1-D Schrödinger's Equation with Quadratic Nonlinearity

Normal form approach

Seungly Oh

Department of Mathematics
University of Kansas
May 4th, 2011

Problem of local well-posedness in low regularity

In this presentation, we will consider the local well-posedness (I.w.p) of the equation

$$
\begin{align*}
& u_{t}+i u_{x x}=u^{2} \\
& u(0, x) \in H^{-\alpha}(\mathbf{R}) \tag{1}
\end{align*}
$$

Problem of local well-posedness in low regularity

In this presentation, we will consider the local well-posedness (I.w.p) of the equation

$$
\begin{align*}
& u_{t}+i u_{x x}=u^{2} \\
& u(0, x) \in H^{-\alpha}(\mathbf{R}) \tag{1}
\end{align*}
$$

By local well-posedness, we mean that there exists
$T:=T\left(\|u(0)\|_{H^{-\alpha}}\right)>0$ and a continuous solution map of (1)
from $H^{-\alpha}(\mathbf{R})$ to $C_{t} H_{x}^{-\alpha}([0, T] \times \mathbf{R})$.

Previous works on (1)

- Kenig, Ponce and Vega '96 established local well-posedness of (1) up to $H^{-\frac{3}{4}+}$.
- Bejenaru and Tao '06 established that (1) is locally well-posed up to H^{-1} and ill-posed below H^{-1}

Previous works on (1)

- Kenig, Ponce and Vega '96 established local well-posedness of (1) up to $H^{-\frac{3}{4}+}$.
- Bejenaru and Tao '06 established that (1) is locally well-posed up to H^{-1} and ill-posed below H^{-1}.

Preliminaries

We define the spatial Fourier transform of $f(x) \in \mathcal{S}(\mathbf{R})$

$$
\widehat{f}(\xi)=\int_{\mathbf{R}} f(x) e^{-i x \xi} d x
$$

and space-time Fourier transform of $f(t, x) \in \mathcal{S}(\mathbf{R} \times \mathbf{R})$

For a reasonable function p, We define the symbol $p(\nabla)$ via the Fourier transform: $\overline{p(\nabla) f}(\xi)=p(\xi) \widehat{f}(\xi)$.

Preliminaries

We define the spatial Fourier transform of $f(x) \in \mathcal{S}(\mathbf{R})$

$$
\widehat{f}(\xi)=\int_{\mathbf{R}} f(x) e^{-i x \xi} d x
$$

and space-time Fourier transform of $f(t, x) \in \mathcal{S}(\mathbf{R} \times \mathbf{R})$

$$
\widetilde{f}(\tau, \xi)=\iint_{\mathbf{R} \times \mathbf{R}} f(t, x) e^{-i(t \tau+x \xi)} d x d t
$$

For a reasonable function p, We define the symbol $p(\nabla)$ via the

Preliminaries

We define the spatial Fourier transform of $f(x) \in \mathcal{S}(\mathbf{R})$

$$
\widehat{f}(\xi)=\int_{\mathbf{R}} f(x) e^{-i x \xi} d x
$$

and space-time Fourier transform of $f(t, x) \in \mathcal{S}(\mathbf{R} \times \mathbf{R})$

$$
\tilde{f}(\tau, \xi)=\iint_{\mathbf{R} \times \mathbf{R}} f(t, x) e^{-i(t \tau+x \xi)} d x d t .
$$

For a reasonable function p, We define the symbol $p(\nabla)$ via the
Fourier transform: $\widehat{p(\nabla) f}(\xi)=p(\xi) \widehat{f}(\xi)$.

Free solution and $X^{s, b}$ spaces

The solution of linear Schrödinger's equation $u_{t}+i u_{x x}=0$ with $u(0)=f \in L^{2}$ is $e^{-i t \partial_{x}^{2}} f$, defined via Fourier transform as before. Note $\left(\tau-\xi^{2}\right) \widetilde{u}(\tau, \xi)=0$. So $e^{-i t \partial_{x}^{2} f}$ is supported on $\tau=\xi^{2}$. For all Strichartz pairs $(p, q): \frac{2}{p}+\frac{1}{q}=\frac{1}{2}, 2 \leq p, q \leq \infty$

Free solution and $X^{s, b}$ spaces

The solution of linear Schrödinger's equation $u_{t}+i u_{x x}=0$ with $u(0)=f \in L^{2}$ is $e^{-i t \partial_{x}^{2}} f$, defined via Fourier transform as before.

