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Abstract

We shall discuss well-posedness of the initial value problem for a

class of weakly dispersive nonlinear evolution equations, includ-

ing the Camassa-Holm, the Degasperis-Procesi, and the Novikov

equation. The focus will be continuity properties of the data-

to-solution map in Sobolev spaces. This talk is based on work

in collaboration with Carlos Kenig, Gerard Misiolek and Curtis

Holliman.
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Main Result (work with Curtis Holliman)

The Camassa-Holm type equation (discovered recently [2009] by

V. Novikov to be integrable)

(1− ∂2
x)∂tu = −4u2∂xu+ 3u∂xu∂

2
xu+ u2∂3

xu (1)

is well-posed in Hs, s > 3/2, on both the line and the circle

with continuous dependence on initial data. Furthemore, the

data-to-solution map is not uniformly continuous.
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integrable equations

Integrable equations possess special properties, like:

• Infinite hierarchy of higher symmetries (Novikov’s test),

• Have a Lax Pair,

• Infinitely many conserved quantities,

• A bi-Hamiltonian formulation,

• Can be solved by the Inverse Scattering Method.
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Camassa-Holm type equations [Novikov: J. Phys. A, 2009]

• These are integrable equations of the form

(1− ∂2
x)ut = F (u, ux, uxx, uxxx, · · · ) (2)

where F is a polynomial of u and its x-derivatives.

• Definition of integrability: Existence of an infinite hierarchy of

(quasi-) local higher symmetries.
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CH equations with quadratic nonlinearities

Theorem A. [Novikov, 2009] If the equation

(1− ε∂2
x)ut = c1uux + ε[c2uuxx + c3u

2
x]

+ ε2[c4uuxxx + c5uxuxx]

+ ε3[c6uuxxxx + c7uxuxxx + c8u
2
xx]

+ ε4[c9uuxxxxx + c10uxuxxxx + c11uxxuxxx]

is integrable then up to rescaling is one of the following 10:

1• Camassa-Holm (CH): (1− ∂2
x)ut = −3uux + 2uxuxx + uuxxx

2• Degasperis-Procesi (DP): (1−∂2
x)ut = −4uux+3uxuxx+uuxxx

3• ...
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CH equations with cubic nonlinearities

Theorem C. [Novikov, 2009] If the equation

(1− ε∂2
x)ut = c1u

2ux + ε[c2u
2uxx + c3uu

2
x]

+ ε2[c4u
2uxxx + c5uuxuxx + c6u

3
x]

+ ε3[c7u
2uxxxx + c8uuxuxxx + c9uu

2
xx + c10u

2
xuxx]

+ ε4[c11u
2uxxxxx + c12uuxuxxxx + c13uuxxuxxx + c14u

2
xuxxx + c15uxu

2
xx]

is integrable then up to rescaling is one of the following 10:

1• Novikov equation: (1− ∂2
x)ut = −4u2ux + 3uuxuxx + u2uxxx

2• Fokas-Qiao eqn: (1− ∂2
x)ut = ∂x(−u3 + uu2

x + u2uxx − u2
xuxx)

3• ...
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Common phenomenon of CH, DP and NE

• They all have peakon solutions:

u(x, t) = ce−|x−ct|

• The discovery of the CH equation (Camassa-Holm [1993]) was
partly driven by the desire to find a water wave equation which
has traveling wave solutions that break. The Korteweg-de Vries
equation (KdV),

∂tu+ 6u∂xu+ ∂3
xu = 0, (3)

which was derived in 1895 as a model of long water waves prop-
agating in a channel has only smooth solitons.

• Also, CH, DP and NE have multipeakon solutions:

u(x, t) =
n∑

j=1

pj(t)e
−|x−qj(t)|
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KdV Soliton: u(x, t) = f(x− ct)

f(x) =
c

2
sech2

(√
c

2
x

)
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CH Peakon: u(x, t) = f(x− ct)

f(x) = ce−|x|
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Conserved Quantities

CH, DP and NE have∞-many conserved quantities, which among

other things are used for proving global solutions.

• Main conserved quantity by CH and NE is the H1-norm:

‖u‖ .
=
∫

[u2 + u2
x]dx

• While, the main conserved quantity by DP is a twisted

L2-norm:

‖u‖2
L̃2

.
=
∫

(1− ∂2
x)u · (4− ∂2

x)−1u dx
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The Cauchy problem for NE

• In its nonlocal form the Cauchy problem for NE is

∂tu+
1

3
∂x(u3) + F (u) = 0 (4)

u(x,0) = u0(x), u ∈ Hs, (5)

where

F (u)
.

= D−2∂x

[
u3 +

3

2

(
u(∂xu)2

)]
+D−2

[
1

2
(∂xu)3

]
(6)

and D−2 = (1− ∂2
x)−1.

