f)(h, h).
e = 3 (t,) s.t. Py(ty) =Aand t, — 0, so

E(fy+toh) =X and lim F(f, + tzh) = lim F(f) = F

n—oo
@ Proposition = 3 (c,), T s.t.

lim fo(-+cn) = HETOO hn(- + cn) = u(- +7)

n—-+o0o
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Solitary waves

Proof of the theorem

o Consider the polynomial
P.(t) = E(f, + th) = a, + bpt + c,t* + dt>.

Then a, — A, by — E'(f)h # 0 and ¢, — SE"(f)(h, h).
e = 3 (t,) s.t. Py(ty) =Aand t, — 0, so

E(fy+toh) =X and lim F(f, + tzh) = lim F(f) = F

n—o0

@ Proposition = 3 (c,), T s.t.

lim fo(-+cn) = HETOO hn(- + cn) = u(- +7)

n——+400
Contradiction O



Solitary waves

Some future directions
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@ Understand better the set F;. Are all the points of F;
ill-posed as ¢*7
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Some future directions

@ Understand better the set F;. Are all the points of F;
ill-posed as ¢*7

@ What is the long time behavior of the solutions for an
arbitrarily initial data in ;7 Does the solution blow up? Does
it cross Fi7
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Solitary waves

Some future directions

@ Understand better the set F;. Are all the points of F;
ill-posed as ¢*7

@ What is the long time behavior of the solutions for an
arbitrarily initial data in ;7 Does the solution blow up? Does
it cross Fi7

@ Are the solutions of (HS) good approximations for the (WW)
in the asymptotic regime?
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Solitary waves

future directions

@ Understand better the set F;. Are all the points of F;
ill-posed as ¢*7

@ What is the long time behavior of the solutions for an
arbitrarily initial data in ;7 Does the solution blow up? Does
it cross Fi7

@ Are the solutions of (HS) good approximations for the (WW)
in the asymptotic regime?

@ Are the solitary waves asymptotically stable?
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Solitary waves
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