Birkhoff Normal forms for the problem of water waves

Walter Craig

Department of Mathematics & Statistics

Workshop on Wave Breaking and Global Solutions in the Short-Pulse Dispersive Equations Fields Institute 4 May 2011

Joint work with:

Catherine Sulem

University of Toronto

along with

Alessandro Selvitella Yun Wang McMaster University McMaster University

Acknowledgements:

NSERC, Canada Research Chairs Program, Killam Research Fellows Program, Fields Institute

- Two ODEs
- Free surface water waves
- Birkhoff normal forms
- Implications of the normal form
- Possibilities in the KdV scaling limit

- Two ODEs
- Free surface water waves
- Birkhoff normal forms
- Implications of the normal form
- Possibilities in the KdV scaling limit

- Two ODEs
- Free surface water waves
- Birkhoff normal forms
- Implications of the normal form
- Possibilities in the KdV scaling limit

- Two ODEs
- Free surface water waves
- Birkhoff normal forms
- Implications of the normal form
- Possibilities in the KdV scaling limit

- Two ODEs
- Free surface water waves
- Birkhoff normal forms
- Implications of the normal form
- Possibilities in the KdV scaling limit

Contrast two ODEs

Quadratic case

$$\dot{z} = z^2$$
, $z(0) = \varepsilon$
 $z(t) = \frac{\varepsilon}{1 - \varepsilon t}$, $T = \frac{1}{\varepsilon}$

Cubic case

$$\dot{w} = w^3$$
, $w(0) = \varepsilon$
 $w(t) = \sqrt{\frac{\varepsilon^2}{1 - 2\varepsilon^2 t}}$, $T = \frac{1}{2\varepsilon^2}$

 The general time of existence does not change when these ODE are replaced by

$$\dot{z} = i\omega z + z^2 \;, \qquad \dot{w} = i\omega w + w^3$$

Contrast two ODEs

Quadratic case

$$\dot{z} = z^2$$
, $z(0) = \varepsilon$
 $z(t) = \frac{\varepsilon}{1 - \varepsilon t}$, $z(0) = \varepsilon$

Cubic case

$$\dot{w} = w^3$$
, $w(0) = \varepsilon$
 $w(t) = \sqrt{\frac{\varepsilon^2}{1 - 2\varepsilon^2 t}}$, $T = \frac{1}{2\varepsilon^2}$

 The general time of existence does not change when these ODE are replaced by

$$\dot{z} = i\omega z + z^2 , \qquad \dot{w} = i\omega w + w^3$$

Contrast two ODEs

Quadratic case

$$\dot{z} = z^2 \; , \qquad z(0) = \varepsilon$$
 $z(t) = \frac{\varepsilon}{1 - \varepsilon t} \; , \qquad T = \frac{1}{\varepsilon}$

Cubic case

$$\dot{w} = w^3$$
, $w(0) = \varepsilon$
 $w(t) = \sqrt{\frac{\varepsilon^2}{1 - 2\varepsilon^2 t}}$, $T = \frac{1}{2\varepsilon^2}$

• The general time of existence does not change when these ODE are replaced by

$$\dot{z} = i\omega z + z^2 , \qquad \dot{w} = i\omega w + w^3$$

Free surface water waves

• Incompressible and irrotational flow

$$\nabla \cdot u = 0$$
, $\nabla \wedge u = 0$

which is a potential flow

$$u=\nabla\varphi\;,\quad \Delta\varphi=0\;,\qquad \partial_N\varphi=0\qquad \text{bottom BC}$$
 in the fluid domain $-h< y<\eta(x,t),\quad x\in\mathbb{R}^{d-1}$

Free surface conditions

$$\partial_t \eta = \partial_y \varphi - \partial_x \eta \cdot \partial_x \varphi$$
 kinetic BC
 $\partial_t \varphi = -g\eta - \frac{1}{2} |\nabla \varphi|^2$ Bernoulli condition

Free surface water waves

• Incompressible and irrotational flow

$$\nabla \cdot u = 0$$
, $\nabla \wedge u = 0$

which is a potential flow

$$u = \nabla \varphi$$
, $\Delta \varphi = 0$, $\partial_N \varphi = 0$ bottom BC

in the fluid domain $-h < y < \eta(x,t)$, $x \in \mathbb{R}^{d-1}$

Free surface conditions

$$\partial_t \eta = \partial_y \varphi - \partial_x \eta \cdot \partial_x \varphi$$
 kinetic BC
 $\partial_t \varphi = -g\eta - \frac{1}{2} |\nabla \varphi|^2$ Bernoulli condition

Zakharov's Hamiltonian

• The energy functional

$$H = K + P$$

$$= \int \int_{-h}^{\eta(x)} \frac{1}{2} |\nabla \varphi|^2 \, dy dx + \int_{x} \frac{g}{2} \eta^2 \, dx$$

