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Contrast two ODEs
Quadratic case

ż = z2 , z(0) = ε

z(t) =
ε

1− εt
, T =

1
ε

Cubic case

ẇ = w3 , w(0) = ε

w(t) =

√
ε2

1− 2ε2t
, T =

1
2ε2

The general time of existence does not change when these ODE are
replaced by

ż = iωz+ z2 , ẇ = iωw + w3
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Free surface water waves

Incompressible and irrotational flow

∇ · u = 0 , ∇∧ u = 0

which is apotential flow

u = ∇ϕ , ∆ϕ = 0 , ∂Nϕ = 0 bottom BC

in the fluid domain−h < y < η(x, t), x ∈ R
d−1

Free surfaceconditions

∂tη = ∂yϕ − ∂xη · ∂xϕ kinetic BC

∂tϕ = −gη − 1
2|∇ϕ|2 Bernoulli condition
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Zakharov’s Hamiltonian

Theenergyfunctional

H = K + P

=

∫ ∫ η(x)

−h

1
2|∇ϕ|2 dydx+

∫

x

g
2η2 dx

Zakharov’s choice of variables

z := (η(x), ξ(x) = ϕ(x, η(x)))

That isϕ = ϕ[η, ξ](x, y)

Expressed in terms of theDirichlet – Neumann operatorG(η)

H(η, ξ) =

∫
1
2ξG(η)ξ + g

2η2 dx
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Dirichlet – Neumann operator
Laplace’s equation on the fluid domain−h < y < η(x)

ξ(x) 7→ ϕ(x, y) 7→ N · ∇ϕ (1 + |∇xη|2)1/2 := G(η)ξ(x)

In these coordinates

∂tη = G(η)ξ = gradξH

∂tξ = −gη − gradηK = −gradηH

A calculation related to the variational formula of Hadamard
[Collège de France lectures (1911)(1916) on the Green’s function]
PDE in Hamiltonian form

∂tz = JgradzH , J =

(
0 I
−I 0

)

Darboux coordinates
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Hamiltonian PDEs

Other Hamiltonian partial differential equations

Korteweg de Vries

∂tr = −∂x(
1
6
∂2

x r +
3
2

r2)

J := −∂x , HKdV =

∫

x
− 1

12
(∂xr)

2 +
1
2

r3 dx

shallow water equations
Boussinesq system
nonlinear Schrödinger equation (NLS), . . .
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Lemma (properties of the Dirichlet - Neumann operator)
1 G(η) ≥ 0 andG(η)1 = 0
2 G(η)∗ = G(η) Hermetian symmetric
3 G(η) : H1

ξ → L2
ξ is analytic inη for η ∈ C1

G(η)ξ = G(0)ξ + G(1)(η)ξ + G(2)(η)ξ + . . .

[using a theorem of Christ & Jourńe (1987)]
4 SettingDx := −i∂x

G(0)ξ = |Dx| tanh(h|Dx|)ξ
G(1)ξ = (Dx · ηDx − G(0)ηG(0))ξ
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conservation laws
Mass M =

∫
η dx

{M, H} =

∫
gradηM gradξH − gradξM gradηH dx

=

∫
1G(η)ξ dx

=

∫
G(η)1ξ dx = 0

Momentum I(η, ξ) =
∫

η∂xξ dx

{I , H} = 0

Energy H(η, ξ)
{H, H} = 0
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Taylor expansion of the Hamiltonian

From the analyticity ofG(η)

H = H(2) + H(3) + H(4) + . . .

= 1
2

∫
ξG(0)ξ + gη2 dx +

∑

m≥3

1
2

∫
ξG(m−2)(η)ξ dx

The linearized equations are

∂t

(
η
ξ

)
= J grad(η,ξ)H

(2)

namely

∂tη = |Dx| tanh(h|Dx|)ξ
∂tξ = −gη

A harmonic oscillator withfrequenciesω(k) =
√

g|k| tanh(h|k|)
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normal forms
Restrict our considerations to thed = 2 periodic case;x ∈ R

1/2πZ
1 = T

1

The frequencies are discreteω(k) =
√

gktanh(hk), k ∈ Z
1

Normal form- transform the equations to retain only essential
nonlinearities

τ : z =

(
η
ξ

)
7→ w

in a neighborhoodBR(0) ⊆ Hr

Conditions:
1 The transformationτ is canonical, so the new equations are

∂tw = J grad̃H(w) , H̃(w) = H(τ−1(w))

2 The new Hamiltonian is

H̃(w) = H(2)(w) +
(
Z(3) + · · · + Z(M)

)
+ T̃(M+1)

where eachZ(m) retains onlyresonantterms
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In particular ifZ(3) = 0 then the new equations will have no quadratic
nonlinear terms; the lowest order nonlinear terms will be cubic.

