The Fields Institute Tsunamis

Harvey Segur University of Colorado June 13, 2011

Questions about tsunamis

What is a tsunami?

How do tsunamis work?

Does soliton theory describe tsunamis?

- How to protect people from the dangers of tsunamis?
- Why are only some tsunamis deadly?

show video

http://www.youtube.com/watch?v=tu056xg4hc8

Questions about tsunamis

What is a tsunami?

An enormous *volume of water*, displaced by a sub-marine earthquake or landslide.

A Richter scale reading does not predict the volume of water generated in a tsunami.

- How do tsunamis work?
- Does soliton theory describe tsunamis?
- How to protect people from the dangers of tsunamis?
- Why are only some tsunamis deadly?

Equations of water waves

(i) On bottom, z = -h(x,y)

$$\vec{u} \cdot \nabla(z + h(x, y)) = 0$$

(ii) In fluid, $-h < z < \zeta(x,y,t)$

$$\vec{u} = \nabla \phi, \qquad \nabla^2 \phi = 0$$

(iii) At free surface, $z = \zeta(x,y,t)$

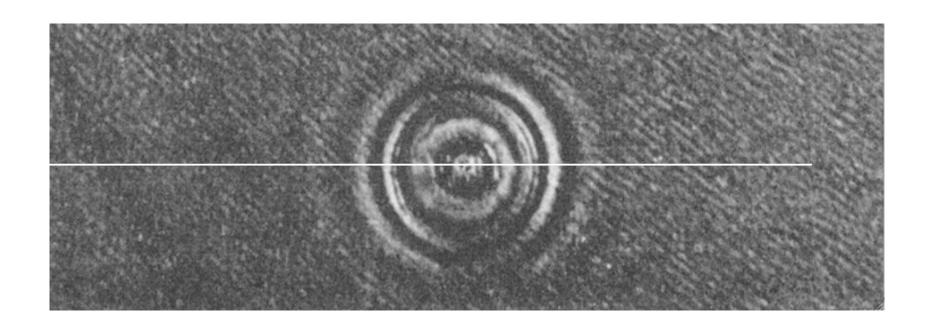
$$\partial_t \zeta + \nabla \phi \cdot \nabla \zeta = \partial_z \phi,$$

$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\zeta = 0.$$

(iv) Ignore viscosity, surface tension, variable density, fish, ...

Basic facts about wave propagation

(according to linear theory)


Sound waves

All travel at the same speed (speed of sound)

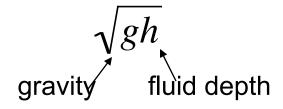
Water waves

 Longer waves travel faster than shorter waves (for gravity-induced surface water waves)

Long waves travel faster than short waves

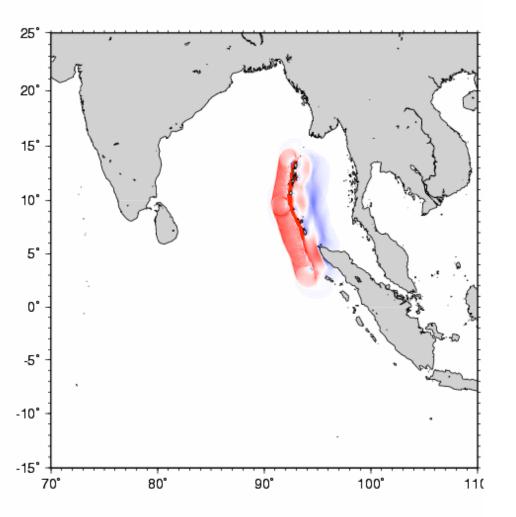
from Stoker's Water Waves, 1957

Basic facts about wave propagation


(according to linear theory)

Sound waves

All travel at the same speed (speed of sound)


Water waves

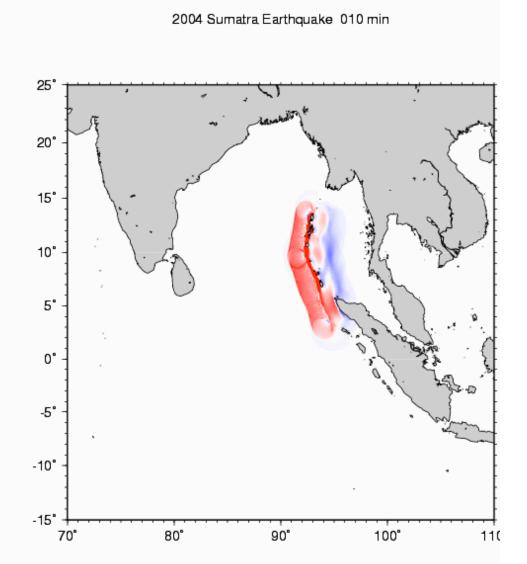
- Longer waves travel faster than shorter waves (for gravity-induced surface water waves)
- But all very long waves all travel at about speed

How do tsunamis work? Map of Indian Ocean

2004 Sumatra Earthquake 010 min

Seismology?

