Birkhoff Normal forms for the problem of water waves

Walter Craig

Department of Mathematics & Statistics

Il}chg}ster
NIversity |
W

Workshop on Wave Breaking and Global Solutions
in the Short-Pulse Dispersive Equations
Fields Institute
4 May 2011

Walter Craig (McMaster University) Normal formsfor water waves 4 May 2011 1/24



Joint work with:

Catherine Sulem University of Toronto

along with

Alessandro Selvitella

McMaster University
Yun Wang

McMaster University

Acknowledgements:

NSERC, Canada Research Chairs Program, Killam Researchvsdtrogram,
Fields Institute

Walter Craig (McMaster University) Normal formsfor water waves 4 May 2011 2/24



Outline

@ Two ODEs

Walter Craig (McMaster University) Normal formsfor water waves



Outline

@ Two ODEs

o Free surface water waves

Walter Craig (McMaster University) Normal formsfor water waves



Outline

@ Two ODEs
o Free surface water waves

o Birkhoff normal forms

Walter Craig (McMaster University) Normal formsfor water waves 4 May 2011 3/24



Outline

@ Two ODEs
o Free surface water waves
o Birkhoff normal forms

o Implications of the normal form

Walter Craig (McMaster University) Normal formsfor water waves 4 May 2011 3/24



Outline

@ Two ODEs

Free surface water waves

©

Birkhoff normal forms

©

©

Implications of the normal form

Possibilities in the KdV scaling limit
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Contrast two ODEs

o Quadratic case
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Contrast two ODEs

o Quadratic case

7=72, 2(0) =«
5 1
2 1—et’ T= B
@ Cubic case
w=w, w(0) =¢

g2 1
= T _—
w() \1—22° 2:2

@ The general time of existence does not change when these @DE a

replaced by
7=iwz+ 2, W= iww + w3
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Free surface water waves

@ Incompressible and irrotational flow
V-u=0, VAU=0
which is apotential flow
u=Vy, Ap=0, Ong =0 bottom BC

in the fluid domain-h <y < n(x,t), x¢c RI-1
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Free surface water waves

@ Incompressible and irrotational flow
V-u=0, VAU=0
which is apotential flow
u=Vy, Ap=0, Ong =0 bottom BC

in the fluid domain-h <y < n(x,t), x¢c RI-1

o Free surfaceonditions

Om = Oyp— Oxn-Oxp Kinetic BC
dp = —gn—3|Ve[? Bernoulli condition
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Zakharov's Hamiltonian

@ Theenergyfunctional

H = K+P

) 5 5
- //h LVl dydx+/gn dx
— X
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Zakharov's Hamiltonian

@ Theenergyfunctional

H = K+P
n(x)
= // %|V<p|2dydx+/%n2dx
—h X

o Zakharov's choice of variables
z:= (n(x),§(X) = p(x,n(x)))

Thatisy = ¢[n, £](x,Y)
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Zakharov's Hamiltonian

@ Theenergyfunctional

H = K+P
n(x)
= // %|V<p|2dydx+/%n2dx
—h X

o Zakharov's choice of variables
z:= (n(x),§(X) = p(x,n(x)))

Thatisy = ¢[n, £](x,Y)

o Expressed in terms of theirichlet — Neumann operatds(n)

Hn, &) = / LeG(n)é + 9 dx
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Dirichlet — Neumann operator

o Laplace’s equation on the fluid domairh < y < ()

E(X) — p(xy) = N - Vo (14 V)2 == G(n)é(x)
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Dirichlet — Neumann operator

o Laplace’s equation on the fluid domairh < y < ()

E(X) — p(xy) = N - Vo (14 V)2 == G(n)é(x)

@ In these coordinates

on = G(n)¢§ = gradH
& = —gn—gradK = —gradH

A calculation related to the variational formula of Hadachar
[College de France lectures (1911)(1916) on the Green'stion]
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Dirichlet — Neumann operator

o Laplace’s equation on the fluid domairh < y < ()

E(X) — p(xy) = N - Vo (14 V)2 == G(n)é(x)

@ In these coordinates

on = G(n)¢§ = gradH
& = —gn—gradK = —gradH

A calculation related to the variational formula of Hadachar
[College de France lectures (1911)(1916) on the Green'stion]
@ PDE in Hamiltonian form

Oiz=JgradH , J= <_0| é)

Darboux coordinates
4May2011  7/24



Hamiltonian PDEs

Other Hamiltonian partial differential equations

o Korteweg de Vries

_ 1 2 3 2
or = 8)((68XI’ + 2r )
L _ 1 2 1 3
J = Ox , HKd\/—/X lz(axl') +2r dx
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Hamiltonian PDEs

Other Hamiltonian partial differential equations

o Korteweg de Vries

_ 1 2 3 2
or = 8x(6axr + 2I’ )
L _ 1 2 1 3
J = Ox , HKd\/—/X lz(axl') +2r dx

@ shallow water equations
Boussinesq system
nonlinear Schrodinger equation (NLS), ...
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Lemma (properties of the Dirichlet - Neumann operator)
O G(n) >0andG(n)1=0
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Lemma (properties of the Dirichlet - Neumann operator)
@ G(n) >0andG(n)1=0
Q@ G(n)" = G(n) Hermetian symmetric
Q G(n) : Hf — LZ s analytic in for ;) € C*

G(n)¢ = GO¢ + GM(n)e + GA(n)¢ + ...

