1-D Schrödinger's Equation with quadratic nonlinearity
Change of Variable
Normal Form
Nonlinearity estimates
Main result

1-D Schrödinger's Equation with Quadratic Nonlinearity

Normal form approach

Seungly Oh

Department of Mathematics University of Kansas

May 4th, 2011

Problem of local well-posedness in low regularity

Main result

In this presentation, we will consider the local well-posedness (l.w.p) of the equation

By *local well-posedness*, we mean that there exists $T:=T(\|u(0)\|_{H^{-\alpha}})>0$ and a continuous solution map of (1) from $H^{-\alpha}(\mathbf{R})$ to $C_tH_x^{-\alpha}([0,T]\times\mathbf{R})$.

Problem of local well-posedness in low regularity

Main result

In this presentation, we will consider the local well-posedness (l.w.p) of the equation

$$\begin{vmatrix} u_t + iu_{xx} = u^2 \\ u(0, x) \in H^{-\alpha}(\mathbf{R}). \end{vmatrix}$$
 (1)

By *local well-posedness*, we mean that there exists $T:=T(\|u(0)\|_{H^{-\alpha}})>0$ and a continuous solution map of (1) from $H^{-\alpha}(\mathbf{R})$ to $C_tH_x^{-\alpha}([0,T]\times\mathbf{R})$.

Previous works on (1)

- Kenig, Ponce and Vega '96 established local well-posedness of (1) up to $H^{-\frac{3}{4}+}$.
- Bejenaru and Tao '06 established that (1) is locally well-posed up to H^{-1} and ill-posed below H^{-1} .

Previous works on (1)

- Kenig, Ponce and Vega '96 established local well-posedness of (1) up to $H^{-\frac{3}{4}+}$.
- Bejenaru and Tao '06 established that (1) is locally well-posed up to H^{-1} and ill-posed below H^{-1} .

Preliminaries

We define the spatial Fourier transform of $f(x) \in \mathcal{S}(\mathbf{R})$

$$\widehat{f}(\xi) = \int_{\mathbf{R}} f(x) e^{-ix\xi} dx.$$

and space-time Fourier transform of $f(t,x) \in \mathcal{S}(\mathbf{R} \times \mathbf{R})$

$$\widetilde{f}(\tau,\xi) = \iint_{\mathbf{R}\times\mathbf{R}} f(t,x) e^{-i(t\tau+x\xi)} dx dt.$$

For a reasonable function p, We define the symbol $p(\nabla)$ via the Fourier transform: $\widehat{p(\nabla)}f(\xi) = p(\xi)\widehat{f}(\xi)$.

Preliminaries

We define the spatial Fourier transform of $f(x) \in \mathcal{S}(\mathbf{R})$

$$\widehat{f}(\xi) = \int_{\mathbf{R}} f(x) e^{-ix\xi} dx.$$

and space-time Fourier transform of $f(t, x) \in \mathcal{S}(\mathbf{R} \times \mathbf{R})$

$$\widetilde{f}(\tau,\xi) = \iint_{\mathbf{R}\times\mathbf{R}} f(t,x)e^{-i(t\tau+x\xi)} dx dt.$$

For a reasonable function p, We define the symbol $p(\nabla)$ via the Fourier transform: $\widehat{p(\nabla)}f(\xi) = p(\xi)\widehat{f}(\xi)$.

Preliminaries

We define the spatial Fourier transform of $f(x) \in \mathcal{S}(\mathbf{R})$

$$\widehat{f}(\xi) = \int_{\mathbf{R}} f(x) e^{-ix\xi} dx.$$

and space-time Fourier transform of $f(t, x) \in \mathcal{S}(\mathbf{R} \times \mathbf{R})$

$$\widetilde{f}(\tau,\xi) = \iint_{\mathbf{R}\times\mathbf{R}} f(t,x)e^{-i(t\tau+x\xi)} dx dt.$$

For a reasonable function p, We define the symbol $p(\nabla)$ via the Fourier transform: $\widehat{p(\nabla)}f(\xi) = p(\xi)\widehat{f}(\xi)$.

The solution of linear Schrödinger's equation $u_t + iu_{xx} = 0$ with $u(0) = f \in L^2$ is $e^{-it\partial_x^2} f$, defined via Fourier transform as before.