Tsunami of 2004 - approximate scales


Water depth,

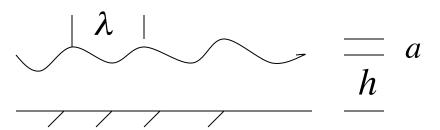
```
h = 3 km (Bay of Bengal, west)= 1 km (Andaman Sea, east)
```

For the tsunami,

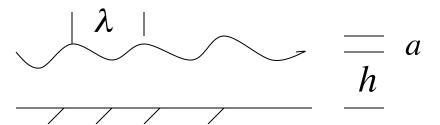
```
\lambda = 100 \text{ km (wavelength)}
a = 1 \text{ m (wave height)}
L = 1000 \text{ km (lateral extent)}
c = \sqrt{gh} = 620 \text{ km/hr (wave speed)}
(360 km/hr in Andaman Sea)
```

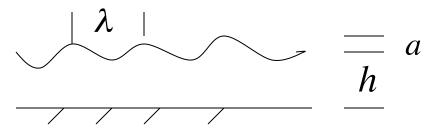
Computer animation of 2004 tsunami

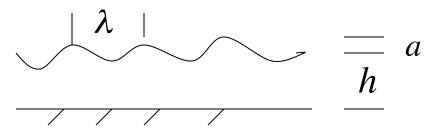
Kenji Satake, Japan http://ioc.unesco.oro/itsu/

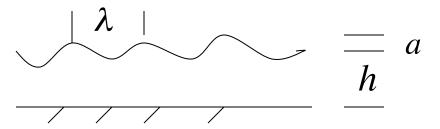

or, see Steven Ward, US http://www.es.ucsc.edu/~ward/

What happens to very long waves?


D.J. Korteweg & G. deVries (1895) derived their equation to describe the motion of long waves of moderate amplitude in shallow water.


Is the KdV equation relevant to the tsunami of 2004?


Assume:


• Long waves $(\lambda >> h)$ (shallow water)

- Long waves $(\lambda >> h)$ (shallow water)
- Small amplitude (h >> a)

- Long waves $(\lambda >> h)$ (shallow water)
- Small amplitude (h >> a)
- Motion primarily in one direction (L >> λ)
 if exactly so,
 → KdV
 if approximately so, → KP

- Long waves $(\lambda >> h)$ (shallow water)
- Small amplitude (h >> a)
- Motion primarily in one direction (L >> λ)
 if exactly so,
 → KdV
 if approximately so, → KP
- All small effects are comparable

At leading order (with constant h):

Wave equation in 1-D:

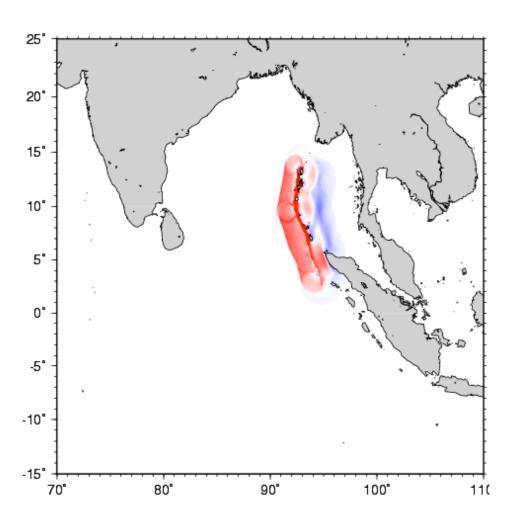
$$\partial_t^2 \eta = c^2 \partial_x^2 \eta$$
 with $c^2 = gh$

At leading order:

Wave equation in 1-D:

$$\partial_t^2 \eta = c^2 \partial_x^2 \eta$$
 with $c^2 = gh$

At next order, $F(\xi; y, \tau)$ satisfies either


$$\partial_{\tau}F + F\partial_{\xi}F + \partial_{\xi}^{3}F = 0$$
 KdV

or

$$\partial_{\xi} \left(\partial_{\tau} F + F \partial_{\xi} F + \partial_{\xi}^{3} F \right) + \partial_{y}^{2} F = 0 \qquad \text{KP}$$

Length scales for 2004 tsunami

2004 Sumatra Earthquake 010 min

Kenji Satake, Japan http://ioc.unesco.oro/itsu/

or, see Steven Ward, US http://www.es.ucsc.edu/~ward/

Tsunami of 2004 - approximate scales

In the Bay of Bengal,

$$h = 3 \text{ km}$$
 (fluid depth)

For the tsunami,

 $\lambda = 100 \text{ km (wavelength)}$

 $a = 1 \, \text{m} \, \text{(wave height)}$

L = 1000 km (lateral extent)

$$c = \sqrt{gh} = 620 \text{ km/hr (wave speed)}$$

Scales:

$$\frac{a}{h} \sim 10^{-3}$$
, $(\frac{h}{\lambda})^2 \sim 10^{-3}$, $\frac{\lambda}{L} \sim 10^{-1}$

KdV model (or KP, or ...)

- Includes nonlinearity, frequency dispersion and (perhaps) 2-D surface patterns
- Requires (nearly) uniform depth
- Requires long distances

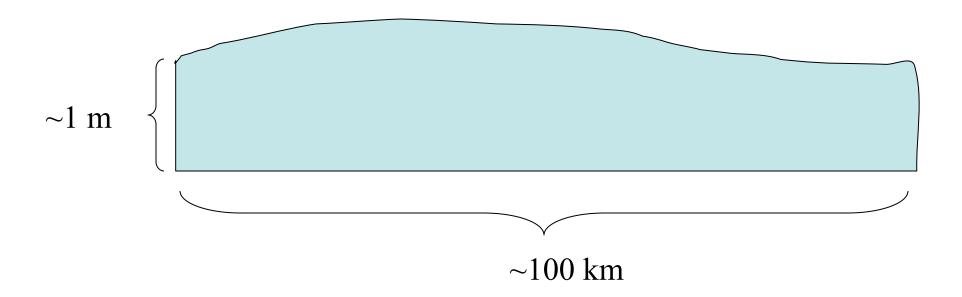
KdV model (or KP, or ...)

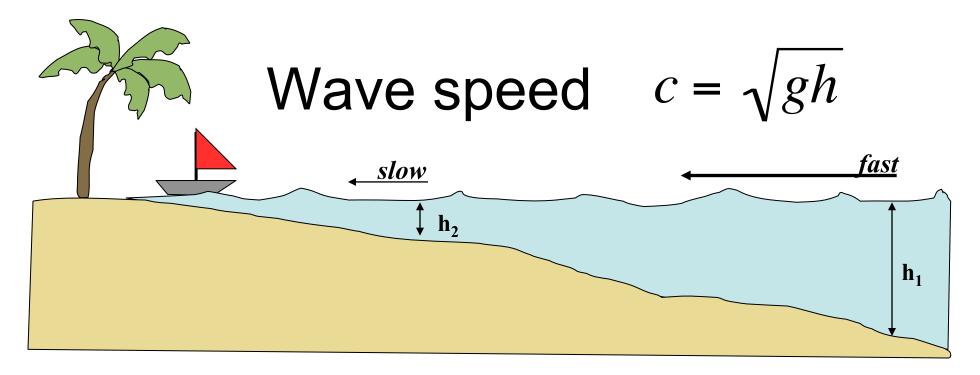
- Includes nonlinearity, frequency dispersion and (perhaps) 2-D surface patterns
- Requires (nearly) uniform depth
- Requires long distances

with
$$\varepsilon = \frac{amplitude}{depth}$$
, need propagation distance
$$D \sim \frac{1}{\varepsilon} \cdot wavelength$$

KdV model (or KP, or ...)