[using a theorem of Christ & Jou&n(1987)]
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Lemma (properties of the Dirichlet - Neumann operator)
@ G(n) >0andG(n)1=0
Q@ G(n)" = G(n) Hermetian symmetric
Q G(n) : Hf — LZ s analytic in for ;) € C*

G(n)¢ = GO¢ + GM(n)e + GA(n)¢ + ...

[using a theorem of Christ & Jou&n(1987)]
© SettingDy := —idy

GO¢ IDy| tanh(h|Dx|)¢
GW¢ = (Dx-nDyx—GO9GO)¢
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conservation laws
@ Mass M = [ndx

{M,H} = /graangrac%H—gradgMgradanx
= /1G(n)€dx
_ /G(n)lgdx:o
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conservation laws
@ Mass M = [ndx

{M,H}

/graan gradH — grad:M grad,H dx
= / 1G(n)¢ dx
_ /G(n)lg dx=0

e Momentum (1, &) = [ 0ok dx
{I,LH} =0

e Energy H(n,¢)
{H?H} =0
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Taylor expansion of the Hamiltonian
o From the analyticity of5(7)

H = HO4+H® 4 H®W 4

. /gG £+977dx+z /£G(m2 )€ dx

m>3
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Taylor expansion of the Hamiltonian
o From the analyticity of5(7)

H = H®+HO + H@W 4

. /gca §+gndx+z /5(3“"2 )€ dx

m>3

@ The linearized equations are

n 2
O <§> - Jgrad(n,g)H( )

namely
om = |Dyx|tanh(h|Dy|)¢
ag = —oy
A harmonic oscillator withfrequenciesv(k) = +/g|k| tanh(h|k])
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normal forms
Restrict our considerations to thie= 2 periodic casex ¢ R*/277Z! = T*

@ The frequencies are discreték) = ,/gktanh(hk), k € Z*
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normal forms
Restrict our considerations to thie= 2 periodic casex ¢ R*/277Z! = T*

@ The frequencies are discreték) = ,/gktanh(hk), k € Z*
@ Normal form- transform the equations to retain only essential

nonlinearities
n
T.Z= — W
(2)

in a neighborhoodg(0) C H'
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normal forms
Restrict our considerations to thie= 2 periodic casex ¢ R*/277Z! = T*

@ The frequencies are discreték) = ,/gktanh(hk), k € Z*
@ Normal form- transform the equations to retain only essential

nonlinearities
n
T.Z= — W
(2)

in a neighborhoodg(0) C H'
o Conditions:

@ The transformation is canonicalso the new equations are

ow=JgraH(w),  H(w) = H(r *(w))

@ The new Hamiltonian is
Hw) = HO W) 4 (2@ 4 - 4 2M) 4 TM+Y
where eacly (™ retains onlyresonanterms
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o In particular ifZ(® = 0 then the new equations will have no quadratic
nonlinear terms; the lowest order nonlinear terms will bieicu

@ This transformation procedure is called the reduction to
Birkhoff normal form
It is part of the theory of averaging for dynamical systems.
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Theorem (C. Sulem and WC (2009))

Letd = 2 (andh = +o0) and fixr > 3/2. There exist$xy > 0 such that for
anyR < Ry, on every neighborhooB(0) C H{7+1 X Hg the Birkhoff normal

forms transformation® is defined.

73 . Bgr(0) — Byr(0)
(r®)™ : Bgy2(0) — Br(0)

The result is thatv = 73 (2) transformsH () to
Hw) = H® (w) + 0+ T®(w)
A similar statement holds for> 5/2 in the case of positive surface tension

with however a possible nonzer6®. Furthermorer® is an analytic
diffeomorphism in this case.
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Theorem (C. Sulem and WC (2009))

Letd = 2 (andh = +o0) and fixr > 3/2. There exist$xy > 0 such that for
anyR < Ry, on every neighborhooB(0) C H{7+1 X Hg the Birkhoff normal

forms transformation® is defined.