This transformation procedure is called the reduction to
Birkhoff normal form.

It is part of the theory of averaging for dynamical systems.
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Theorem (C. Sulem and WC (2009))

Letd = 2 (andh = +∞) and fixr > 3/2. There existsR0 > 0 such that for
anyR < R0, on every neighborhoodBR(0) ⊆ Hr+1

η × Hr
ξ the Birkhoff normal

forms transformationτ (3) is defined.

τ (3) : BR(0) → B2R(0)

(τ (3))−1 : BR/2(0) → BR(0)

The result is thatw = τ (3)(z) transformsH(z) to

H̃(w) = H(2)(w) + 0 + T̃(4)(w)

A similar statement holds forr > 5/2 in the case of positive surface tension,
with however a possible nonzeroZ(3). Furthermoreτ (3) is an analytic
diffeomorphism in this case.

NB The transformation mixes the domainη and the potential variablesξ.
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Outline of the proof
The transformationτ (3) is constructed as thetime s = 1 flow of an
auxiliary Hamiltonian system.
Define complex symplectic coordinates

z(x) = 4

√
g

4G(0)(Dx)
η(x) + i 4

√
G(0)(Dx)

4g
ξ(x)

=
∑

k∈Z1

ẑke
ikx

In these coordinates (dropping ‘hat’ notation)

H =
∑

k

ω(k)|zk|2 +
∑

m≥3

[ ∑

|p|+|q|=m

c(p, q)zpzq]

where|p| + |q| :=
∑

ℓ pℓ + qℓ = m and

zpzq :=
∏

ℓ∈Z

zpℓ

ℓ zqℓ

ℓ
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Proposition

One can choose initial dataη0(x) = η(x, 0) such thatM = 2πη̂(0) = 0

Unless〈k, p− q〉 = 0 the coefficients satisfy

c(p, q) = 0

(conservation of momentum)

There are no nonzerom = 3 resonances. Indeed

ω(k1) ± ω(k2) ± ω(k3) = 0 and k1 ± k2 ± k3 = 0

implieskℓ = 0 for someℓ = 1, 2, 3

The auxiliary Hamiltonian is determined by a cohomologicalequation

{K(3), H(2)} + H(3) = 0

to be solved forK(3). This is alinear equation
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To solve{H(2), K(3)} = H(3) for K(3), one
determines the eigenvalues of the operatoradH(2)(·) := {H(2), ·}.
These are precisely

±i
(
ω(k1) ± ω(k2) ± ω(k3)

)

By the above proposition,adH(2)(·) has a formal inverse.

Question:Does the flowϕs(z) of the vector field exist, and on which
Banach spaces?

∂sz = XK(3)(z) = J gradzK
(3)(z) (1)

Theorem (Main new technical result)
The system of equations(1)
(i) Satisfies good energy estimates onHr+1

η × Hr
ξ whenh = +∞ for r > 3/2

(ii) With nonzero surface tension it defines a locally Lipschitz vector field on
Hr

η × Hr+1
ξ , for r > 5/2
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Long time existence theorem
This next section describes our hopes for the Birkhoff normal form

Theorem (work in progress)

Letd = 2 and consider the case of periodic datax ∈ T
1. There exists0 > 0

andε0 > 0 such that for initial data(η0, ξ0) = z0 ∈ Hs
η × Hs+1/2

ξ := Hs
∗,

s > s0 andε < ε0, satisfying

‖z0‖Hs
∗

< ε

then there exists a solutionz(x, t) = ϕt(z0) to the equations for surface water
waves for allt ∈ [−C/ε2, C/ε2], satisfying

‖z(·, t)‖Hs
∗

< 4ε

This is to be compared with other recent work in the casex ∈ R
d−1, for

noncompact regions.
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Recent work onRd−1

Theorem (S. Wu (2009))
For d = 2, there existsε0 > 0 such that given Sobolev data
‖(η0, ξ0)‖Hs

∗
= ε < ε0 then solutions exist over exponentially long time

intervals
|t| < C1eC2/ε

The proof uses the property ofL∞ time decay for the linear equations,
following work of J. Shatah on the nonlinear Klein - Gordon equation

Theorem (P. Germain, N. Masmoudi & J. Shatah (2009))
For d = 3, there existsε0 > 0 such that given Sobolev data
‖(η0, ξ0)‖Hs

∗
< ε < ε0 then solutions exist globally in time.