- Includes nonlinearity, frequency dispersion and (perhaps) 2-D surface patterns
- Requires (nearly) uniform depth
- Requires long distances

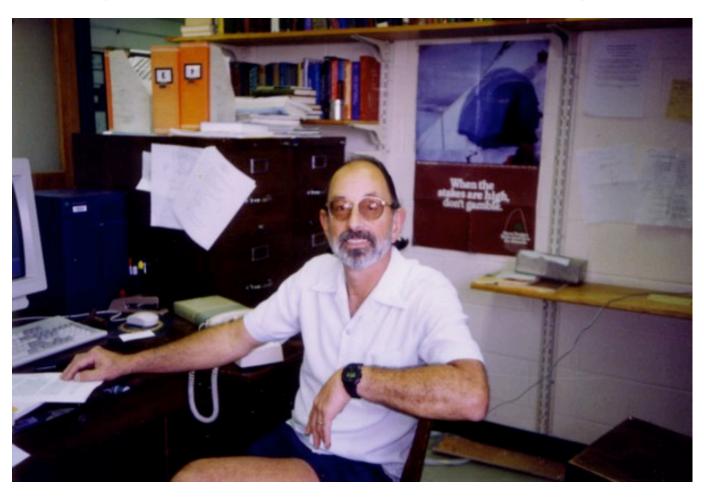

with
$$\varepsilon = \frac{amplitude}{depth}$$
 , need propagation distance


$$D \sim \frac{1}{\varepsilon} \cdot wavelength$$

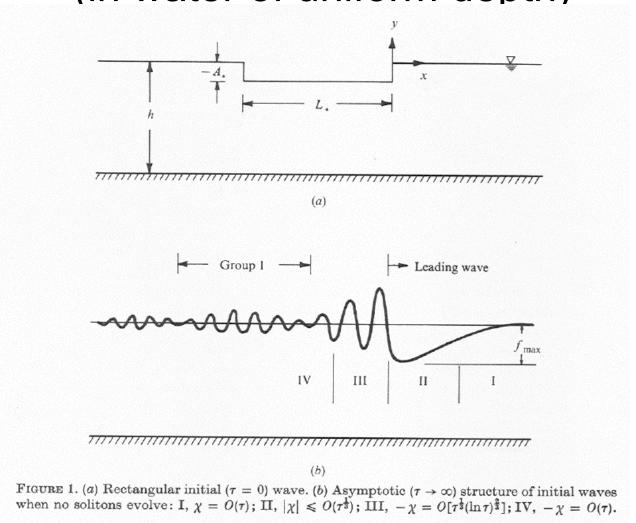
For 2004 tsunami, need ~ 100,000 km Distance across Bay of Bengal ~ 1300 km

What makes tsunamis dangerous?

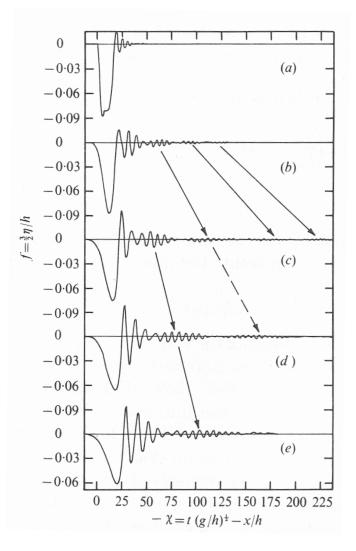
Volume of water in 2004 tsunami (per width of shoreline)


Open ocean

- c = 620 km/hr
- A wave 100 km long passes by in about 10 minutes


Near shore

- Front of wave slows as it approaches the shore
- Back of the wave is still in deep water
- Consequence: Wave compresses horizontally and grows vertically


How do long, negative waves evolve? (in water of uniform depth)

How do long, negative waves evolve? (in water of uniform depth)

Experimental data on negative waves

What happened in Thailand?

2004 (negative) wave front reaches Thailand (photos by Anders Grawin (copyright 2006) copied from Constantin & Johnson (2008))

What happened in Thailand?