Zakharov's choice of variables

$$z := (\eta(x), \xi(x) = \varphi(x, \eta(x)))$$

That is $\varphi = \varphi[\eta, \xi](x, y)$

• Expressed in terms of the Dirichlet – Neumann operator $G(\eta)$

$$H(\eta,\xi) = \int \frac{1}{2} \xi G(\eta) \xi + \frac{g}{2} \eta^2 dx$$

Zakharov's Hamiltonian

• The energy functional

$$H = K + P$$

$$= \int \int_{-h}^{\eta(x)} \frac{1}{2} |\nabla \varphi|^2 \, dy dx + \int_{x} \frac{g}{2} \eta^2 \, dx$$

Zakharov's choice of variables

$$z := (\eta(x), \xi(x) = \varphi(x, \eta(x)))$$

That is $\varphi = \varphi[\eta, \xi](x, y)$

• Expressed in terms of the Dirichlet – Neumann operator $G(\eta)$

$$H(\eta,\xi) = \int \frac{1}{2} \xi G(\eta) \xi + \frac{g}{2} \eta^2 dx$$

Zakharov's Hamiltonian

• The energy functional

$$H = K + P$$

$$= \int \int_{-h}^{\eta(x)} \frac{1}{2} |\nabla \varphi|^2 \, dy dx + \int_{x} \frac{g}{2} \eta^2 \, dx$$

Zakharov's choice of variables

$$z := (\eta(x), \xi(x) = \varphi(x, \eta(x)))$$

That is $\varphi = \varphi[\eta, \xi](x, y)$

• Expressed in terms of the Dirichlet – Neumann operator $G(\eta)$

$$H(\eta,\xi) = \int \frac{1}{2} \xi G(\eta) \xi + \frac{g}{2} \eta^2 dx$$

Dirichlet - Neumann operator

• Laplace's equation on the fluid domain $-h < y < \eta(x)$

$$\xi(x) \mapsto \varphi(x, y) \mapsto N \cdot \nabla \varphi (1 + |\nabla_x \eta|^2)^{1/2} := \mathbf{G}(\eta) \xi(x)$$

In these coordinates

$$\partial_t \eta = G(\eta)\xi = \operatorname{grad}_{\xi} H$$

 $\partial_t \xi = -g\eta - \operatorname{grad}_{\eta} K = -\operatorname{grad}_{\eta} H$

A calculation related to the variational formula of Hadamard [Collège de France lectures (1911)(1916) on the Green's function

PDE in Hamiltonian form

$$\partial_t z = J \operatorname{grad}_z H$$
, $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$

Darboux coordinates

Dirichlet - Neumann operator

• Laplace's equation on the fluid domain $-h < y < \eta(x)$

$$\xi(x) \mapsto \varphi(x,y) \mapsto N \cdot \nabla \varphi (1 + |\nabla_x \eta|^2)^{1/2} := G(\eta) \xi(x)$$

In these coordinates

$$\partial_t \eta = G(\eta)\xi = \operatorname{grad}_{\xi} H$$

 $\partial_t \xi = -g\eta - \operatorname{grad}_{\eta} K = -\operatorname{grad}_{\eta} H$

A calculation related to the variational formula of Hadamard [Collège de France lectures (1911)(1916) on the Green's function]

PDE in Hamiltonian form

$$\partial_t z = J \operatorname{grad}_z H$$
, $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$

Darboux coordinates

Dirichlet - Neumann operator

• Laplace's equation on the fluid domain $-h < y < \eta(x)$

$$\xi(x) \mapsto \varphi(x,y) \mapsto N \cdot \nabla \varphi (1 + |\nabla_x \eta|^2)^{1/2} := G(\eta) \xi(x)$$

• In these coordinates

$$\begin{array}{lcl} \partial_t \eta & = & G(\eta) \xi = \operatorname{grad}_{\xi} H \\ \partial_t \xi & = & -g \eta - \operatorname{grad}_{\eta} K = -\operatorname{grad}_{\eta} H \end{array}$$

A calculation related to the variational formula of Hadamard [Collège de France lectures (1911)(1916) on the Green's function]

PDE in Hamiltonian form

$$\partial_t z = J \operatorname{grad}_z H$$
, $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$

Darboux coordinates

Hamiltonian PDEs

Other Hamiltonian partial differential equations

Korteweg de Vries

$$\partial_t r = -\partial_x \left(\frac{1}{6}\partial_x^2 r + \frac{3}{2}r^2\right)$$

$$J := -\partial_x , \qquad H_{KdV} = \int_x -\frac{1}{12}(\partial_x r)^2 + \frac{1}{2}r^3 dx$$

shallow water equations
 Boussinesq system
 nonlinear Schrödinger equation (NLS), ...

Hamiltonian PDEs

Other Hamiltonian partial differential equations

Korteweg de Vries

$$\partial_t r = -\partial_x \left(\frac{1}{6}\partial_x^2 r + \frac{3}{2}r^2\right)$$

$$J := -\partial_x , \qquad H_{KdV} = \int_x -\frac{1}{12}(\partial_x r)^2 + \frac{1}{2}r^3 dx$$

shallow water equations
 Boussinesq system
 nonlinear Schrödinger equation (NLS), ...