Note $\left(\tau-\xi^{2}\right) \widetilde{u}(\tau, \xi)=0$. So $e^{-i t \partial_{x}^{2} f}$ is supported on $\tau=\xi^{2}$.

Free solution and $X^{s, b}$ spaces

The solution of linear Schrödinger's equation $u_{t}+i u_{x x}=0$ with $u(0)=f \in L^{2}$ is $e^{-i t \partial_{x}^{2}} f$, defined via Fourier transform as before.

Note $\left(\tau-\xi^{2}\right) \widetilde{u}(\tau, \xi)=0$. So $e^{-i t t_{x}^{2} f}$ is supported on $\tau=\xi^{2}$.

$$
\|u\|_{X^{s, b}}:=\left\|\langle\xi\rangle^{s}\left\langle\tau-\xi^{2}\right\rangle^{b} \widetilde{u}\right\|_{L_{\tau, \xi}^{2}} .
$$

Free solution and $X^{s, b}$ spaces

The solution of linear Schrödinger's equation $u_{t}+i u_{x x}=0$ with $u(0)=f \in L^{2}$ is $e^{-i t \partial_{x}^{2}} f$, defined via Fourier transform as before.

Note $\left(\tau-\xi^{2}\right) \widetilde{u}(\tau, \xi)=0$. So $e^{-i t t_{x}^{2} f}$ is supported on $\tau=\xi^{2}$.

$$
\|u\|_{X^{s, b}}:=\left\|\langle\xi\rangle^{s}\left\langle\tau-\xi^{2}\right\rangle^{b} \widetilde{u}\right\|_{L_{\tau, \xi}^{2}} .
$$

For all Strichartz pairs $(p, q): \frac{2}{p}+\frac{1}{q}=\frac{1}{2}, 2 \leq p, q \leq \infty$

$$
\|u\|_{L_{t}^{q} L_{x}^{p}} \lesssim\|u\|_{X^{0, \frac{1}{2}+}}
$$

Change of Variable

We begin by changing the variable in (1) by setting $v=\langle\nabla\rangle^{-\alpha} u$.

For simplicity and replace v with $v_{>0}$.

Change of Variable

We begin by changing the variable in (1) by setting $v=\langle\nabla\rangle^{-\alpha} u$.

$$
\begin{align*}
& v_{t}+i v_{x x}=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} v\langle\nabla\rangle^{\alpha} v\right) \tag{2}\\
& v(0, x)=f(x) \in L^{2}(\mathbf{R})
\end{align*}
$$

For simplicity and replace v with $v_{>0}$.

Change of Variable

We begin by changing the variable in (1) by setting $v=\langle\nabla\rangle^{-\alpha} u$.

$$
\begin{align*}
& v_{t}+i v_{x x}=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} v\langle\nabla\rangle^{\alpha} v\right) \tag{2}\\
& v(0, x)=f(x) \in L^{2}(\mathbf{R})
\end{align*}
$$

For simplicity and replace v with $v_{>0}$.

Another change of variable

Another change of variable: $v=e^{-i t t_{x}^{2}} f_{>0}+z_{>0}$.

