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1. Lower-order dispersion
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Model equation

Inviscid Burgers equation with linear dispersion

2
+ — -
th ( u )X LIX

L self-adjoint, linear, translation-invariant spatial operator with
symbol L. Advective nonlinearity typical for fluid problems.
Linearized dispersion relation:

w=W(k) W(k)=—kL(k)

Whitham (1974) observed can get arbitrary linearized
dispersion relation by choosing L appropriately, but have to be
careful how it combines with nonlinearity.
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Long and short waves

Weakly dispersive long waves: w = k3, L = 07, KdV eq.

U + 1u2 —u
t 2 X_ XXX

Weakly dispersive short waves: w = 1/k, L = o2,
Ostrovsky-Hunter eq.

oo (39))

Weak long-short wave dispersion: Ostrovsky eq.

. 1
(.)X |:u[ + <§U2> + quxx:| =u oc==1
X
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Lower-order dispersion

If linear dispersive operator Loy in

1,
u —u = Lu
t+<2 )X X

is lower order as for short waves, then can't stop wave-breaking
in sufficiently steep solutions (unlike KdV or Benjamin-Ono).
Wave-breaking effects and long time dynamics in such
equations can be subtle. Fornberg and Whitham (1978),
Shefter and Rosales (1999), Stefanov, Pelinovsky, Sakovich, ...
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Resonant media

Example: Sound waves in bubbly fluid. Rybak and Skrynnikov
(1989), Tan (1991), H. (1995). Ignoring dissipation, get

) ()]

Operator (07 + 1) not invertible, unlike (—02 + 1)
Long waves: (07 + 1)~ ~ 1 — 92, get KdV

1
ut - UX + (—U2> + UXXX = O
2 X

Short waves 02 + 1 ~ 02, get Ostrovsky-Hunter (after
integration)
1
o fus(39) ) -
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Pulse solution

Write resonant-media equation as evolution equation
1
us + P <§u2> =@ +1)tuyy Pu=0
X

P = orthogonal projection onto (cos x. sin x>L
Has exact stationary pulse solution with compact support

[ (8/3)cos?(x/4) |x| <27
ulx,t) = { 0 otherwise

Also have long-wave KdV-type solitons.
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Pulse-soliton interaction

Compact pulse—KdV soliton interaction (rescaled space
variable)
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Attempted bi-Hamiltonian form

To investigate integrability of

12
u —u = Lu
(), =

might try writing equation as bi-Hamiltonian system

_ o [dH _[(1 1
D Ui = Oy {W} ’Hl/ (ZULU 6u ) dx

@) m:J(u){%} Hoz/éuzdx

1
J(u) = Lok — 3 (udx + oxu)
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Jacobi identity

Is linearly perturbed Lie-Poisson operator J(u) Hamiltonian?

YH "1
uy = J(u) P(’iuo} Ho = / Euzdx

1
J(u) = Lok — 3 (udy + Oxu)

The only self-adjoint translation invariant operator L, whose
symbol satisfies a mild regularity condition, such that J(u)

satisfies the Jacobi identity is L = a + bo?, corresponding to the
KdV equation.

Nevertheless, Ostrovsky-Hunter equation L = o, * is completely
integrable (Vakhnenko and Parkes, 2002)
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CH and DP equations

Lower-order nonlinear dispersive terms. Includes completely
integrable DP and CH equations
Degasperis-Procesi (DP): perturbation of Burgers

1
o2 {u[ + <§u2> } = U + <2u2>
X X

Camassa-Holm (CH): perturbation of Hunter-Saxton (HS)

1 1 3
o2 {u[ + (§u2> - Euf} = Ut + (§u2>
X X
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2. Constant-Frequency Waves
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Constant-frequency waves

Waves whose linearized frequency w is independent of

wavenumber k e.g.
w?=1

Linearized wave motion consists of decoupled simple harmonic
oscillators at different spatial locations

U =V

Vi = —U

For systems that aren’t invariant under spatial reflection get
single mode (w odd function of k) e.g.