Note
$$(\tau - \xi^2)\widetilde{u}(\tau, \xi) = 0$$
. So $e^{-it\partial_x^2}f$ is supported on $\tau = \xi^2$.

$$||u||_{X^{s,b}} := ||\langle \xi \rangle^s \langle \tau - \xi^2 \rangle^b \widetilde{u}||_{L^2_{\tau,\varepsilon}}.$$

For all Strichartz pairs
$$(p,q)$$
: $\frac{2}{p} + \frac{1}{q} = \frac{1}{2}$, $2 \le p, q \le \infty$

$$||u||_{L_t^q L_x^p} \lesssim ||u||_{X^{0,\frac{1}{2}+}}$$

The solution of linear Schrödinger's equation $u_t + iu_{xx} = 0$ with $u(0) = f \in L^2$ is $e^{-it\partial_x^2} f$, defined via Fourier transform as before.

Note
$$(\tau - \xi^2)\widetilde{u}(\tau, \xi) = 0$$
. So $e^{-it\partial_x^2}f$ is supported on $\tau = \xi^2$.

$$|u||_{X^{s,b}} := ||\langle \xi \rangle^{s} \langle \tau - \xi^{2} \rangle^{b} \widetilde{u}||_{L^{2}_{\tau,\xi}}.$$

For all Strichartz pairs
$$(p,q)$$
: $\frac{2}{p} + \frac{1}{q} = \frac{1}{2}$, $2 \le p, q \le \infty$

$$||u||_{L^q_t L^p_x} \lesssim ||u||_{X^{0,\frac{1}{2}+}}.$$

The solution of linear Schrödinger's equation $u_t + iu_{xx} = 0$ with $u(0) = f \in L^2$ is $e^{-it\partial_x^2} f$, defined via Fourier transform as before.

Note
$$(\tau - \xi^2)\widetilde{u}(\tau, \xi) = 0$$
. So $e^{-it\partial_x^2}f$ is supported on $\tau = \xi^2$.

$$||u||_{X^{s,b}} := ||\langle \xi \rangle^s \langle \tau - \xi^2 \rangle^b \widetilde{u}||_{L^2_{\tau,\xi}}.$$

For all Strichartz pairs
$$(p,q)$$
: $\frac{2}{p} + \frac{1}{q} = \frac{1}{2}$, $2 \le p, q \le \infty$

$$||u||_{L^q_t L^p_x} \lesssim ||u||_{X^{0,\frac{1}{2}+}}$$

The solution of linear Schrödinger's equation $u_t + iu_{xx} = 0$ with $u(0) = f \in L^2$ is $e^{-it\partial_x^2} f$, defined via Fourier transform as before.

Note
$$(\tau - \xi^2)\widetilde{u}(\tau, \xi) = 0$$
. So $e^{-it\partial_x^2}f$ is supported on $\tau = \xi^2$.

$$||u||_{X^{s,b}} := ||\langle \xi \rangle^{s} \langle \tau - \xi^{2} \rangle^{b} \widetilde{u}||_{L^{2}_{\tau,\xi}}.$$

For all Strichartz pairs
$$(p,q)$$
: $\frac{2}{p} + \frac{1}{q} = \frac{1}{2}$, $2 \le p, q \le \infty$

$$||u||_{L^q_t L^p_x} \lesssim ||u||_{X^{0,\frac{1}{2}+}}.$$

Change of Variable

We begin by changing the variable in (1) by setting $v = \langle \nabla \rangle^{-\alpha} u$.

$$\begin{vmatrix} v_t + iv_{xx} = \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} v \langle \nabla \rangle^{\alpha} v \right) \\ v(0, x) = f(x) \in L^2(\mathbf{R}). \end{aligned}$$
 (2)

For simplicity and replace v with $v_{>0}$.

Change of Variable

We begin by changing the variable in (1) by setting $v = \langle \nabla \rangle^{-\alpha} u$.

$$\begin{vmatrix} v_t + iv_{xx} = \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} v \langle \nabla \rangle^{\alpha} v \right) \\ v(0, x) = f(x) \in L^2(\mathbf{R}).$$
 (2)

For simplicity and replace v with $v_{>0}$.