- **1** $G(\eta) \ge 0$ *and* $G(\eta)1 = 0$
- 2 $G(\eta)^* = G(\eta)$ Hermetian symmetric

$$G(\eta)\xi = G^{(0)}\xi + G^{(1)}(\eta)\xi + G^{(2)}(\eta)\xi + \dots$$

[using a theorem of Christ & Journé (1987)]

$$G^{(0)}\xi = |D_x| \tanh(h|D_x|)\xi$$

$$G^{(1)}\xi = (D_x \cdot \eta D_x - G^{(0)} \eta G^{(0)})\xi$$

- **1** $G(\eta) \ge 0$ and $G(\eta)1 = 0$
- **2** $G(\eta)^* = G(\eta)$ Hermetian symmetric

$$G(\eta)\xi = G^{(0)}\xi + G^{(1)}(\eta)\xi + G^{(2)}(\eta)\xi + \dots$$

[using a theorem of Christ & Journé (1987)]

$$G^{(0)}\xi = |D_x| \tanh(h|D_x|)\xi$$

$$G^{(1)}\xi = (D_x \cdot \eta D_x - G^{(0)} \eta G^{(0)})\xi$$

- **1** $G(\eta) \ge 0$ and $G(\eta)1 = 0$
- **2** $G(\eta)^* = G(\eta)$ Hermetian symmetric

$$G(\eta)\xi = G^{(0)}\xi + G^{(1)}(\eta)\xi + G^{(2)}(\eta)\xi + \dots$$

[using a theorem of Christ & Journé (1987)]

$$G^{(0)}\xi = |D_x| \tanh(h|D_x|)\xi$$

$$G^{(1)}\xi = (D_x \cdot \eta D_x - G^{(0)} \eta G^{(0)})\xi$$

- **1** $G(\eta) \ge 0$ and $G(\eta)1 = 0$
- **2** $G(\eta)^* = G(\eta)$ Hermetian symmetric

$$G(\eta)\xi = G^{(0)}\xi + G^{(1)}(\eta)\xi + G^{(2)}(\eta)\xi + \dots$$

[using a theorem of Christ & Journé (1987)]

$$G^{(0)}\xi = |D_x| \tanh(h|D_x|)\xi$$

$$G^{(1)}\xi = (D_x \cdot \eta D_x - G^{(0)} \eta G^{(0)})\xi$$

conservation laws

• Mass $M = \int \eta \, dx$

$$\begin{cases} M, H \end{cases} &= \int \operatorname{grad}_{\eta} M \operatorname{grad}_{\xi} H - \operatorname{grad}_{\xi} M \operatorname{grad}_{\eta} H \, dx$$

$$&= \int \operatorname{I} G(\eta) \xi \, dx$$

$$&= \int G(\eta) \operatorname{I} \xi \, dx = 0$$

• Momentum $I(\eta, \xi) = \int \eta \partial_x \xi \, dx$

• Energy
$$H(\eta, \xi)$$

$$\{H,H\}=0$$

conservation laws

• Mass $M = \int \eta \, dx$

$$\left\{ \begin{aligned} \{M,H\} &=& \int \operatorname{grad}_{\eta} M \operatorname{grad}_{\xi} H - \operatorname{grad}_{\xi} M \operatorname{grad}_{\eta} H \, dx \\ \\ &=& \int \operatorname{I} G(\eta) \xi \, dx \\ \\ &=& \int G(\eta) \operatorname{I} \xi \, dx = 0 \end{aligned}$$

- Momentum $I(\eta,\xi) = \int \eta \partial_x \xi \, dx$ $\{I,H\} = 0$

Taylor expansion of the Hamiltonian

• From the analyticity of $G(\eta)$

$$H = H^{(2)} + H^{(3)} + H^{(4)} + \dots$$

= $\frac{1}{2} \int \xi G^{(0)} \xi + g \eta^2 dx + \sum_{m \ge 3} \frac{1}{2} \int \xi G^{(m-2)}(\eta) \xi dx$

• The linearized equations are

$$\partial_t egin{pmatrix} \eta \ \xi \end{pmatrix} = J \operatorname{grad}_{(\eta, \xi)} H^{(2)}$$

namely

$$\partial_t \eta = |D_x| \tanh(h|D_x|) \xi$$

 $\partial_t \xi = -g \eta$

A harmonic oscillator with frequencies $\omega(k) = \sqrt{g|k|}\tanh(h|k|)$

Taylor expansion of the Hamiltonian

• From the analyticity of $G(\eta)$

$$H = H^{(2)} + H^{(3)} + H^{(4)} + \dots$$

= $\frac{1}{2} \int \xi G^{(0)} \xi + g \eta^2 dx + \sum_{m \ge 3} \frac{1}{2} \int \xi G^{(m-2)}(\eta) \xi dx$

• The linearized equations are

$$\partial_t \begin{pmatrix} \eta \\ \xi \end{pmatrix} = J \operatorname{grad}_{(\eta,\xi)} H^{(2)}$$

namely

$$\partial_t \eta = |D_x| \tanh(h|D_x|) \xi$$

 $\partial_t \xi = -g \eta$

A harmonic oscillator with frequencies $\omega(k) = \sqrt{g|k| \tanh(h|k|)}$

normal forms

Restrict our considerations to the d=2 periodic case; $x \in \mathbb{R}^1/2\pi\mathbb{Z}^1=\mathbb{T}^1$