The proof uses a different method, which however is again related to
averaging theoryof dynamical systems
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Analysis of the modulational regime
We intend to use this newly wonlong-time existencetheory to address
the modulational scaling regime of the water wave problem.
Question:[C. Sulem, P.-L. Sulem & C. (1992), plus present work]
Solutions of the water waves problem in modulational form

z0(x) = (η0, ξ0)(x)

= ε cos(k0x)(N(εx),Ξ(εx))

converge to solutions of the cubic nonlinear Schrödinger equation

i∂TZ(Y, T) = ∂2
kω(k0)∂

2
YZ − c(k0)|Z|2Z

whereY = ε(x− ∂kω(ko)t) andT = ε2t. The time interval of
convergence is

|T| ∼ O(1) , i.e. |t| ∼ O(1/ε2)

References: Guido Schnieder & Eugene Wayne, Nathan Totz & Sijue Wu
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The KdV scaling regime
Return to the KdV equation

∂Tr = −∂X gradHKdV(r) , HKdV =

∫
− 1

12
(∂Xr)2 +

1
2

r3 dX

Question:How this emerges as a model equation for water waves.

Thescaling regime

X := εx , εDX = Dx

ξ 7→ εξ , η 7→ ε2η

The Dirichlet – Neumann operator will behave as follows

εDX tanh(εhDX) ∼ ε2hD2
X +

1
6
ε4h3D4

X + O(ε6D6
X)

Transform thesymplectic structure
(

η
ξ

)
7→

(
η

u := ∂Xξ

)
giving rise to

(
0 I
−I 0

)
7→

(
0 −∂X

−∂X 0

)
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On the level of the Hamiltonian functional for water waves

H =
1
2

∫
hu2 + gη2 − ε2 h3

6
(∂Xu)2 dX +

ε2

2

∫
ηu2 dX + O(ε4)

Transform to a moving reference frame using the momentum integral∫
ηu dX

H−
√

ghI =
1
2

∫ (√
hu−√

gη
)2

dX+
ε2

2

∫ (
−h3

6
(∂Xu)2+ηu2

)
dX+O(ε4)

TheKdV descriptionis valid in the region of phase space in which
(
√

hu−√
gη) ∼ o(ε). In this regionu =

√
g/hη + o(ε), thus

H −
√

ghI =
ε2

2

∫ (
−gh2

6
(∂Xη)2 +

g
h
η3

)
dX + O(ε4)

Settingr = gh2η this gives the KdV Hamiltonian up to constants.
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A ‘derivation’ of complete integrability
Perform the above sequence of transformations on the Birkhoff normal
form τ

(3)
ε for water waves.

The limit ε → 0 before the normal forms transformation

H −
√

ghI = H(2) + H(3) + T(4)

7→
∫

− 1
12

(∂Xr)2 +
1
2

r3 dX + 0

After the normal forms transformation(
H −

√
ghI

)
◦ (τ (3)

ε )−1 = H(2) + 0 + T̃(4)

7→
∫

− 1
12

(∂XR)2 + 0

It appears that the limit of the Birkhoff normal forms transformation

lim
ε→0

τ (3)
ε := τ

(3)
0

maps the KdV to a linear equation.
Walter Craig (McMaster University) Normal forms for water waves 4 May 2011 23 / 24



A ‘derivation’ of complete integrability
Perform the above sequence of transformations on the Birkhoff normal
form τ

(3)
ε for water waves.

The limit ε → 0 before the normal forms transformation

H −
√

ghI = H(2) + H(3) + T(4)

7→
∫

− 1
12

(∂Xr)2 +
1
2

r3 dX + 0

After the normal forms transformation(
H −

√
ghI

)
◦ (τ (3)

ε )−1 = H(2) + 0 + T̃(4)

7→
∫

− 1
12

(∂XR)2 + 0

It appears that the limit of the Birkhoff normal forms transformation

lim
ε→0

τ (3)
ε := τ

(3)
0

maps the KdV to a linear equation.
Walter Craig (McMaster University) Normal forms for water waves 4 May 2011 23 / 24



A ‘derivation’ of complete integrability
Perform the above sequence of transformations on the Birkhoff normal
form τ

(3)
ε for water waves.

The limit ε → 0 before the normal forms transformation

H −
√

ghI = H(2) + H(3) + T(4)

7→
∫

− 1
12

(∂Xr)2 +
1
2

r3 dX + 0

After the normal forms transformation(
H −

√
ghI

)
◦ (τ (3)

ε )−1 = H(2) + 0 + T̃(4)

7→
∫

− 1
12

(∂XR)2 + 0

It appears that the limit of the Birkhoff normal forms transformation

lim
ε→0

τ (3)
ε := τ

(3)
0

maps the KdV to a linear equation.
Walter Craig (McMaster University) Normal forms for water waves 4 May 2011 23 / 24



Thank you
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