We want to construct an explicit solution h (normal form) for

$$
\begin{equation*}
h_{t}+i h_{x x}=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}^{2}} f_{>0}\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}} f_{>0}\right) \tag{4}
\end{equation*}
$$

Another change of variable

Another change of variable: $v=e^{-i t t_{x}^{2}} f_{>0}+z_{>0}$.

$$
\begin{align*}
& z_{t}+i z_{x x}=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha}\left(e^{-i t \partial_{x}^{2}} f_{>0}+z_{>0}\right)\langle\nabla\rangle^{\alpha}\left(e^{-i t \partial_{x}} f_{>0}+z_{>0}\right)\right) \\
& z(0, x)=0 . \tag{3}
\end{align*}
$$

We want to construct an explicit solution h (normal form) for $h_{t}+i h_{x x}=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}^{2}} f_{>0}\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}} f_{>0}\right)$

Another change of variable

Another change of variable: $v=e^{-i t \partial_{x}^{2}} f_{>0}+z_{>0}$.

$$
\begin{align*}
& z_{t}+i z_{x x}=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha}\left(e^{-i t \partial_{x}^{2}} f_{>0}+z_{>0}\right)\langle\nabla\rangle^{\alpha}\left(e^{-i t \partial_{x}} f_{>0}+z_{>0}\right)\right) \\
& z(0, x)=0 \tag{3}
\end{align*}
$$

We want to construct an explicit solution h (normal form) for

$$
\begin{equation*}
h_{t}+i h_{x x}=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} e^{-i t t_{x}^{2}} f_{>0}\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}} f_{>0}\right) . \tag{4}
\end{equation*}
$$

Construction of Normal Form

We define a bilinear multiplier T_{σ} with symbol $\sigma=\sigma(\xi, \eta)$

$$
T_{\sigma}(u, v)(x):=\frac{1}{4 \pi^{2}} \iint_{\mathbf{R} \times \mathbf{R}} \sigma(\xi, \eta) \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta) x} d \xi d \eta
$$

Formally, applying $\partial_{t}+i \partial_{x}^{2}$ to the integrand above would give the following symbol multiplied to σ :

Construction of Normal Form

We define a bilinear multiplier T_{σ} with symbol $\sigma=\sigma(\xi, \eta)$

$$
T_{\sigma}(u, v)(x):=\frac{1}{4 \pi^{2}} \iint_{\mathbf{R} \times \mathbf{R}} \sigma(\xi, \eta) \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta) x} d \xi d \eta .
$$

Formally, applying $\partial_{t}+i \partial_{x}^{2}$ to the integrand above would give the following symbol multiplied to σ :

$$
i(\tau+\omega)-i(\xi+\eta)^{2}=i\left(\tau-\xi^{2}\right)+i\left(\omega-\eta^{2}\right)-2 i \xi \eta .
$$

Thus

$$
\begin{aligned}
\left(\partial_{t}+i \partial_{x}^{2}\right) T_{\sigma}(u, v)= & T\left(\left(\partial_{t}+i \partial_{x}^{2}\right) u, v\right) \\
& +T_{\sigma}\left(u,\left(\partial_{t}+i \partial_{x}^{2}\right) v\right)-2 i T_{\xi \eta \cdot \sigma(\xi, \eta)}(u, v)
\end{aligned}
$$

If $u=v=e^{-i t \partial_{x}} f$, the first two terms disappear.

Thus

$$
\begin{aligned}
\left(\partial_{t}+i \partial_{x}^{2}\right) T_{\sigma}(u, v)= & T\left(\left(\partial_{t}+i \partial_{x}^{2}\right) u, v\right) \\
& +T_{\sigma}\left(u,\left(\partial_{t}+i \partial_{x}^{2}\right) v\right)-2 i T_{\xi \eta \cdot \sigma(\xi, \eta)}(u, v)
\end{aligned}
$$

If $u=v=e^{-i t \partial_{x}} f$, the first two terms disappear.

Normal form (continued)

In order to satisfy (4), we want
$-2 i T_{\xi \eta \cdot \sigma(\xi, \eta)}\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} e^{-i t t_{x}^{2}} f\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}^{2}} f\right)$
So we let $\sigma(\xi, \eta)=-\frac{1}{2 i} \frac{1}{\xi \eta} \frac{\langle\xi\rangle^{\alpha}\langle\eta\rangle^{\alpha}}{\langle\xi+\eta\rangle^{\alpha}}$.
Thus $h(t, x)=T_{\sigma}\left(e^{-i t \partial_{x}^{2}}, e^{-i t \partial_{x}^{2} f}\right)$ satisfies equation (4) with the
initial condition $h(0, x)=T_{\sigma}(f, f)$.