- The frequencies are discrete $\omega(k) = \sqrt{gk \tanh(hk)}, k \in \mathbb{Z}^1$
- Normal form transform the equations to retain only essential nonlinearities

$$\tau: z = \begin{pmatrix} \eta \\ \xi \end{pmatrix} \mapsto w$$

in a neighborhood $B_R(0) \subseteq H^r$

- Conditions:
 - ① The transformation τ is canonical, so the new equations are

$$\partial_t w = J \operatorname{grad} \widetilde{H}(w) , \qquad \widetilde{H}(w) = H(\tau^{-1}(w))$$

The new Hamiltonian is

$$\widetilde{H}(w) = H^{(2)}(w) + (Z^{(3)} + \dots + Z^{(M)}) + \widetilde{T}^{(M+1)}$$

where each $Z^{(m)}$ retains only resonant terms

normal forms

Restrict our considerations to the d=2 periodic case; $x \in \mathbb{R}^1/2\pi\mathbb{Z}^1=\mathbb{T}^1$

- The frequencies are discrete $\omega(k) = \sqrt{gk \tanh(hk)}$, $k \in \mathbb{Z}^1$
- Normal form transform the equations to retain only essential nonlinearities

$$\tau: z = \begin{pmatrix} \eta \\ \xi \end{pmatrix} \mapsto w$$

in a neighborhood $B_R(0) \subseteq H^r$

- Conditions:
 - ① The transformation τ is canonical, so the new equations are

$$\partial_t w = J \operatorname{grad} \widetilde{H}(w) , \qquad \widetilde{H}(w) = H(\tau^{-1}(w))$$

The new Hamiltonian is

$$\widetilde{H}(w) = H^{(2)}(w) + (Z^{(3)} + \dots + Z^{(M)}) + \widetilde{T}^{(M+1)}$$

where each $Z^{(m)}$ retains only resonant terms

normal forms

Restrict our considerations to the d=2 periodic case; $x \in \mathbb{R}^1/2\pi\mathbb{Z}^1=\mathbb{T}^1$

- The frequencies are discrete $\omega(k) = \sqrt{gk \tanh(hk)}$, $k \in \mathbb{Z}^1$
- Normal form transform the equations to retain only essential nonlinearities

$$\tau: z = \begin{pmatrix} \eta \\ \xi \end{pmatrix} \mapsto w$$

in a neighborhood $B_R(0) \subseteq H^r$

- Conditions:
 - 1 The transformation τ is canonical, so the new equations are

$$\partial_t w = J \operatorname{grad} \widetilde{H}(w) , \qquad \widetilde{H}(w) = H(\tau^{-1}(w))$$

2 The new Hamiltonian is

$$\widetilde{H}(w) = H^{(2)}(w) + (Z^{(3)} + \dots + Z^{(M)}) + \widetilde{T}^{(M+1)}$$

where each $Z^{(m)}$ retains only resonant terms

• In particular if $Z^{(3)} = 0$ then the new equations will have no quadratic nonlinear terms; the lowest order nonlinear terms will be cubic.

• This transformation procedure is called the reduction to Birkhoff normal form.

It is part of the theory of averaging for dynamical systems.

Theorem (C. Sulem and WC (2009))

Let d=2 (and $h=+\infty$) and fix r>3/2. There exists $R_0>0$ such that for any $R< R_0$, on every neighborhood $B_R(0)\subseteq H^{r+1}_\eta\times H^r_\xi$ the Birkhoff normal forms transformation $\tau^{(3)}$ is defined.

$$au^{(3)}: B_R(0) \to B_{2R}(0) \ (au^{(3)})^{-1}: B_{R/2}(0) \to B_R(0)$$

The result is that $w = \tau^{(3)}(z)$ transforms H(z) to

$$\widetilde{H}(w) = H^{(2)}(w) + 0 + \widetilde{T}^{(4)}(w)$$

A similar statement holds for r > 5/2 in the case of positive surface tension, with however a possible nonzero $Z^{(3)}$. Furthermore $\tau^{(3)}$ is an analytic diffeomorphism in this case.

NB The transformation mixes the domain η and the potential variables ξ .

Theorem (C. Sulem and WC (2009))

Let d=2 (and $h=+\infty$) and fix r>3/2. There exists $R_0>0$ such that for any $R< R_0$, on every neighborhood $B_R(0)\subseteq H^{r+1}_\eta\times H^r_\xi$ the Birkhoff normal forms transformation $\tau^{(3)}$ is defined.

$$au^{(3)}: B_R(0) \to B_{2R}(0) \ (au^{(3)})^{-1}: B_{R/2}(0) \to B_R(0)$$

The result is that $w = \tau^{(3)}(z)$ transforms H(z) to

$$\widetilde{H}(w) = H^{(2)}(w) + 0 + \widetilde{T}^{(4)}(w)$$

A similar statement holds for r > 5/2 in the case of positive surface tension, with however a possible nonzero $Z^{(3)}$. Furthermore $\tau^{(3)}$ is an analytic diffeomorphism in this case.

NB The transformation mixes the domain η and the potential variables ξ .