Change of Variable

We begin by changing the variable in (1) by setting $v = \langle \nabla \rangle^{-\alpha} u$.

$$\begin{vmatrix} v_t + iv_{xx} = \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} v \langle \nabla \rangle^{\alpha} v \right) \\ v(0, x) = f(x) \in L^2(\mathbf{R}). \end{aligned}$$
 (2)

For simplicity and replace v with $v_{>0}$.

Another change of variable

Another change of variable: $v = e^{-it\partial_x^2} f_{>0} + z_{>0}$.

$$z_{t} + iz_{xx} = \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} (e^{-it\partial_{x}^{2}} f_{>0} + z_{>0}) \langle \nabla \rangle^{\alpha} (e^{-it\partial_{x}} f_{>0} + z_{>0}) \right)$$

$$z(0, x) = 0.$$
(3)

We want to construct an explicit solution h (normal form) for

$$h_t + ih_{xx} = \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} e^{-it\partial_x^2} f_{>0} \langle \nabla \rangle^{\alpha} e^{-it\partial_x} f_{>0} \right). \tag{4}$$

Another change of variable

Another change of variable: $v = e^{-it\partial_x^2} f_{>0} + z_{>0}$.

We want to construct an explicit solution $\it h$ (normal form) for

$$h_t + ih_{xx} = \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} e^{-it\partial_x^2} f_{>0} \langle \nabla \rangle^{\alpha} e^{-it\partial_x} f_{>0} \right). \tag{4}$$

Another change of variable

Another change of variable: $v = e^{-it\partial_x^2} f_{>0} + z_{>0}$.

$$\begin{vmatrix} z_t + iz_{xx} = \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} (e^{-it\partial_x^2} f_{>0} + z_{>0}) \langle \nabla \rangle^{\alpha} (e^{-it\partial_x} f_{>0} + z_{>0}) \right) \\ z(0,x) = 0.$$
(3)

We want to construct an explicit solution h (normal form) for

$$h_t + ih_{xx} = \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} e^{-it\partial_x^2} f_{>0} \langle \nabla \rangle^{\alpha} e^{-it\partial_x} f_{>0} \right). \tag{4}$$

Construction of Normal Form

We define a bilinear multiplier T_{σ} with symbol $\sigma = \sigma(\xi, \eta)$

$$T_{\sigma}(u,v)(x) := \frac{1}{4\pi^2} \iint_{\mathbf{R} \times \mathbf{R}} \sigma(\xi,\eta) \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta)x} \, d\xi \, d\eta.$$

Formally, applying $\partial_t + i\partial_x^2$ to the integrand above would give the following symbol multiplied to σ :

$$i(\tau + \omega) - i(\xi + \eta)^2 = i(\tau - \xi^2) + i(\omega - \eta^2) - 2i\xi\eta.$$

Construction of Normal Form

We define a bilinear multiplier T_{σ} with symbol $\sigma = \sigma(\xi, \eta)$

$$T_{\sigma}(u,v)(x) := \frac{1}{4\pi^2} \iint_{\mathbf{R} \times \mathbf{R}} \sigma(\xi,\eta) \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta)x} \, d\xi \, d\eta.$$

Formally, applying $\partial_t + i\partial_x^2$ to the integrand above would give the following symbol multiplied to σ :

$$i(\tau + \omega) - i(\xi + \eta)^2 = i(\tau - \xi^2) + i(\omega - \eta^2) - 2i\xi\eta.$$

Thus

$$\begin{split} (\partial_t + i\partial_x^2) T_{\sigma}(u, v) = & T\left((\partial_t + i\partial_x^2)u, v\right) \\ & + T_{\sigma}\left(u, (\partial_t + i\partial_x^2)v\right) - 2iT_{\xi\eta \cdot \sigma(\xi, \eta)}(u, v). \end{split}$$

If $u = v = e^{-it\partial_x}f$, the first two terms disappear.

Thus

$$\begin{split} (\partial_t + i\partial_x^2) T_{\sigma}(u, v) &= T\left((\partial_t + i\partial_x^2)u, v\right) \\ &+ T_{\sigma}\left(u, (\partial_t + i\partial_x^2)v\right) - 2iT_{\xi\eta \cdot \sigma(\xi, \eta)}(u, v). \end{split}$$

If $u = v = e^{-it\partial_x} f$, the first two terms disappear.