1 k>0
w=sgnk = 0 k=0
-1 k<O

John Hunter, UC Davis Constant-Frequency Waves



Constant-frequency waves are nondispersive

Single-mode constant-frequency wave with

is nondispersive with zero group velocity (w” = 0 for k +# 0)
Dominant weak nonlinearity is cubic, and get resonant
four-wave interactions among many spatial harmonics (unlike
dispersive waves)

wo + wp = wo + wo, ki + ko = k3 +Kky kj>0

Need two spatial harmonics to start spectral cascade
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Nondispersive hyperbolic waves

Constant-frequency waves nondispersive but qualitatively
different from nondispersive hyperbolic waves with dispersion
relation

w = Cok

For these waves, dominant weak nonlinearity is quadratic and
get resonant three-wave interactions among many spatial
harmonics

w1 + wr = w3, Ki + ko = K3

Will consider some model equations for constant-frequency
waves
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Model equation |

Pressureless 1-d rotating shallow water equations

Ut + UUy =V
Vi + UVy = —U

Same characteristic in each equation. Simple harmonic
oscillations in characteristic coordinates with dx /dt = u

du dv

at -~ dt

Global smooth time-periodic solutions if transformation from
characteristic to spatial coordinates remains smooth over
period (Liu and Tadmor, 2004).
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Model equation I

Coupled inviscid Burgers equations e.g. in gas dynamics
describes resonant reflection of sound waves off an entropy
wave (Majda, Rosales, Schonbeck, 1983).

()

t + u =V
2 X
vt—s—(}vZ) =—u
2 X

Different characteristics in each equation.
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Asymptotic equation

Asymptotic solution for weakly nonlinear constant-frequency
wave (arbitrary spatial profile)

u(x,t;e) ~ ep(x,e%t)e " +cc.
V(X,te) ~ —iep(x,e%t)e ™ 4 c.c.

For model equation I, complex-valued amplitude )(x. 7)
satisfies degenerate quasilinear Schrodinger equation

2, + (\1\2 L:X> =0
X
Free quantum-mechanical particle with mass inversely
proportional to probability density. Dispersive analog of porous
medium equation
Uy = (U?uy)x
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Model equation Il

Burgers-Hilbert equation

U + (%u2>x = H[u]

where H is spatial Hilbert transform (singular integral operator)
ik , ik 1
H[e™] = —i(sgnk)e Hlu] = (p.v.;> * U

Consists of inviscid Burgers equation with lower-order,
conservative linear integral term. Linearized dispersion relation
is w = sgnk. Crucial difference from previous integro-differential
eqguations with lower-order linear terms is that lower-order
Hilbert transform term is nondispersive
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3. Burgers-Hilbert equation
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Burgers-Hilbert equation

Inviscid Burgers-Hilbert equation for u(x,t)

Ut + (%u2>x = H[u]

Conservation law + singular integral operator (seems to makes
global theory of weak solutions tricky)

Dimensional analysis shows this is model equation for
constant-frequency, Hamiltonian surface waves: Effective
equation for surface waves on vorticity discontinuity in 2-d
incompressible Euler equations. Biello and H. (2010). Marsden
and Weinstein (1983) wrote down equation (didn’t analyze it or
consider resonant cubic nonlinearities)
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Vorticity Discontinuities

Planar discontinuity in vorticity in incompressible, inviscid fluid
flow. Example: local behavior on boundary of vortex patch.