Outline of the proof

• The transformation $\tau^{(3)}$ is constructed as the time s=1 flow of an auxiliary Hamiltonian system.

Define complex symplectic coordinates

$$z(x) = \sqrt[4]{\frac{g}{4G^{(0)}(D_x)}} \eta(x) + i\sqrt[4]{\frac{G^{(0)}(D_x)}{4g}} \xi(x)$$
$$= \sum_{k \in \mathbb{Z}^1} \hat{z}_k e^{ikx}$$

• In these coordinates (dropping 'hat' notation)

$$H = \sum_{k} \omega(k) |z_k|^2 + \sum_{m \ge 3} \left[\sum_{|p|+|q|=m} c(p,q) z^p \overline{z}^q \right]$$

where
$$|p| + |q| := \sum_{\ell} p_{\ell} + q_{\ell} = m$$
 and

$$z^p \overline{z}^q := \prod_{\ell \in \mathbb{Z}} z_\ell^{p_\ell} \overline{z}_\ell^{q_\ell}$$

Outline of the proof

• The transformation $\tau^{(3)}$ is constructed as the time s=1 flow of an auxiliary Hamiltonian system. Define complex symplectic coordinates

$$z(x) = \sqrt[4]{\frac{g}{4G^{(0)}(D_x)}} \eta(x) + i\sqrt[4]{\frac{G^{(0)}(D_x)}{4g}} \xi(x)$$
$$= \sum_{k \in \mathbb{Z}^1} \hat{z}_k e^{ikx}$$

• In these coordinates (dropping 'hat' notation)

$$H = \sum_{k} \omega(k) |z_{k}|^{2} + \sum_{m \geq 3} \left[\sum_{|p|+|q|=m} c(p,q) z^{p} \overline{z}^{q} \right]$$

where
$$|p| + |q| := \sum_{\ell} p_{\ell} + q_{\ell} = m$$
 and

$$z^p \overline{z}^q := \prod_{\ell \in \mathbb{Z}} z_\ell^{p_\ell} \overline{z}_\ell^{q_\ell}$$

Proposition

- One can choose initial data $\eta_0(x) = \eta(x,0)$ such that $M = 2\pi \hat{\eta}(0) = 0$
- Unless $\langle k, p q \rangle = 0$ the coefficients satisfy

$$c(p,q) = 0$$

(conservation of momentum)

• There are no nonzero m = 3 resonances. Indeed

$$\omega(k_1) \pm \omega(k_2) \pm \omega(k_3) = 0$$
 and $k_1 \pm k_2 \pm k_3 = 0$

implies $k_{\ell} = 0$ *for some* $\ell = 1, 2, 3$

The auxiliary Hamiltonian is determined by a cohomological equation

$${K^{(3)}, H^{(2)}} + H^{(3)} = 0$$

to be solved for $K^{(3)}$. This is a linear equation

• To solve $\{H^{(2)},K^{(3)}\}=H^{(3)}$ for $K^{(3)}$, one determines the eigenvalues of the operator $ad_{H^{(2)}}(\cdot):=\{H^{(2)},\cdot\}$. These are precisely

$$\pm i(\omega(k_1) \pm \omega(k_2) \pm \omega(k_3))$$

By the above proposition, $ad_{H^{(2)}}(\cdot)$ has a formal inverse.

• Question: Does the flow $\varphi_s(z)$ of the vector field exist, and on which Banach spaces?

$$\partial_s z = X_{K^{(3)}}(z) = J \operatorname{grad}_z K^{(3)}(z) \tag{1}$$

Theorem (Main new technical result)

The system of equations (1)

- (i) Satisfies good energy estimates on $H^{r+1}_{\eta} \times H^r_{\xi}$ when $h = +\infty$ for r > 3/2
- (ii) With nonzero surface tension it defines a locally Lipschitz vector field on $H^r \times H^{r+1}$ for r > 5/2

• To solve $\{H^{(2)},K^{(3)}\}=H^{(3)}$ for $K^{(3)}$, one determines the eigenvalues of the operator $ad_{H^{(2)}}(\cdot):=\{H^{(2)},\cdot\}$. These are precisely

$$\pm i(\omega(k_1) \pm \omega(k_2) \pm \omega(k_3))$$

By the above proposition, $ad_{H^{(2)}}(\cdot)$ has a formal inverse.

• Question: Does the flow $\varphi_s(z)$ of the vector field exist, and on which Banach spaces?

$$\partial_s z = X_{K^{(3)}}(z) = J \operatorname{grad}_z K^{(3)}(z)$$
 (1)

Theorem (Main new technical result)

The system of equations (1)

(i) Satisfies good energy estimates on $H_{\eta}^{r+1} \times H_{\xi}^{r}$ when $h = +\infty$ for r > 3/2

 $H_n^r \times H_\varepsilon^{r+1}$, for r > 5/2

• To solve $\{H^{(2)},K^{(3)}\}=H^{(3)}$ for $K^{(3)}$, one determines the eigenvalues of the operator $ad_{H^{(2)}}(\cdot):=\{H^{(2)},\cdot\}$. These are precisely

$$\pm i(\omega(k_1) \pm \omega(k_2) \pm \omega(k_3))$$

By the above proposition, $ad_{H^{(2)}}(\cdot)$ has a formal inverse.