Normal form (continued)

In order to satisfy (4), we want
$-2 i T_{\xi \eta \cdot \sigma(\xi, \eta)}\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}^{2}} f\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}^{2}} f\right)$
So we let $\sigma(\xi, \eta)=-\frac{1}{2 i} \frac{1}{\xi \eta} \frac{\langle\xi\rangle^{\alpha}\langle\eta\rangle^{\alpha}}{\langle\xi+\eta\rangle^{\alpha}}$.
Thus $h(t, x)=T_{\sigma}\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)$ satisfies equation (4) with the
initial condition $h(0, x)=T_{\sigma}(f, f)$.

Normal form (continued)

In order to satisfy (4), we want
$-2 i T_{\xi \eta \cdot \sigma(\xi, \eta)}\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}^{2}} f\langle\nabla\rangle^{\alpha} e^{-i t \partial_{x}^{2}} f\right)$
So we let $\sigma(\xi, \eta)=-\frac{1}{2 i} \frac{1}{\xi \eta} \frac{\langle\xi\rangle^{\alpha}\langle\eta\rangle^{\alpha}}{\langle\xi+\eta\rangle^{\alpha}}$.
Thus $h(t, x)=T_{\sigma}\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)$ satisfies equation (4) with the initial condition $h(0, x)=T_{\sigma}(f, f)$.

Normal form

$$
T(u, v)(x)=\frac{i}{8 \pi^{2}} \iint_{\mathbf{R} \times \mathbf{R}} \frac{\langle\xi\rangle^{\alpha}\langle\eta\rangle^{\alpha}}{\langle\xi+\eta\rangle^{\alpha}} \frac{1}{\xi \eta} \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta) x} d \xi d \eta .
$$

We claim $T: L^{2} \times L^{2} \rightarrow H^{\frac{1}{2}}$

and also $T: X^{0, \frac{1}{2}+\delta} \times X^{0, \frac{1}{2}+\delta} \rightarrow L_{t}^{2} H_{x}^{1}$.
Now $v=e^{-i t \partial_{2}^{2} f+h+w}$ where w solves

$$
\begin{aligned}
& w_{t}+i w_{x x}=\mathcal{N}\left(e^{-i t \partial_{x}^{2}} f, w+h\right)+\mathcal{N}(h+w, h+w) \\
& w(0, x)=-T(f, f)(x) \in H^{\frac{1}{2}}(\mathbf{R})
\end{aligned}
$$

where

$$
\mathcal{N}(u, v):=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} u_{>0}\langle\nabla\rangle^{\alpha} v_{>0}\right) .
$$

Normal form

$$
T(u, v)(x)=\frac{i}{8 \pi^{2}} \iint_{\mathbf{R} \times \mathbf{R}} \frac{\langle\xi\rangle^{\alpha}\langle\eta\rangle^{\alpha}}{\langle\xi+\eta\rangle^{\alpha}} \frac{1}{\xi \eta} \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta) x} d \xi d \eta .
$$

We claim $T: L^{2} \times L^{2} \rightarrow H^{\frac{1}{2}}$ and also $T: X^{0, \frac{1}{2}+\delta} \times X^{0, \frac{1}{2}+\delta} \rightarrow L_{t}^{2} H_{x}^{1}$.

Now $v=e^{-i t \partial_{x}^{2}} f+h+w$ where w solves

$$
\begin{aligned}
& w_{t}+i w_{x x}=\mathcal{N}\left(e^{-i t t_{x}^{2} f}, w+h\right)+\mathcal{N}(h+w, h+w) \\
& w(0, x)=-T(f, f)(x) \in H^{\frac{1}{2}}(\mathbf{R}) .
\end{aligned}
$$

where

Normal form

$$
T(u, v)(x)=\frac{i}{8 \pi^{2}} \iint_{\mathbf{R} \times \mathbf{R}} \frac{\langle\xi\rangle^{\alpha}\langle\eta\rangle^{\alpha}}{\langle\xi+\eta\rangle^{\alpha}} \frac{1}{\xi \eta} \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta) x} d \xi d \eta .
$$