Normal form (continued)

In order to satisfy (4), we want

$$-2iT_{\xi\eta\cdot\sigma(\xi,\eta)}(e^{-it\partial_x^2}f,e^{-it\partial_x^2}f) = \langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha}e^{-it\partial_x^2}f\langle\nabla\rangle^{\alpha}e^{-it\partial_x^2}f\right)$$

So we let
$$\sigma(\xi,\eta) = -\frac{1}{2i} \frac{1}{\xi \eta} \frac{\langle \xi \rangle^{\alpha} \langle \eta \rangle^{\alpha}}{\langle \xi + \eta \rangle^{\alpha}}$$
.

Thus $h(t,x) = T_{\sigma}(e^{-it\partial_x^2}f, e^{-it\partial_x^2}f)$ satisfies equation (4) with the initial condition $h(0,x) = T_{\sigma}(f,f)$.

Normal form (continued)

In order to satisfy (4), we want

$$-2iT_{\xi\eta\cdot\sigma(\xi,\eta)}(e^{-it\partial_{x}^{2}}f,e^{-it\partial_{x}^{2}}f) = \langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha}e^{-it\partial_{x}^{2}}f\langle\nabla\rangle^{\alpha}e^{-it\partial_{x}^{2}}f\right)$$

So we let
$$\sigma(\xi, \eta) = -\frac{1}{2i} \frac{1}{\xi \eta} \frac{\langle \xi \rangle^{\alpha} \langle \eta \rangle^{\alpha}}{\langle \xi + \eta \rangle^{\alpha}}$$
.

Thus $h(t,x) = T_{\sigma}(e^{-it\partial_x^2}f, e^{-it\partial_x^2}f)$ satisfies equation (4) with the initial condition $h(0,x) = T_{\sigma}(f,f)$.

Normal form (continued)

In order to satisfy (4), we want

$$-2iT_{\xi\eta\cdot\sigma(\xi,\eta)}(e^{-it\partial_{x}^{2}}f,e^{-it\partial_{x}^{2}}f) = \langle\nabla\rangle^{-\alpha}\left(\langle\nabla\rangle^{\alpha}e^{-it\partial_{x}^{2}}f\langle\nabla\rangle^{\alpha}e^{-it\partial_{x}^{2}}f\right)$$

So we let
$$\sigma(\xi, \eta) = -\frac{1}{2i} \frac{1}{\xi \eta} \frac{\langle \xi \rangle^{\alpha} \langle \eta \rangle^{\alpha}}{\langle \xi + \eta \rangle^{\alpha}}$$
.

Thus $h(t,x) = T_{\sigma}(e^{-it\partial_x^2}f, e^{-it\partial_x^2}f)$ satisfies equation (4) with the initial condition $h(0,x) = T_{\sigma}(f,f)$.

$$T(u,v)(x) = \frac{i}{8\pi^2} \iint_{\mathbf{R}\times\mathbf{R}} \frac{\langle \xi \rangle^\alpha \langle \eta \rangle^\alpha}{\langle \xi + \eta \rangle^\alpha} \frac{1}{\xi\eta} \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta)x} \, d\xi \, d\eta.$$

We claim
$$T: L^2 \times L^2 \to H^{\frac{1}{2}}$$
 and also $T: X^{0,\frac{1}{2}+\delta} \times X^{0,\frac{1}{2}+\delta} \to L^2_t H^1_x$.

$$w_t + iw_{xx} = \mathcal{N}(e^{-it\partial_x^2}f, w + h) + \mathcal{N}(h + w, h + w)$$

$$w(0,x) = -T(f,f)(x) \in H^{\frac{1}{2}}(\mathbf{R}).$$

$$\mathcal{N}(u,v) := \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} u_{>0} \langle \nabla \rangle^{\alpha} v_{>0} \right)$$

$$T(u,v)(x) = \frac{i}{8\pi^2} \iint_{\mathbf{R}\times\mathbf{R}} \frac{\langle \xi \rangle^\alpha \langle \eta \rangle^\alpha}{\langle \xi + \eta \rangle^\alpha} \frac{1}{\xi\eta} \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta)x} \, d\xi \, d\eta.$$

We claim $T: L^2 \times L^2 \to H^{\frac{1}{2}}$ and also $T: X^{0,\frac{1}{2}+\delta} \times X^{0,\frac{1}{2}+\delta} \to L^2_t H^1_x$.