• Question: Does the flow $\varphi_s(z)$ of the vector field exist, and on which Banach spaces?

$$\partial_s z = X_{K^{(3)}}(z) = J \operatorname{grad}_z K^{(3)}(z) \tag{1}$$

Theorem (Main new technical result)

The system of equations (1)

- (i) Satisfies good energy estimates on $H_{\eta}^{r+1} \times H_{\xi}^{r}$ when $h = +\infty$ for r > 3/2
- (ii) With nonzero surface tension it defines a locally Lipschitz vector field on $H_n^r \times H_{\varepsilon}^{r+1}$, for r > 5/2

Long time existence theorem

This next section describes our hopes for the Birkhoff normal form

Theorem (work in progress)

Let d=2 and consider the case of periodic data $x \in \mathbb{T}^1$. There exist $s_0 > 0$ and $\varepsilon_0 > 0$ such that for initial data $(\eta_0, \xi_0) = z_0 \in H^s_\eta \times H^{s+1/2}_\xi := H^s_*$, $s > s_0$ and $\varepsilon < \varepsilon_0$, satisfying

$$||z_0||_{H^s_*}<\varepsilon$$

then there exists a solution $z(x,t) = \varphi_t(z_0)$ to the equations for surface water waves for all $t \in [-C/\varepsilon^2, C/\varepsilon^2]$, satisfying

$$||z(\cdot,t)||_{H_*^s}<4\varepsilon$$

This is to be compared with other recent work in the case $x \in \mathbb{R}^{d-1}$, for noncompact regions.

Long time existence theorem

This next section describes our hopes for the Birkhoff normal form

Theorem (work in progress)

Let d=2 and consider the case of periodic data $x \in \mathbb{T}^1$. There exist $s_0 > 0$ and $\varepsilon_0 > 0$ such that for initial data $(\eta_0, \xi_0) = z_0 \in H^s_\eta \times H^{s+1/2}_\xi := H^s_*$, $s > s_0$ and $\varepsilon < \varepsilon_0$, satisfying

$$||z_0||_{H^s_*}<\varepsilon$$

then there exists a solution $z(x,t) = \varphi_t(z_0)$ to the equations for surface water waves for all $t \in [-C/\varepsilon^2, C/\varepsilon^2]$, satisfying

$$||z(\cdot,t)||_{H^s_*} < 4\varepsilon$$

This is to be compared with other recent work in the case $x \in \mathbb{R}^{d-1}$, for noncompact regions.

Long time existence theorem

This next section describes our hopes for the Birkhoff normal form

Theorem (work in progress)

Let d=2 and consider the case of periodic data $x \in \mathbb{T}^1$. There exist $s_0 > 0$ and $\varepsilon_0 > 0$ such that for initial data $(\eta_0, \xi_0) = z_0 \in H^s_\eta \times H^{s+1/2}_\xi := H^s_*$, $s > s_0$ and $\varepsilon < \varepsilon_0$, satisfying

$$||z_0||_{H^s_*}<\varepsilon$$

then there exists a solution $z(x,t) = \varphi_t(z_0)$ to the equations for surface water waves for all $t \in [-C/\varepsilon^2, C/\varepsilon^2]$, satisfying

$$||z(\cdot,t)||_{H^s_*} < 4\varepsilon$$

This is to be compared with other recent work in the case $x \in \mathbb{R}^{d-1}$, for noncompact regions.

Recent work on \mathbb{R}^{d-1}

Theorem (S. Wu (2009))

For d = 2, there exists $\varepsilon_0 > 0$ such that given Sobolev data $\|(\eta_0, \xi_0)\|_{H^s_*} = \varepsilon < \varepsilon_0$ then solutions exist over exponentially long time intervals

$$|t| < C_1 e^{C_2/\varepsilon}$$

• The proof uses the property of L^{∞} time decay for the linear equations, following work of J. Shatah on the nonlinear Klein - Gordon equation

Theorem (P. Germain, N. Masmoudi & J. Shatah (2009)) For d = 3, there exists $\varepsilon_0 > 0$ such that given Sobolev data $\|(\eta_0, \xi_0)\|_{H^s_*} < \varepsilon < \varepsilon_0$ then solutions exist globally in time.

• The proof uses a different method, which however is again related to averaging theory of dynamical systems

Recent work on \mathbb{R}^{d-1}

Theorem (S. Wu (2009))

For d = 2, there exists $\varepsilon_0 > 0$ such that given Sobolev data $\|(\eta_0, \xi_0)\|_{H^s_*} = \varepsilon < \varepsilon_0$ then solutions exist over exponentially long time intervals

$$|t| < C_1 e^{C_2/\varepsilon}$$

• The proof uses the property of L^{∞} time decay for the linear equations, following work of J. Shatah on the nonlinear Klein - Gordon equation

Theorem (P. Germain, N. Masmoudi & J. Shatah (2009))

For d = 3, there exists $\varepsilon_0 > 0$ such that given Sobolev data $\|(\eta_0, \xi_0)\|_{H^s_*} < \varepsilon < \varepsilon_0$ then solutions exist globally in time.