• Observe that F (u) ∈ Hs for any u ∈ Hs. Thus, applying a

Galerkin-type approximation we prove the following local well-

posedness result.
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Local well-posedness for NE

Theorem 1. [H.–Holliman] If s > 3/2 and u0 ∈ Hs then there

exists T > 0 and a unique solution u ∈ C
(
[0, T ];Hs

)
of the initial

value problem (4)–(5), which depends continuously on the initial

data u0. Furthermore, we have the estimate

‖u(t)‖Hs ≤ 2‖u0‖Hs, for 0 ≤ t ≤ T ≤
1

4cs‖u0‖2Hs

, (7)

where cs > 0 is a constant depending on s.

• In the periodic case and when s > 5/2 NE’s well-posedness

has been proved by Tiglay [T]. Her proof is based on Arnold’s

geometric framework as it was further developed in Ebin-Marsden

[EM] for proving well-posedness of the Euler equations in Sobolev

spaces.
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Non-uniform dependence for NE

Theorem 2. [H.–Holliman] If s > 3/2 then the solution map

u0 → u(t) for the NE equation is not uniformly continuous from

any bounded set of Hs(R) into C([0, T ];Hs(R)).

Remark. The analogous to Theorem 2 result has been prooved:

• For CH on the line by [H.–Kenig, Diff. Int. Eqns 2009]

• For CH on the circle by [H.–Kenig-Misiolek, CPDE 2010]

• For DP on the line and the circle by [H.–Holliman, DCDS 2011]
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Idea of Proof

We shall prove that there exist two sequences of NE solutions

un(t) and vn(t) in C([0, T ];Hs(R)) such that:

1• sup
n
‖un(t)‖Hs + sup

n
‖vn(t)‖Hs . 1,

2• lim
n→∞ ‖un(0)− vn(0)‖Hs = 0,

3• lim inf
n
‖un(t)− vn(t)‖Hs & f(t), 0 ≤ t < T ≤ 1,

where f(t) > 0.

Remark. For DP and CH f(t) = sin t.
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Approximate solutions motivation (from Euler eqns)

• For any ω ∈ R and n ∈ Z+ the divergence free vector field

uω,n(t, x) =
(
ωn−1 +n−s cos(nx2−ωt), ωn−1 +n−s cos(nx1−ωt)

)
is a solution! to the Euler equations on T2.

• The corresponding to ω ± 1 sequences

u+1,n(t, x) and u−1,n(t, x)

Satisfy conditions (1)-(3) for non-uniform dependence of the
periodic Euler equations in 2-D.

Remark. Non-uniform dependence for the Euler equations in
n-D was proved in [H.–Misio lek, CMP 2010].
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Approximate solutions for CH and DP

• The approximate solutions

uω,n(x, t) = ωn−1 + n−s cos(nx− ωt), for ω = −1,1, (8)

where n ∈ Z+, satisfy conditions (1)-(3) for non-uniform depen-

dence of the periodic CH and DP equations but they are not

solutions.

• However, the error

E = CH(uω,n) or E = DP (uω,n)

is small.
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NE approximate solutions on the circle

• They are

uω,n = ωn−1/2 + n−s cos(nx− ωt), for ω = 0,1. (9)

Note. One of them (ω = 0) has no low frequency. Unlike in

the case of CH and DP they are asymmetric.
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Approximate Solutions on the Line

Again we will construct the uω,n as a high-low frequency combi-
nation. We will take the cutoff function

ϕ(x) =

1, if |x| < 1,

0 if |x| ≥ 2.
(10)

• High Frequency Part: This will be very similar to the high
frequency of the periodic approximate solution; however, as we
have the cutoff ϕ we can introduce a parameter δ to help control
decay in later estimates.

uh = uh,ω,n = n−δ/2−sϕ(
x

nδ
) cos(nx− ωt). (11)
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Approximate Solutions on the Line

• Low Frequency Part: Recall that in the periodic case the

low frequency part was simply ωn−1/2. Here we will introduce

the cutoff in the following way. We take u` = u`,ω,n to solve

Novikov’s initial value problem

(u`)t + (u`)
2(u`)x + F (u`) = 0, (12)

u`(x,0) = ωn−1/2ϕ̃(
x

nδ
), (13)

where we have ϕ̃ ∈ C∞0 (R) and

ϕ̃(x) = 1, if x ∈ supp ϕ. (14)

Now that we have approximate solutions, we can define actual

solutions and follow the same program as in the periodic case.
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Approximate Solutions and Error

Defining the NE approximate solution by

uω,n = u` + uh ω = 0 or 1. (15)

we show that the error

E
.

=∂tu
ω,n + (uω,n)2∂xu

ω,n + F (uω,n). (16)

satisfies the following estimate.

Lemma. Let s > 3/2 and 1/4 < δ < 1. Then,

‖E(t)‖Hσ . n−rs, for n� 1, (17)

with

rs
.

= s+ 1− σ − 2δ > 0. (18)
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NE Actual Solutions and their difference

Actual solutions solve the Novikov’s equation with initial data

uω,n(0) = uω,n(0). (19)

Then the difference

v
.

= uω,n − uω,n. (20)

satisfies the initial value problem

vt = E −
1

3
∂x(vw)− F (uω,n) + F (uω,n), (21)

v(0) = 0, (22)

where

w = (uω,n)2 + uω,nuω,n + (uω,n)2. (23)
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Size of difference is small

Proposition. If s > 3/2 and 1/4 < δ < 1, then

‖v(t)‖Hσ . n−rs, 0 ≤ t ≤ T, (24)

where rs = s+ 1− σ − 2δ > 0.