73 . Bgr(0) — Byr(0)
(r®)™ : Bgy2(0) — Br(0)

The result is thatv = 73 (2) transformsH () to
Hw) = H® (w) + 0+ T®(w)
A similar statement holds for> 5/2 in the case of positive surface tension

with however a possible nonzer6®. Furthermorer® is an analytic
diffeomorphism in this case.

NB The transformation mixes the domajrand the potential variables
4May 2011  14/24



Outline of the proof

@ The transformation(®) is constructed as théne s = 1 flow of an
auxiliary Hamiltonian system.
Define complex symplectic coordinates

0)
20 = (g 100+ g €0

_ Z 7.6k

kez!
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Outline of the proof

o The transformation® is constructed as théne s = 1 flow of an
auxiliary Hamiltonian system.
Define complex symplectic coordinates

0)
20 = (g 109 +i{ S €0
_ szeikx

kezt

@ In these coordinates (dropping ‘hat’ notation)
Z ®a’+3 [ Y cp.a??
m>3 |p|+|gl=m
where|p| + |q| :== >, ps + g, = mand
A = H 2z}

LeZ
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Proposition
@ One can choose initial datay(x) = 7(x, 0) such thatVl = 277;(0) = 0
@ Unless(k,p — g) = 0the coefficients satisfy

C(pv q) =0

(conservation of momentum)
@ There are no nonzemn = 3 resonances. Indeed

w(kl) + w(kz) + w(kg) =0 and kl + k2 + k3 =0

impliesk, = 0 for some/ = 1,2, 3

The auxiliary Hamiltonian is determined by a cohomologegliation
(KO H@Y 4+ HO =0
to be solved foK (®. This is alinear equation
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o Tosolve{H®@ K®1 = HE for K, one
determines the elgenvalues of the operatty.) (-) := {H®, -},
These are precisely

+i(w(ke) + w(ke) + w(ks))

By the above propositiorgd, ) (-) has a formal inverse.
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e Tosolve{H®@ K&} = H® for K&, one
determines the elgenvalues of the operatty.) (-) := {H®, -},
These are precisely

+i(w(ke) + w(ke) + w(ks))

By the above propositiorgd, ) (-) has a formal inverse.

@ Question:Does the flowys(z) of the vector field exist, and on which
Banach spaces?

9z = X3 (2) = IgradK® (z) 1)
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e Tosolve{H®@ K&} = H® for K&, one

determines the elgenvalues of the operatdy., (-) := {H?, -}.
These are precisely

+i(w(ke) + w(ke) + w(ks))

By the above propositiorgd, ) (-) has a formal inverse.
@ Question:Does the flowys(z) of the vector field exist, and on which
Banach spaces?

9z = X3 (2) = IgradK® (z) (1)

Theorem (Main new technical result)
The system of equatioi(t)
(i) Satisfies good energy estimateshi;,’;‘iLl X Hg whenh = +oo forr > 3/2

(if) With nonzero surface tension it defines a locally Lipschector field on
HY x HEH, forr > 5/2
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Long time existence theorem
This next section describes our hopes for the Birkhoff ndfioran
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Long time existence theorem
This next section describes our hopes for the Birkhoff ndfioran

Theorem (work in progress)

Letd = 2 and consider the case of periodic data T*. There existy > 0
andeo > 0such that for initial data(7o, &) = 20 € H} x H§+1/2 = HS,
S> g ande < ep, satisfying

[2olls < e

then there exists a solutianx, t) = ¢1(7p) to the equations for surface wate
waves for allt € [-C/?, C/=?], satisfying

12, B)llmg < 4e
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Long time existence theorem
This next section describes our hopes for the Birkhoff ndfioran

Theorem (work in progress)

Letd = 2 and consider the case of periodic data T*. There existy > 0
andeo > 0such that for initial data(7o, &) = 20 € H} x HEH/Z = HS,
S> g ande < ep, satisfying

[2olls < e

then there exists a solutianx, t) = ¢1(7p) to the equations for surface wate
waves for allt € [-C/?, C/=?], satisfying

12, B)llmg < 4e

This is to be compared with other recent work in the caseR41 for
noncompact regions.
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Recent work o941

Theorem (S. Wu (2009))

For d = 2, there existg > 0 such that given Sobolev data

Il(n0,&0)||Hs = € < 0 then solutions exist over exponentially long time
intervals

It < C1e%/°

v

@ The proof uses the property bf° time decay for the linear equations,
following work of J. Shatah on the nonlinear Klein - Gordomation

Walter Craig (McMaster University) Normal formsfor water waves 4 May 2011 19/24



Recent work o941

Theorem (S. Wu (2009))

For d = 2, there existg > 0 such that given Sobolev data

(0, €0)|lns = € < o then solutions exist over exponentially long time
intervals

It| < C,%2/¢

4

@ The proof uses the property bf® time decay for the linear equations,
following work of J. Shatah on the nonlinear Klein - Gordomation

Theorem (P. Germain, N. Masmoudi & J. Shatah (2009))

For d = 3, there existg > 0 such that given Sobolev data
(10, 0)||ns < & < £o then solutions exist globally in time.