Surface waves propagate along discontinuity, decay
exponentially into the interior. Rayleigh (1895). Location
y = n(x,t) of discontinuity described by Burger-Hilbert eq.
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Burgers-Hilbert equation
U + (%u2>x = H[u]

If v = H[u], then (u,v) satisfy (H* = 1)

. 1
Ut + Ox <§u2> =v
1
Vi + ‘()X‘ <§U2> = —Uu

where |0y | = Hoy, |0«| [e™] = |k|e™*. Simple harmonic
oscillators with nonlocal spatial nonlinearity. Seems to be
intrinsically nonlinear — can’t be reduced to local equation by
linear transformation (unlike e.g. Constantin-Lax-Majda eq.)
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Linearized equation

Linearization of equation gives spatially distributed simple
harmonic oscillators

U =V

Vi = —U
where velocity

v = HJu]

is spatial Hilbert transform of displacement u. Otherwise
oscillators are spatially decoupled
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Linearized IVP

Initial-value problem for linearized equation

ur = Hlu]
u(x,0) = f(x)

Solution is (H? = —1)
u(x,t) =f(x)cost +g(x)sint g = HIf]

Solution oscillates in time between two spatial profiles f(x) and
0(x) where g is Hilbert transform of f

Steep slope in one phase gives sharp finger, or filament, in
other phase
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Strongly and weakly nonlinear regimes

Suppose uy(x,0) = O(e) in Burgers-Hilbert equation

@ Strongly nonlinear regime ¢ > 1:

1 2
u ~u =
(),

Perturbation of inviscid Burgers equation. Singularity
timescale Ts = O (= 1) < 1.
@ Weakly nonlinear regime = < 1:

Ut = H[u]

Solutions oscillate in time and nonlinearity is effectively
cubic (compression in one phase canceled by expansion in
the other). Singularity timescale Ts = O (5*2) > 1.
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Numerical solution for large amplitudes

Infinite derivative at shocks due to Hilbert transform, but
otherwise qualitatively similar to e.g. Ostrovsky-Hunter eq.
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Singularity Time 7. vs. Amplitude

e} 0 1

10~ 10 10 10°

Green line = quadratic Burgers equation asymptotics; Red line
= cubic asymptotics; Blue dots = numerical solution
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Complex form of linearized solution

Consider weakly nonlinear asymptotics for Burgers-Hilbert.
Linearized equation
ur = H[u]

has solution in complex form
u(x,t) = p(x)e "t +yr(x)et,  Y(x) = /j D(k)e™™ dk
where ¢/ has only positive wavenumber components
Ph=y P==(+iH)

2

P = projection onto positive wavenumber components. Solution
oscillates between i) and ).
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Asymptotic equation

Weakly nonlinear solutions of Burgers-Hilbert equation
u(x,t;e) = ep(x, e2t)e ™ + c.c. + O(e?)

where ¢/ has only positive wavenumber components

1
h,  P=Z(I+iH
¥, 5 (I+1H)

Py

Equation for ¢)(x, 7) is nonlocal, cubically quasilinear, singular
integro-differential equation

Uy = Px (10| n — N |0x| ) n = [y

where |0y | = Hdy has symbol ||
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Hamiltonian structure

Hamiltonian form of Burgers-Hilbert equation

(M
Ue =~k (m)
(1 _ 1
H(u)‘/ {EUOX 1u+6u3} dx

Asymptotic equation has Hamiltonian form

)
U = —0 { H}

o*
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Near-identity transformation

Consider Burgers-Hilbert equation with scaled nonlinearity
Ut + euuy = H[u]

Asymptotic equation also follows from near-identity
transformation that eliminates nonresonant O (<) cubic terms
from Burgers-Hilbert Hamiltonian and retains resonant O(=?)
guartic terms

Rigorous analysis seems difficult because remainder terms are
singular perturbations that involve higher-order derivatives
Lower-order linear term H[u| give poor control on higher-order
nonlinearities uuy
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Near-identity transformation

Near-identity transformation
_ 1. 2 12702 (2 A 2
V—u+2¢\()x\<h >+2¢ [()X <h u) Ox (h\()x\<u >>}
where h = H|u] gives
VJFCZ{) E 9 3 73 /A 2 } 219 _ -3 C -

Real form of asymptotic equation for ¢ if O(=%) terms neglected
Pick up extra derivative for every power of u that is eliminated
e.g. R(u;e) =~ oju?
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Near-identity transformation for KdV