Proof. The last i.v.p. gives the following identity for v

1

2

d

dt
‖v(t)‖Hσ = −

∫
R
DσE ·Dσvdx−

1

3

∫
R
Dσ∂x(wv)Dσvdx (25)

−
∫
R
Dσ

[
F (uω,n)− F (uω,n)

]
Dσvdx.

The first term on the right hand side of (25) is estimated by
applying Cauchy-Schwarz∫

R
DσEDσvdx ≤ ‖E‖Hσ‖v‖Hσ (26)
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Second Term of (25)

We begin by rewriting this term by commuting w with Dσ∂x to

arrive at∫
R
Dσ∂x(vw)Dσvdx =

∫
R

[Dσ∂x, w]vDσvdx+
∫
R
wDσ∂xvD

σvdx

(27)

The first integral can be handled by the following Calderon-

Coifman-Meyer type commutator estimate that can be found in

H.-Kenig-Misiolek [CPDE 2010].

Lemma. If σ + 1 ≥ 0 then

‖[Dσ∂x, w]v‖L2 ≤ C‖w‖Hρ‖v‖Hσ (28)

provided that ρ > 3/2 and σ + 1 ≤ ρ.
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Second Term of (25) (cont.)

Applying this lemma and the solution size estimate of the well-

posedness theorem we have∫
R

[Dσ∂x, w]vDσvdx . ‖w‖Hs ‖v‖2Hσ . ‖v‖2Hσ. (29)

Next integrating by parts and using the Sobolev lemma we have∫
R
wDσ∂xvD

σvdx . ‖∂xw‖L∞
∫
R

(Dσv)2dx . ‖v‖2Hσ. (30)
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Third Term of (25)

• We use the following multiplier estimate that can be found in

H.-Kenig-Misiolek [CPDE 2010].

Lemma. If σ ∈ (1/2,1) then

‖fg‖Hσ−1 . ‖f‖Hσ−1‖g‖Hσ, (31)

• Then, one can prove that for any u and w in Hσ, we have

‖F (u)− F (w)‖Hσ . (‖u‖Hσ+1 + ‖w‖Hσ+1)2‖u− w‖Hσ.

• Therefore ∫
R
Dσ

[
F (uω,n)− F (uω,n)

]
Dσvdx . ‖v‖2Hσ. (32)
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End of proposition’s proof

Putting these results together we arrive at the differential in-

equality

1

2

d

dt
‖v(t)‖2Hσ . ‖E‖Hσ‖v‖Hσ + ‖v‖2Hσ. (33)

Solving this inequality gives

‖v‖Hσ . ‖E‖Hσ . n−r. (34)
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Hs norm of the difference is small

• By the well-posedness theorem obtain the following estimate
for the Hk-norm of the difference of uω,n and uω,n

‖v‖Hk = ‖uω,n(t)− uω,n(t)‖Hk . n
k−s, 0 ≤ t ≤ T. (35)

• Interpolating between with s1 = σ and s2 = [s] + 2 = k gives

‖v(t)‖Hs ≤ ‖v(t)‖(k−s)/(k−σ)
Hσ ‖v(t)‖(s−σ)/(k−σ)

Hk

. n(−rs)[(k−s)/(k−σ)]n(k−s)[(s−σ)/(k−σ)]

. n−(1−2δ)[(k−s)/(k−σ)].

From the last inequality we obtain that

‖uω,n(t)− uω,n(t)‖Hs(R) . n
−εs, 0 ≤ t ≤ T, (36)

where εs is given by

εs = (1− 2δ)/(s+ 2) > 0, if δ <
1

2
. (37)
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End of Proof of Theorem 2 on the Line

• Behavior at time zero. We have

‖u1,n(0)− u0,n(0)‖Hs ≤ n(−1+δ)/2‖ϕ̃‖Hs −→ 0 as n→∞.

• Behavior at time t > 0. We have

‖u1,n(t)− u0,n(t)‖Hs ≥ ‖u1,n(t)− u0,n(t)‖Hs

− ‖u1,n(t)− u1,n(t)‖Hs

− ‖u0,n(t)− u0,n(t)‖Hs.

(38)

Observe that for the second and third terms we have

lim
n→∞ ‖u

1,n(t)− u1,n(t)‖Hs = lim
n→∞ ‖u

0,n(t)− u0,n(t)‖Hs = 0 (39)
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For the remaining term observe

lim inf
n→∞ ‖u1,n(t)− u0,n(t)‖Hs ≥ lim inf

n→∞ ‖u
1,n(t)− u0,n(t)‖Hs. (40)

Therefore, the inequality

lim inf
n→∞ ‖u

1,n(t)− u0,n(t)‖Hs ≥
1√
2
‖ϕ‖L2(R)

[
sin t+ cos t− 1

]
(41)

completes the proof of Theorem 2 on the line. �
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Thank you!
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