@ The proof uses a different method, which however is agaaiedlto
averaging theorpf dynamical systems
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Analysis of the modulational regime

o We intend to use this newly wdnng-time existenct¢heory to address
the modulational scaling regime of the water wave problem.
Question:[C. Sulem, P.-L. Sulem & C. (1992), plus present work]
Solutions of the water waves problem in modulational form

20(x) = (10, %0)(X)
= ecogkox)(N(ex), Z(ex))

converge to solutions of the cubic nonlinear Schrodinggragéion
i0rZ(Y,T) = w(ko)95Z — c(ko)|Z|?Z

whereY = =(x — dw(ko)t) andT = 2t. The time interval of
convergence is

TI~0@1), e [t~/
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Analysis of the modulational regime

o We intend to use this newly wdnng-time existenct¢heory to address
the modulational scaling regime of the water wave problem.
Question:[C. Sulem, P.-L. Sulem & C. (1992), plus present work]
Solutions of the water waves problem in modulational form

20(x) = (10, %0)(X)
= ecogkox)(N(ex), Z(ex))

converge to solutions of the cubic nonlinear Schrodinggragéion
i0rZ(Y,T) = w(ko)95Z — c(ko)|Z|?Z

whereY = =(x — dw(ko)t) andT = 2t. The time interval of
convergence is

TI~0@1), e [t~/

o References: Guido Schnieder & Eugene Wayne, Nathan Totjug 8Vu
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The KdV scaling regime
Return to the KdV equation

1 1
orr = —0x gradHkav(r) , Hkav = /—1—2(8xr)2 + Erde

Question:How this emerges as a model equation for water waves.
Thescaling regime

X = &X, eDx = Dy

§ — e, e
The Dirichlet — Neumann operator will behave as follows

1
eDyx tanh(ehDy) ~ £?hD% + 654h3D§‘( + 0(°DY)

Transform thesymplectic structure

(o) s (%5 9)
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@ On the level of the Hamiltonian functional for water waves
1 h3

2
ok ax+ / D2 dX -+ O(e%)
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@ On the level of the Hamiltonian functional for water waves
1 h3

2
ok ax+ / D2 dX -+ O(e%)

2

@ Transform to a moving reference frame using the momentuegiat
[ nudX

H—\/ghl = % / (ﬁu—\/gn)zdxf—; / (—hg(c‘)xu)ernuz) dX+0(4)
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@ On the level of the Hamiltonian functional for water waves
1 h3
H= z/huz—l-g?]z—gz—

2
ok ax+ / D2 dX -+ O(e%)

2

@ Transform to a moving reference frame using the momentuegiat
[ nudX

H—\/ghl = % / (\/ﬁu—\/@n)zdx+€—22 / (—hg(axu)%nuz) dX+0(4)

@ TheKdV descriptionis valid in the region of phase space in which
(vVhu— \/gn) ~ o(e). In this regionu = /g/h7 + o(<), thus

2 H
H = Vet = 5 [ (- %5 @a? + 2) ax+ o

Settingr = gi?y this gives the KdV Hamiltonian up to constants.
4May 2011 22/24



A ‘derivation’ of complete integrability

o Perform the above sequence of transformations on the Bfrkbamal
form 76(3) for water waves.

The limite — 0 before the normal forms transformation

H—\/ghl = H®4+HO 4 T®
1 2 1 3
/—l—z(axr) +§r dX+0
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A ‘derivation’ of complete integrability

o Perform the above sequence of transformations on the Bfrkbamal
form 75(3) for water waves.

The limite — 0 before the normal forms transformation

H—\/ghl = H®4+HO 4 T®
1 2 1 3
/—l—z(axr) +§r dX+0

o After the normal forms transformation
<H - \/ghl) o(r®)1 = H@ L 04+T®

1
/—1—2(8><R)2+ 0
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A ‘derivation’ of complete integrability
o Perform the above sequence of transformations on the Bfrkbamal

form 75(3) for water waves.
The limite — 0 before the normal forms transformation

H—\/ghl = H®4+HO 4 T®
1 2 1 3
/—l—z(axr) +§r dX+0

o After the normal forms transformation
(H - \/ghl) o(r®Y1 = H@ 410+T@

1
— — (O«R)?
/ 3 xR)°+0
o It appears that the limit of the Birkhoff normal forms tramshation
im 19 1= 7§

maps the KdV to a linear equation.
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Thank you
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