• The proof uses a different method, which however is again related to averaging theory of dynamical systems

Analysis of the modulational regime

We intend to use this newly won long-time existence theory to address
the modulational scaling regime of the water wave problem.
 Question: [C. Sulem, P.-L. Sulem & C. (1992), plus present work]
 Solutions of the water waves problem in modulational form

$$z_0(x) = (\eta_0, \xi_0)(x)$$

= $\varepsilon \cos(k_0 x)(N(\varepsilon x), \Xi(\varepsilon x))$

converge to solutions of the cubic nonlinear Schrödinger equation

$$i\partial_T Z(Y,T) = \partial_k^2 \omega(k_0) \partial_Y^2 Z - c(k_0) |Z|^2 Z$$

where $Y = \varepsilon(x - \partial_k \omega(k_o)t)$ and $T = \varepsilon^2 t$. The time interval of convergence is

$$|T| \sim \mathcal{O}(1)$$
, i.e. $|t| \sim \mathcal{O}(1/\varepsilon^2)$

• References: Guido Schnieder & Eugene Wayne, Nathan Totz & Sijue Wu

Analysis of the modulational regime

 We intend to use this newly won long-time existence theory to address the modulational scaling regime of the water wave problem.
 Question: [C. Sulem, P.-L. Sulem & C. (1992), plus present work]
 Solutions of the water waves problem in modulational form

$$z_0(x) = (\eta_0, \xi_0)(x)$$

= $\varepsilon \cos(k_0 x)(N(\varepsilon x), \Xi(\varepsilon x))$

converge to solutions of the cubic nonlinear Schrödinger equation

$$i\partial_T Z(Y,T) = \partial_k^2 \omega(k_0) \partial_Y^2 Z - c(k_0) |Z|^2 Z$$

where $Y = \varepsilon(x - \partial_k \omega(k_o)t)$ and $T = \varepsilon^2 t$. The time interval of convergence is

$$|T| \sim \mathcal{O}(1)$$
, i.e. $|t| \sim \mathcal{O}(1/\varepsilon^2)$

• References: Guido Schnieder & Eugene Wayne, Nathan Totz & Sijue Wu

The KdV scaling regime

Return to the KdV equation

$$\partial_T r = -\partial_X \operatorname{grad} H_{KdV}(r) , \qquad H_{KdV} = \int -\frac{1}{12} (\partial_X r)^2 + \frac{1}{2} r^3 dX$$

Question: How this emerges as a model equation for water waves.

The scaling regime

$$X := \varepsilon x , \qquad \varepsilon D_X = D_x$$

$$\xi \mapsto \varepsilon \xi , \qquad \eta \mapsto \varepsilon^2 \eta$$

The Dirichlet – Neumann operator will behave as follows

$$arepsilon D_X anh(arepsilon h D_X) \sim arepsilon^2 h D_X^2 + rac{1}{6} arepsilon^4 h^3 D_X^4 + \mathcal{O}(arepsilon^6 D_X^6)$$

Transform the symplectic structure

$$\begin{pmatrix} \eta \\ \xi \end{pmatrix} \mapsto \begin{pmatrix} \eta \\ u := \partial_X \xi \end{pmatrix} \quad \text{giving rise to} \quad \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 & -\partial_X \\ -\partial_X & 0 \end{pmatrix}$$

• On the level of the Hamiltonian functional for water waves

$$H = \frac{1}{2} \int hu^2 + g\eta^2 - \varepsilon^2 \frac{h^3}{6} (\partial_X u)^2 dX + \frac{\varepsilon^2}{2} \int \eta u^2 dX + \mathcal{O}(\varepsilon^4)$$

• Transform to a moving reference frame using the momentum integral $\int \eta u \, dX$

$$H - \sqrt{ghI} = \frac{1}{2} \int \left(\sqrt{hu} - \sqrt{g\eta} \right)^2 dX + \frac{\varepsilon^2}{2} \int \left(-\frac{h^3}{6} (\partial_X u)^2 + \eta u^2 \right) dX + \mathcal{O}(\varepsilon^4)$$

• The KdV description is valid in the region of phase space in which $(\sqrt{hu} - \sqrt{g}\eta) \sim o(\varepsilon)$. In this region $u = \sqrt{g/h} \, \eta + o(\varepsilon)$, thus

$$H - \sqrt{ghI} = \frac{\varepsilon^2}{2} \int \left(-\frac{gh^2}{6} (\partial_X \eta)^2 + \frac{g}{h} \eta^3 \right) dX + \mathcal{O}(\varepsilon^4)$$

Setting $r = gh^2\eta$ this gives the KdV Hamiltonian up to constants.