Now
$$v = e^{-it\partial_x^2} f + h + w$$
 where w solves
$$\begin{cases} w_t + iw_{xx} = \mathcal{N}(e^{-it\partial_x^2} f, w + h) + \mathcal{N}(h + w, h + w) \\ w(0, x) = -T(f, f)(x) \in H^{\frac{1}{2}}(\mathbf{R}). \end{cases}$$
(5)

$$\mathcal{N}(u,v) := \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} u_{>0} \langle \nabla \rangle^{\alpha} v_{>0} \right)$$

$$T(u,v)(x) = \frac{i}{8\pi^2} \iint_{\mathbf{R}\times\mathbf{R}} \frac{\langle \xi \rangle^\alpha \langle \eta \rangle^\alpha}{\langle \xi + \eta \rangle^\alpha} \frac{1}{\xi\eta} \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta)x} \, d\xi \, d\eta.$$

We claim $T: L^2 \times L^2 \to H^{\frac{1}{2}}$ and also $T: X^{0,\frac{1}{2}+\delta} \times X^{0,\frac{1}{2}+\delta} \to L^2_t H^1_x$.

Now
$$v = e^{-it\partial_x^2} f + h + w$$
 where w solves

$$w_t + iw_{xx} = \mathcal{N}(e^{-it\partial_x^2}f, w + h) + \mathcal{N}(h + w, h + w) w(0, x) = -T(f, f)(x) \in H^{\frac{1}{2}}(\mathbf{R}).$$
 (5)

$$\mathcal{N}(u,v) := \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} u_{>0} \langle \nabla \rangle^{\alpha} v_{>0} \right)$$

$$T(u,v)(x) = \frac{i}{8\pi^2} \iint_{\mathbf{R}\times\mathbf{R}} \frac{\langle \xi \rangle^\alpha \langle \eta \rangle^\alpha}{\langle \xi + \eta \rangle^\alpha} \frac{1}{\xi\eta} \widehat{u_{>0}}(\xi) \widehat{v_{>0}}(\eta) e^{i(\xi+\eta)x} \, d\xi \, d\eta.$$

We claim $T: L^2 \times L^2 \to H^{\frac{1}{2}}$ and also $T: X^{0,\frac{1}{2}+\delta} \times X^{0,\frac{1}{2}+\delta} \to L^2_t H^1_x$.

Now $v = e^{-it\partial_x^2} f + h + w$ where w solves

$$w_{t} + iw_{xx} = \mathcal{N}(e^{-it\partial_{x}^{2}}f, w + h) + \mathcal{N}(h + w, h + w)$$

$$w(0, x) = -T(f, f)(x) \in H^{\frac{1}{2}}(\mathbf{R}).$$
(5)

$$\mathcal{N}(u,v) := \langle \nabla \rangle^{-\alpha} \left(\langle \nabla \rangle^{\alpha} u_{>0} \langle \nabla \rangle^{\alpha} v_{>0} \right).$$

$X^{s,b}$ estimate

We have the Strichartz estimate for b > 1/2

$$\|\int_0^t e^{-i(t-s)\partial_x^2} \mathcal{N}(s) ds\|_{X^{s,b}_T} \leq \|\mathcal{N}\|_{X^{s,b-1}}.$$

So if we want to construct a fixed point argument for $w_t + iw_{xx} = \mathcal{N}$, the we need to estimate $\|\mathcal{N}\|_{X^{s,b-1}_{\tau}}$.

We construct this argument for $w \in X^{\alpha-\frac{1}{2},\frac{1}{2}+\delta}$, so we need to estimate

$$\|\mathcal{N}(e^{-it\partial_x^2}f_{>0},h_{>0},w_{>0})\|_{X_T^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}}$$

$X^{s,b}$ estimate

We have the Strichartz estimate for b > 1/2

$$\|\int_0^t e^{-i(t-s)\partial_x^2} \mathcal{N}(s) ds\|_{X^{s,b}_T} \leq \|\mathcal{N}\|_{X^{s,b-1}}.$$

So if we want to construct a fixed point argument for $w_t + iw_{xx} = \mathcal{N}$, the we need to estimate $\|\mathcal{N}\|_{X^{s,b-1}_{\tau}}$.