Compare with KdV
ut + EUUX - UXXX

Near-identity transformation
1 i 2
v:u—65<<‘);lu>

gives

1 .
Vi — 6,szvz(dX W) = Vi + £°R(U; €)

where R(u; 2) ~ 9 2u”. Error terms are smoother c.f. Craig,
Schneider, Wayne, Germain, Masmoudi, Shatah, Wu, ... for
KdV, water wave asymptotics etc.
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4. Asymptotic equation
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Short-time existence of smooth solutions

Asymptotic equation

U = POy [z |0k | N — n || u} n= \L:\Z P==(I+H)

N[ =

Theorem

(Ifrim + H.) The asymptotic equation has unique, smooth
spatially-periodic solution for time T = T (||«)g][42)

peC ([—T,T] , HZ(T)> nct ([—T,T] , Hl(T)>
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Commutator form

Asymptotic equation
by = POy [¢0|0k|n — n |9k ] n=1[y* P= %(I +H)
Commutator form
U = O [, [0, 1B 1] 0
As written, equation ‘looks’ second-order in spatial derivatives,

but it’s ‘really’ lower-order due to cancelation, so get good
energy estimates
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Minimal spectral growth

Spectral form of equation (spatially periodic)

ke, t) =ik > A(ke ko, ks, ka) " (Ka, ) (K, 1)) (kg )
K1 +ko=k3+Kk,

where interaction coefficient A for k3 + ks — ko — Ky
A(Ka, k2, k3, Kq) = 2min(ky, ko, k3, Ks)

Hamiltonian property: A(kq, ko, ks, k) symmetric

Key point; Value of A bounded by lowest wavenumber:
prevents loss of derivatives by nonlinear amplification of high
wavenumbers
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Singularity formation
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Solution for real part u = ¢ of ¢y = Po, |
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5. Vorticity discontinuities

John Hunter, UC Davis Constant-Frequency Waves



Vorticity Discontinuities

Planar discontinuity in vorticity in incompressible, inviscid fluid
flow. Example: local behavior on boundary of vortex patch.

Surface waves propagate along discontinuity, decay
exponentially into the interior.
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Surface waves

@ Vorticity discontinuity is linearly stable (unlike vortex sheet,
where velocity is discontinuous)

@ Surface waves propagate along discontinuity

@ Only parameters are shear rates o, o, equal to minus
vorticity, which have dimensions of frequency

@ Surface waves have constant frequency

L — O
w=wosgn(k)  wo = (%)

@ Problem invariant under simultaneous time reversal and
spatial reflection (t — —t, x — —x) but not under spatial
reflection (x ~» —x) alone
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Asymptotic equation

Location y = 7)(x.t; ¢) of discontinuity has asymptotic solution
n(x,t;e) ~ ey (X. 52t> e 1wl | gqp*(x, e2t)elwot

(x, 7) satisfies exactly the same asymptotic equation as one
from Burgers-Hilbert equation

r = Y0P [1 [0x| N — N [0y | V] n = |y
ai +a?

Y= ——
oy — o
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Effective equation

Burgers-Hilbert equation

1
N+ (5307]2> = woH[n]
X

2 2
e 32 ol +aZ
T

Provides effective equation for small-amplitude motion of
vorticity discontinuity y = 7(x,t) between shears o, & on
cubically nonlinear timescales

Note that can change sign of nonlinearity 5, — — /o and still get
same effective equation
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Filamentation and wavebreaking

@ Wave breaking in Burgers-Hilbert equation corresponds to
filamentation of vorticity discontinuity in weakly nonlinear
regime. Happens on tiny spatial scale.

@ Mechanism: discontinuity slowly folds over and overturned
part stretched out into thin filament by underlying rapid
time-periodic linearized oscillations. Get multiple filaments
formed with repeated oscillations

@ Contour dynamics numerics (Biello and H.)
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Numerical solutions of filamentation

Filament formation
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Strobed picture of filament formation: interface shown at same
phase of oscillations
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Detail of strobed picture of filament formation
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Close-up of filament formation
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