We claim $T: L^{2} \times L^{2} \rightarrow H^{\frac{1}{2}}$ and also $T: X^{0, \frac{1}{2}+\delta} \times X^{0, \frac{1}{2}+\delta} \rightarrow L_{t}^{2} H_{x}^{1}$.
Now $v=e^{-i t t_{x}^{2}} f+h+w$ where w solves

$$
\begin{align*}
& w_{t}+i w_{x x}=\mathcal{N}\left(e^{-i t t_{x}^{2}} f, w+h\right)+\mathcal{N}(h+w, h+w) \\
& w(0, x)=-T(f, f)(x) \in H^{\frac{1}{2}}(\mathbf{R}) . \tag{5}
\end{align*}
$$

where

Normal form

$$
T(u, v)(x)=\frac{i}{8 \pi^{2}} \iint_{\mathbf{R} \times \mathbf{R}} \frac{\langle\xi\rangle^{\alpha}\langle\eta\rangle^{\alpha}}{\langle\xi+\eta\rangle^{\alpha}} \frac{1}{\xi \eta} \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta) x} d \xi d \eta .
$$

We claim $T: L^{2} \times L^{2} \rightarrow H^{\frac{1}{2}}$ and also $T: X^{0, \frac{1}{2}+\delta} \times X^{0, \frac{1}{2}+\delta} \rightarrow L_{t}^{2} H_{x}^{1}$.
Now $v=e^{-i t t_{x}^{2}} f+h+w$ where w solves

$$
\begin{align*}
& w_{t}+i w_{x x}=\mathcal{N}\left(e^{-i t t_{x}^{2}} f, w+h\right)+\mathcal{N}(h+w, h+w) \\
& w(0, x)=-T(f, f)(x) \in H^{\frac{1}{2}}(\mathbf{R}) . \tag{5}
\end{align*}
$$

where

$$
\mathcal{N}(u, v):=\langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha} u_{>0}\langle\nabla\rangle^{\alpha} v_{>0}\right) .
$$

$X^{s, b}$ estimate

We have the Strichartz estimate for $b>1 / 2$

$$
\left\|\int_{0}^{t} e^{-i(t-s) \partial_{x}^{2}} \mathcal{N}(s) d s\right\|_{X_{T}^{s, b}} \leq\|\mathcal{N}\|_{X^{s, b-1}}
$$

So if we want to construct a fixed point argument for $w_{t}+i w_{x x}=\mathcal{N}$, the we need to estimate $\|\mathcal{N}\|_{x^{s, b-1}}$.

We construct this argument for $w \in X^{\alpha-\frac{1}{2}, \frac{1}{2}+\delta}$, so we need to estimate

$$
\left\|\mathcal{N}\left(e^{-\| \partial_{x}^{2}} f>0, h>0, w_{>0}\right)\right\|
$$

$X^{s, b}$ estimate

We have the Strichartz estimate for $b>1 / 2$

$$
\left\|\int_{0}^{t} e^{-i(t-s) \partial_{x}^{2}} \mathcal{N}(s) d s\right\|_{X_{T}^{s, b}} \leq\|\mathcal{N}\|_{X^{s, b-1}}
$$

So if we want to construct a fixed point argument for $w_{t}+i w_{x x}=\mathcal{N}$, the we need to estimate $\|\mathcal{N}\|_{X_{T}^{s, b-1}}$.

We construct this argument for $w \in X^{\alpha-\frac{1}{2}, \frac{1}{2}+\delta}$, so we need to estimate

$X^{s, b}$ estimate

We have the Strichartz estimate for $b>1 / 2$

$$
\left\|\int_{0}^{t} e^{-i(t-s) \partial_{\chi}^{2}} \mathcal{N}(s) d s\right\|_{X_{T}^{s, b}} \leq\|\mathcal{N}\|_{X^{s, b-1}}
$$

So if we want to construct a fixed point argument for $w_{t}+i w_{x x}=\mathcal{N}$, the we need to estimate $\|\mathcal{N}\|_{X_{T}^{s, b-1}}$.