We construct this argument for $w \in X^{\alpha - \frac{1}{2}, \frac{1}{2} + \delta}$, so we need to estimate

$$\|\mathcal{N}(e^{-it\partial_{\chi}^{2}}f_{>0},h_{>0},w_{>0})\|_{\chi_{\tau}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}}$$

$X^{s,b}$ estimate

We have the Strichartz estimate for b > 1/2

$$\|\int_0^t e^{-i(t-s)\partial_\chi^2} \mathcal{N}(s) ds\|_{X^{s,b}_T} \leq \|\mathcal{N}\|_{X^{s,b-1}}.$$

So if we want to construct a fixed point argument for $w_t + iw_{xx} = \mathcal{N}$, the we need to estimate $\|\mathcal{N}\|_{X^{s,b-1}_{\tau}}$.

We construct this argument for $w \in X^{\alpha-\frac{1}{2},\frac{1}{2}+\delta}$, so we need to estimate

$$\|\mathcal{N}(e^{-it\partial_x^2}f_{>0},h_{>0},w_{>0})\|_{X_T^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}}.$$

Non-linearities of (5)

We need to consider

$$\mathcal{N}(e^{-it\partial_x^2}f, w), \mathcal{N}(w, w), \mathcal{N}(h, h), \mathcal{N}(w, h), \mathcal{N}(e^{-it\partial_x^2}f, h),$$

After some work, we arrive at the estimates:

$$\begin{split} &\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{X^{0,\frac{1}{2}+\delta}} \|v\|_{X^{\alpha-\frac{1}{2},\frac{1}{2}+\delta}} \\ &\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{L_{t}^{2}H_{x}^{1}} \|v\|_{L_{t}^{2}H_{x}^{1}} \\ &\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{X^{\alpha-\frac{1}{2},\frac{1}{2}+\delta}} \|v\|_{L_{t}^{2}H_{x}^{1}} \end{split}$$

Non-linearities of (5)

We need to consider

$$\mathcal{N}(e^{-it\partial_x^2}f, w), \mathcal{N}(w, w), \mathcal{N}(h, h), \mathcal{N}(w, h), \mathcal{N}(e^{-it\partial_x^2}f, h),$$

After some work, we arrive at the estimates:

$$\begin{split} &\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{X^{0,\frac{1}{2}+\delta}} \|v\|_{X^{\alpha-\frac{1}{2},\frac{1}{2}+\delta}} \\ &\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{L_{t}^{2}H_{x}^{1}} \|v\|_{L_{t}^{2}H_{x}^{1}} \\ &\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{X^{\alpha-\frac{1}{2},\frac{1}{2}+\delta}} \|v\|_{L_{t}^{2}H_{x}^{1}} \end{split}$$

But the estimate

$$\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{L_{t}^{2}H_{x}^{1}} \|v\|_{X^{0,\frac{1}{2}+\delta}}$$

is false!

However,
$$h = T(e^{-it\partial_x^2}f, e^{-it\partial_x^2}f)$$
.

$$\|\mathcal{N}(T(f,g),v)\|_{X^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C\|f\|_{X^{0,\frac{1}{2}+\delta}}\|g\|_{X^{0,\frac{1}{2}+\delta}}\|v\|_{X^{0,\frac{1}{2}+\delta}}.$$

But the estimate

$$\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{L_{t}^{2}H_{x}^{1}} \|v\|_{X^{0,\frac{1}{2}+\delta}}$$

is false!

However,
$$h = T(e^{-it\partial_x^2}f, e^{-it\partial_x^2}f)$$
.

$$\|\mathcal{N}(T(f,g),v)\|_{X^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C\|f\|_{X^{0,\frac{1}{2}+\delta}}\|g\|_{X^{0,\frac{1}{2}+\delta}}\|v\|_{X^{0,\frac{1}{2}+\delta}}.$$

But the estimate

$$\|\mathcal{N}(u,v)\|_{X_{T}^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C_{T,\delta} \|u\|_{L_{t}^{2}H_{x}^{1}} \|v\|_{X^{0,\frac{1}{2}+\delta}}$$

is false!