• On the level of the Hamiltonian functional for water waves

$$H = \frac{1}{2} \int hu^2 + g\eta^2 - \varepsilon^2 \frac{h^3}{6} (\partial_X u)^2 dX + \frac{\varepsilon^2}{2} \int \eta u^2 dX + \mathcal{O}(\varepsilon^4)$$

• Transform to a moving reference frame using the momentum integral $\int \eta u \, dX$

$$H - \sqrt{ghI} = \frac{1}{2} \int \left(\sqrt{hu} - \sqrt{g\eta} \right)^2 dX + \frac{\varepsilon^2}{2} \int \left(-\frac{h^3}{6} (\partial_X u)^2 + \eta u^2 \right) dX + \mathcal{O}(\varepsilon^4)$$

• The KdV description is valid in the region of phase space in which $(\sqrt{h}u - \sqrt{g}\eta) \sim o(\varepsilon)$. In this region $u = \sqrt{g/h} \, \eta + o(\varepsilon)$, thus

$$H - \sqrt{gh}I = \frac{\varepsilon^2}{2} \int \left(-\frac{gh^2}{6} (\partial_X \eta)^2 + \frac{g}{h} \eta^3 \right) dX + \mathcal{O}(\varepsilon^4)$$

Setting $r = gh^2\eta$ this gives the KdV Hamiltonian up to constants.

• On the level of the Hamiltonian functional for water waves

$$H = \frac{1}{2} \int hu^2 + g\eta^2 - \varepsilon^2 \frac{h^3}{6} (\partial_X u)^2 dX + \frac{\varepsilon^2}{2} \int \eta u^2 dX + \mathcal{O}(\varepsilon^4)$$

• Transform to a moving reference frame using the momentum integral $\int \eta u \, dX$

$$H - \sqrt{ghI} = \frac{1}{2} \int \left(\sqrt{hu} - \sqrt{g\eta} \right)^2 dX + \frac{\varepsilon^2}{2} \int \left(-\frac{h^3}{6} (\partial_X u)^2 + \eta u^2 \right) dX + \mathcal{O}(\varepsilon^4)$$

• The KdV description is valid in the region of phase space in which $(\sqrt{h}u - \sqrt{g}\eta) \sim o(\varepsilon)$. In this region $u = \sqrt{g/h} \, \eta + o(\varepsilon)$, thus

$$H - \sqrt{ghI} = \frac{\varepsilon^2}{2} \int \left(-\frac{gh^2}{6} (\partial_X \eta)^2 + \frac{g}{h} \eta^3 \right) dX + \mathcal{O}(\varepsilon^4)$$

Setting $r = gh^2\eta$ this gives the KdV Hamiltonian up to constants.

A 'derivation' of complete integrability

• Perform the above sequence of transformations on the Birkhoff normal form $\tau_{\varepsilon}^{(3)}$ for water waves.

The limit $\varepsilon \to 0$ before the normal forms transformation

$$H - \sqrt{gh}I = H^{(2)} + H^{(3)} + T^{(4)}$$

$$\mapsto \int -\frac{1}{12} (\partial_X r)^2 + \frac{1}{2} r^3 dX + 0$$

After the normal forms transformation

$$\left(H - \sqrt{ghI}\right) \circ (\tau_{\varepsilon}^{(3)})^{-1} = H^{(2)} + 0 + \widetilde{T}^{(4)}
\mapsto \int -\frac{1}{12} (\partial_X R)^2 + 0$$

• It appears that the limit of the Birkhoff normal forms transformation

$$\lim_{\varepsilon \to 0} \tau_\varepsilon^{(3)} := \tau_0^{(3)}$$

maps the KdV to a linear equation

A 'derivation' of complete integrability

• Perform the above sequence of transformations on the Birkhoff normal form $\tau_{\varepsilon}^{(3)}$ for water waves.

The limit $\varepsilon \to 0$ before the normal forms transformation

$$H - \sqrt{gh}I = H^{(2)} + H^{(3)} + T^{(4)}$$

$$\mapsto \int -\frac{1}{12} (\partial_X r)^2 + \frac{1}{2} r^3 dX + 0$$

• After the normal forms transformation

$$\left(H - \sqrt{ghI}\right) \circ (\tau_{\varepsilon}^{(3)})^{-1} = H^{(2)} + 0 + \widetilde{T}^{(4)}$$

$$\mapsto \int -\frac{1}{12} (\partial_X R)^2 + 0$$

• It appears that the limit of the Birkhoff normal forms transformation

$$\lim_{\varepsilon \to 0} \tau_\varepsilon^{(3)} := \tau_0^{(3)}$$

maps the KdV to a linear equation

A 'derivation' of complete integrability

• Perform the above sequence of transformations on the Birkhoff normal form $\tau_{\varepsilon}^{(3)}$ for water waves.

The limit $\varepsilon \to 0$ before the normal forms transformation

$$H - \sqrt{gh}I = H^{(2)} + H^{(3)} + T^{(4)}$$

$$\mapsto \int -\frac{1}{12} (\partial_X r)^2 + \frac{1}{2} r^3 dX + 0$$

• After the normal forms transformation

$$\left(H - \sqrt{ghI}\right) \circ (\tau_{\varepsilon}^{(3)})^{-1} = H^{(2)} + 0 + \widetilde{T}^{(4)}
\mapsto \int -\frac{1}{12} (\partial_X R)^2 + 0$$

• It appears that the limit of the Birkhoff normal forms transformation

$$\lim_{\varepsilon \to 0} \tau_{\varepsilon}^{(3)} := \tau_0^{(3)}$$

maps the KdV to a linear equation.

Thank you