We construct this argument for $w \in X^{\alpha-\frac{1}{2}, \frac{1}{2}+\delta}$, so we need to estimate

$$
\left\|\mathcal{N}\left(e^{-i t \partial_{X}^{2}} f_{>0}, h_{>0}, w_{>0}\right)\right\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}}
$$

Non-linearities of (5)

We need to consider

$$
\mathcal{N}\left(e^{-i t \partial_{x}^{2}} f, w\right), \mathcal{N}(w, w), \mathcal{N}(h, h), \mathcal{N}(w, h), \mathcal{N}\left(e^{-i t \partial_{x}^{2}} f, h\right)
$$

After some work, we arrive at the estimates:

Non-linearities of (5)

We need to consider

$$
\mathcal{N}\left(e^{-i t \partial_{x}^{2}} f, w\right), \mathcal{N}(w, w), \mathcal{N}(h, h), \mathcal{N}(w, h), \mathcal{N}\left(e^{-i t \partial_{x}^{2}} f, h\right)
$$

After some work, we arrive at the estimates:

$$
\begin{aligned}
& \|\mathcal{N}(u, v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T, \delta}\|u\|_{X^{0, \frac{1}{2}+\delta}}\|v\|_{X^{\alpha-\frac{1}{2}, \frac{1}{2}+\delta}} \\
& \|\mathcal{N}(u, v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T, \delta}\|u\|_{L_{t}^{2} H_{X}^{1}}\|v\|_{L_{t}^{2} H_{x}^{1}} \\
& \|\mathcal{N}(u, v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T, \delta}\|u\|_{X^{\alpha-\frac{1}{2}, \frac{1}{2}+\delta}}\|v\|_{L_{t}^{2} H_{X}^{1}}
\end{aligned}
$$

Problematic case

But the estimate

$$
\|\mathcal{N}(u, v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T, \delta}\|u\|_{L_{t}^{2} H_{X}^{1}}\|v\|_{X^{0, \frac{1}{2}+\delta}}
$$

is false!
However, $h=T\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)$.
So the problematic term is in a trilinear form $\mathcal{N}(T(f, g), v)$ with $f, g, v \in X^{0, \frac{1}{2}+\delta}$. Using the trilinear form, we show

Problematic case

But the estimate

$$
\|\mathcal{N}(u, v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T, \delta}\|u\|_{L_{t}^{2} H_{X}^{1}}\|v\|_{X^{0, \frac{1}{2}+\delta}}
$$

is false!
However, $h=T\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)$.
So the problematic term is in a trilinear form $\mathcal{N}(T(f, g), v)$ with $f, g, v \in X^{0, \frac{1}{2}+\delta}$. Using the trilinear form, we show

Problematic case

But the estimate

$$
\|\mathcal{N}(u, v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T, \delta}\|u\|_{L_{t}^{2} H_{X}^{1}}\|v\|_{X^{0, \frac{1}{2}+\delta}}
$$

is false!
However, $h=T\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)$.
So the problematic term is in a trilinear form $\mathcal{N}(T(f, g), v)$ with $f, g, v \in X^{0, \frac{1}{2}+\delta}$. Using the trilinear form, we show

Problematic case

But the estimate

$$
\|\mathcal{N}(u, v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T, \delta}\|u\|_{L_{t}^{2} H_{x}^{1}}\|v\|_{X^{0, \frac{1}{2}+\delta}}
$$

is false!
However, $h=T\left(e^{-i t \partial_{x}^{2}} f, e^{-i t \partial_{x}^{2}} f\right)$.
So the problematic term is in a trilinear form $\mathcal{N}(T(f, g), v)$ with $f, g, v \in X^{0, \frac{1}{2}+\delta}$. Using the trilinear form, we show

$$
\|\mathcal{N}(T(f, g), v)\|_{X^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C\|f\|_{X^{0, \frac{1}{2}+\delta}}\|g\|_{X^{0, \frac{1}{2}+\delta}}\|v\|_{X^{0, \frac{1}{2}+\delta}}
$$