However,
$$h = T(e^{-it\partial_x^2}f, e^{-it\partial_x^2}f)$$
.

$$\|\mathcal{N}(T(f,g),v)\|_{X^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C\|f\|_{X^{0,\frac{1}{2}+\delta}}\|g\|_{X^{0,\frac{1}{2}+\delta}}\|v\|_{X^{0,\frac{1}{2}+\delta}}.$$

But the estimate

$$\|\mathcal{N}(u,v)\|_{X^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}_{\tau}} \leq C_{T,\delta} \|u\|_{L^{2}_{t}H^{1}_{x}} \|v\|_{X^{0,\frac{1}{2}+\delta}}$$

is false!

However,
$$h = T(e^{-it\partial_x^2}f, e^{-it\partial_x^2}f)$$
.

$$\|\mathcal{N}(T(f,g),v)\|_{X^{\alpha-\frac{1}{2},-\frac{1}{2}+\delta}} \leq C\|f\|_{X^{0,\frac{1}{2}+\delta}}\|g\|_{X^{0,\frac{1}{2}+\delta}}\|v\|_{X^{0,\frac{1}{2}+\delta}}.$$

$$u_t + iu_{xx} = \langle \nabla \rangle^{\beta} [u^2] u(0, x) \in H^{-\alpha}(\mathbf{R}).$$
 (6)

- ullet M. Christ: (6) is ill-posed when eta=1 for large data.
- A. Stefanov, '07: (6) is l.w.p. for small data in H^1 when $\beta = 1$.
- Bejenaru-Tataru, '09 and '10: (6) is l.w.p. in a weighted Sobolev space H^{s,γ}.
- Currently, there is no result for β < 1.

- M. Christ: (6) is ill-posed when $\beta = 1$ for large data.
- A. Stefanov, '07: (6) is l.w.p. for small data in H^1 when $\beta = 1$.
- Bejenaru-Tataru, '09 and '10: (6) is l.w.p. in a weighted Sobolev space $H^{s,\gamma}$.
- Currently, there is no result for β < 1.

$$\begin{vmatrix} u_t + iu_{xx} = \langle \nabla \rangle^{\beta} [u^2] \\ u(0, x) \in H^{-\alpha}(\mathbf{R}).$$
 (6)

- M. Christ: (6) is ill-posed when $\beta = 1$ for large data.
- A. Stefanov, '07: (6) is l.w.p. for small data in H^1 when $\beta = 1$.
- Bejenaru-Tataru, '09 and '10: (6) is l.w.p. in a weighted Sobolev space H^{s,γ}.
- Currently, there is no result for β < 1.

- M. Christ: (6) is ill-posed when $\beta = 1$ for large data.
- A. Stefanov, '07: (6) is l.w.p. for small data in H^1 when $\beta = 1$.
- Bejenaru-Tataru, '09 and '10: (6) is l.w.p. in a weighted Sobolev space H^{s,γ}.
- Currently, there is no result for $\beta < 1$.

- M. Christ: (6) is ill-posed when $\beta = 1$ for large data.
- A. Stefanov, '07: (6) is l.w.p. for small data in H^1 when $\beta = 1$.
- Bejenaru-Tataru, '09 and '10: (6) is l.w.p. in a weighted Sobolev space H^{s,γ}.
- Currently, there is no result for β < 1.

Main result

Theorem

(6) is l.w.p. in $H^{-\alpha}$ when $\alpha + \beta < 1$, $\beta < 1/2$.

Also, we can write $u=e^{-it\partial_x^2}u(0)+h+w$ where $h\in L^\infty_tH^{\frac12-\alpha}_X\cap L^2_tH^{1-\alpha}_X$ and $w\in X^{-\frac12,\frac12+\delta}_T$.

We can also write a Lipschitz property for a smoother space

$$||u-v||_{L^{\infty}_{\tau}H^{-\frac{1}{2}}_{x}} \leq C||u_{0}-v_{0}||_{H^{-\frac{1}{2}}}$$

where $C := C(\|u_0\|_{H^{-\alpha}}, \|v_0\|_{H^{-\alpha}}).$