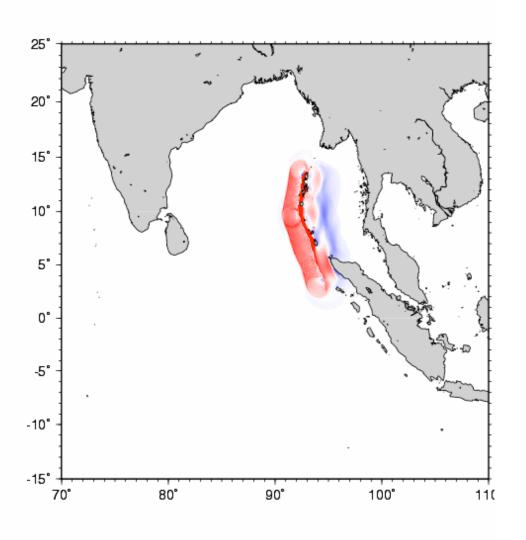
2004 (negative)
wave front
reaches the
shore of Thailand

. The tsunami of 26 December 2004 approaching Hat Ray Leah beach on the Krabi coast, Thailand. (Copyright Scanpix

Note two breaking wave crests (from Constantin & Johnson, 2008)

What happened in Japan on March 11, 2011?

Seismology


What happened in Japan on March 11, 2011?

Seismology

- The epicenter of the earthquake was 72 km offshore
- A 400 km stretch of coastline dropped 0.6 m
- Parts of Japan moved 2.4 m to the east

(http://en.wikipedia.org/wiki/2011_Tohoku_earthquake_and_tsunami)

2004 Sumatra Earthquake 010 min

- a) near the epicenter
- b) away from the epicenter
- c) near shore

(my personal opinions)

Away from the epicenter and well away from shore

Solve
$$\partial_t^2 \phi = \nabla \cdot (gh(x,y)\nabla \phi)$$

Need decent information about initial data Volume of water displaced is important

(my personal opinions)

Away from the epicenter and well away from shore

Solve
$$\partial_t^2 \phi = \nabla \cdot (gh(x,y)\nabla \phi)$$

Need decent information about initial data Volume of water displaced is important

Q: What measurement estimates the volume of water displaced in a tsunami?

(my personal opinions)

Near shore

Modify the wave eq'n in 1-D to include:

Variable topography => wave refraction
Wave reflection (also from topography)
Nonlinear effects, including wave breaking
Return flow, with vorticity
Wave damping, from bottom friction & return flow
Other (please specify)

(my personal opinions)

Near shore: zoning

(my personal opinions)

Near shore: zoning High dwellings are the peace and harmony of our descendents. Remember the calamity of the great tsunamis. Do not build any homes below this point.

Dec 26, 2004 Richter scale: 9.0

Earthquake near Banda Aceh, Indonesia

Tsunami killed more than 200,000 people near Indian Ocean

Dec 26, 2004 Richter scale: 9.0

Earthquake near Banda Aceh, Indonesia

Tsunami killed more than 200,000 people near Indian Ocean

March 28, 2005 Richter scale: 8.7

Earthquake 250 km SE of Banda Aceh

Tsunami killed no one

Dec 26, 2004 Richter scale: 9.0

Earthquake near Banda Aceh, Indonesia

Tsunami killed more than 200,000 people near Indian Ocean

March 28, 2005 Richter scale: 8.7

Earthquake 250 km SE of Banda Aceh

Tsunami killed no one

May 22, 1960 Richter scale: 9.5 (**)

Earthquake 900 km S of Santiago, Chile

Tsunami killed 61 people in Hawaii, 197 more in Japan

Dec 26, 2004

Richter scale: 9.0

Earthquake near Banda Aceh, Indonesia

Tsunami killed more than 200,000 people near Indian Ocean

March 28, 2005 Richter scale: 8.7

Earthquake 250 km SE of Banda Aceh

Tsunami killed no one

May 22, 1960

Richter scale: 9.5 (**)

Earthquake 900 km S of Santiago, Chile

Tsunami killed 61 people in Hawaii, 197 more in Japan

February 27, 2010 Richter scale: 8.8

Earthquake 335 km SW of Santiago, Chile

Tsunami killed no one outside of Chile

Dec 26, 2004

Richter scale: 9.0 offshore from Sumatra

March 28, 2005

Richter scale: 8.7 offshore from Sumatra

May 22, 1960

Richter scale: 9.5 offshore from Chile

February 27, 2010 Richter scale: 8.8 offshore from Chile

Why are only some tsunamis deadly? Hypothesis:

Dec 26, 2004 Richter scale: 9.0 offshore from Sumatra

Lateral extent of disturbance: 1000 km

March 28, 2005 Richter scale: 8.7 offshore from Sumatra

May 22, 1960 Richter scale: 9.5 offshore from Chile

Lateral extent of disturbance: 800 km

February 27, 2010 Richter scale: 8.8 offshore from Chile

Thank you for your attention