Derivative quadratic non-linearity

$$
\left\lvert\, \begin{align*}
& u_{t}+i u_{x x}=\langle\nabla\rangle^{\beta}\left[u^{2}\right] \\
& u(0, x) \in H^{-\alpha}(\mathbf{R}) . \tag{6}
\end{align*}\right.
$$

Derivative quadratic non-linearity

$$
\left\lvert\, \begin{align*}
& u_{t}+i u_{x x}=\langle\nabla\rangle^{\beta}\left[u^{2}\right] \\
& u(0, x) \in H^{-\alpha}(\mathbf{R}) . \tag{6}
\end{align*}\right.
$$

- M. Christ: (6) is ill-posed when $\beta=1$ for large data.
- A. Stefanov, '07: (6) is I.w.p. for small data in H^{1} when $\beta=1$.
- Bejenaru-Tataru, '09 and '10: (6) is I.w.p. in a weighted Sobolev space $H^{\text {s, }}$
- Currently, there is no result for $\beta<1$.

Derivative quadratic non-linearity

$$
\begin{align*}
& u_{t}+i u_{x x}=\langle\nabla\rangle^{\beta}\left[u^{2}\right] \tag{6}\\
& u(0, x) \in H^{-\alpha}(\mathbf{R})
\end{align*}
$$

- M. Christ: (6) is ill-posed when $\beta=1$ for large data.
- A. Stefanov, '07: (6) is I.w.p. for small data in H^{1} when $\beta=1$.
- Bejenaru-Tataru, '09 and '10: (6) is I.w.p. in a weighted Sobolev space $H^{s, \gamma}$
- Currently, there is no result for $\beta<1$

Derivative quadratic non-linearity

$$
\begin{align*}
& u_{t}+i u_{x x}=\langle\nabla\rangle^{\beta}\left[u^{2}\right] \tag{6}\\
& u(0, x) \in H^{-\alpha}(\mathbf{R}) .
\end{align*}
$$

- M. Christ: (6) is ill-posed when $\beta=1$ for large data.
- A. Stefanov, '07: (6) is I.w.p. for small data in H^{1} when $\beta=1$.
- Bejenaru-Tataru, '09 and '10: (6) is I.w.p. in a weighted Sobolev space $H^{s, \gamma}$.
- Currently, there is no result for $\beta<1$

Derivative quadratic non-linearity

$$
\begin{align*}
& u_{t}+i u_{x x}=\langle\nabla\rangle^{\beta}\left[u^{2}\right] \tag{6}\\
& u(0, x) \in H^{-\alpha}(\mathbf{R}) .
\end{align*}
$$

- M. Christ: (6) is ill-posed when $\beta=1$ for large data.
- A. Stefanov, '07: (6) is I.w.p. for small data in H^{1} when $\beta=1$.
- Bejenaru-Tataru, '09 and '10: (6) is I.w.p. in a weighted Sobolev space $H^{s, \gamma}$.
- Currently, there is no result for $\beta<1$.

Main result

Theorem

(6) is I.w.p. in $\mathrm{H}^{-\alpha}$ when $\alpha+\beta<1, \beta<1 / 2$.

Also, we can write $u=e^{-i t t_{x}^{2}} u(0)+h+w$ where $h \in L_{t}^{\infty} H_{x}^{\frac{1}{2}-\alpha} \cap L_{t}^{2} H_{x}^{1-\alpha}$ and $w \in X_{T}^{-\frac{1}{2}, \frac{1}{2}+\delta}$.

We can also write a Lipschitz property for a smoother space

$$
\|u-v\|_{L_{T}^{\infty} H_{x}^{-\frac{1}{2}}} \leq C\left\|u_{0}-v_{0}\right\|_{H^{-\frac{1}{2}}}
$$

where $C:=C\left(\left\|u_{0}\right\|_{H^{-\alpha}},\left\|v_{0}\right\|_{H^{-\alpha}}\right)$.

