Dynamical and statistical explanations of rogue wave occurrence rates Johannes Gemmrich gemmrich@uvic.ca

University of Victoria Physics & Astronomy Victoria, BC, Canada

- motivation
- rogue wave occurrence rates (theory)
- observations
- simulations
- what can we learn from simulations
- wave-current interaction
- conclusion

Acknowledgments:

Chris Garrett (UVic) Keith Thompson (Dalhousie University)

Monsters of the deep

It came from nowhere, snapping giant ships into two....

New Scientist, June 30, 2001

I Rogue waves 'wipe out' spectators at Mavericks surfing competition

THE TIMES Feb. 14, 2010

Two walls of water swept dozens of people off a concrete seawall ...

At least 13 spectators received significant injuries...

II Wave watching, Vancouver Island

Examples of deep water rogue waves

I. FINO research platform North Sea, Nov 1, 2006

II. DRAUPNER oil platform North Sea, January 1, 1995

 $H_s = 11.9m$, $\eta_{max} = 18.5$ m

Is the topic of rogue waves even appropriate for a physicist?

Siri Agrell Published Monday, Sep. 13, 2010 9:30PM EDT Last updated Monday, Sep. 20, 2010 5:27PM EDT

"In her new book

The Wave: In Pursuit of the Rogues, Freaks and Giants of the Ocean, award-winning Toronto-born journalist Susan Casey describes walls of water that defy the laws of physics

•••

Rogue waves <u>operate outside the rules of physics</u> and pop up in unlikely conditions. Do you <u>feel</u> like you understand how they are formed?

I can explain it in so far as science can explain it, but there are many circumstances under which science still can't explain them. ..."

Terminology

Monsters of the deep

rogue wave

freak wave

giant wave

extreme wave

wall of water

holes in the surface of the sea

. . .

waves in the tail of the probability distribution

Large waves

Wind wave growth:

H = f(wind speed, duration, fetch)

large wave ≠ rogue wave

	T = 10h	T = 20h	T = 40h
Wind = 15 m/s	H = 4m	H = 5.5m	H = 6m
Wind = 20 m/s	H = 4.5m	H = 7m	H = 13m

Also dependent on fetch

Rogue wave definition

Individual wave:

H: wave height (trough-crest)

η: crest height (mean water level - crest)

(linear theory, narrow-banded spectrum: $H = 2\eta$)

Wave record:

 $H_s = 4\sigma$: significant wave height (average of 1/3 highest waves)

σ: standard deviation of surface elevation

common rogue wave definition:

$$H_{rogue} \ge 2.2 H_s$$

or

$$\eta_{\text{rogue}} \ge 1.25 \, \text{H}_{\text{s}}$$

The basics: linear theory

Linear superposition

$$\zeta(x, y, t) = \sum_{i=1}^{N} \sum_{j=1}^{M} a_{i,j} \cos\left(\omega_{i} t - k_{i} x \cos\theta_{j} - k_{i} y \sin\theta_{j} + \varphi_{i,j}\right)$$

Random amplitude $a_{i,j}$, random phase $\varphi_{i,j}$

Figure 3.10 The random waves moving in time, i.e., the sum of a large number of harmonic wave components, travelling across the ocean surface with different periods, directions, amplitudes and phases (after Pierson *et al.*, 1955).

Dispersion relation

$$\omega^2 = gk \tanh(kd)$$

From Holthuijsen 2007

The basics

surface elevation at a fixed point

Examples: section of wave buoy record off Tofino, BC

$$\begin{aligned} H_s &= 3.53m \\ H_{max} &= 8.47m \\ \eta_{max} &= 4.50m \end{aligned}$$

$$H_s = 1.96m$$

 $H_{max} = 3.62m$
 $\eta_{max} = 2.75m$

Real data!
Consistent with linear theory?

Rogue wave occurrence

Need to know probability distribution for crest height η (wave height H)

Rogue waves are waves in the tail of the probability distribution

Theoretical probability distributions:

Linear theory:

sea surface height ζ is made up of a large number of independent sinusoids \rightarrow its probability density function p(ζ) is Gaussian:

$$p(\zeta) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{\zeta^2}{2\sigma^2}\right)$$

→ wave height distribution is the Rayleigh distribution

(if narrow band):

$$p(H) = \frac{H}{4\sigma^2} \exp \left| -\frac{H^2}{8\sigma^2} \right|$$

Longuet-Higgins, 1952

Rogue wave occurrence

Wave height distribution: (linear superposition, narrow-band frequency spectrum)

Rayleigh distribution:
$$p(H) = \frac{H}{4\sigma^2} \exp \left[-\frac{H^2}{8\sigma^2} \right]$$

Exceedance probability: $P(H/H_s>z)=\exp(-2z^2)$ wave height $P(\eta/H_s>z)=\exp(-8z^2)$ crest height

Problem solved! (?)

Data analysis: Extreme maximum wave height

12 – 20 year wave buoy records (operational), Meteorological Service Canada

x: Locations of operational wave buoys (report hourly statistics only). C46xxx Black number: average number of $H_{max} \geq 2.2H_s$ occurrences / year (high sea states only)

- → Rogue waves more frequent on continental shelf
- → data not consistent with simple Rayleigh distribution

data quality?

Data may be compared with formulae for $P(\eta/H_s)$, $P(H/H_s)$

However, large waves → small P

Better presentation: ln(-ln P)

$$P(\eta_l / H_s > z) = \exp(-8z^2)$$
 \rightarrow $\ln[-\ln P(\eta_l / H_s > z)] = 2\ln z + \ln 8$

(straight line if plotted against ln z)

 $\ln(-\ln P)$ **Better presentation:**

$$P(\eta_l / H_s > z) = \exp(-8z^2)$$
 \rightarrow $\ln[-\ln P(\eta_l / H_s > z)] = 2\ln z + \ln 8$

$$\ln[-\ln P(\eta_1/H_s > z)] = 2\ln z + \ln 8$$

(straight line if plotted against ln z)

More general: Weibull distribution

$$P(\eta/H_s > z) = \exp\left(-\frac{z^{\alpha}}{\beta}\right) \quad \Rightarrow \quad \left[\ln\left[-\ln P(\eta/H_s > z)\right] = \alpha \ln z - \ln \beta\right]$$

(**straight line** if plotted against ln z)

Predicting rogue wave occurrence rates:

find α , β from data (e.g. Forristall, 2000)

$$P(\eta_l / H_s > z) = \exp(-8z^2)$$

$$\ln[-\ln P(\eta_l / H_s > z)] = 2 \ln z + \ln 8$$

Observed crest (wave) height distributions

Wave buoy record off Tofino, BC

Laser wave gauge, North Sea oil platform Gorm (Dysthe et al. 2008)

- finite bandwidth (H-distribution not Rayleigh)
- large crests more frequent than in Rayleigh distribution

Extreme maximum crest height occurrence

Extreme maximum crest height occurrence

changing slope $\eta/H_s > 1.2$ (different population?)

smaller slope than C46184

Extreme maximum crest height occurrence

Potential causes for deviation from standard model (Weibull distribution)

non-stationarity

higher harmonics

Deviations from Weibull distribution

Test with

- analytical solutions (where available)
- simulated surface elevation time series (Monte-Carlo simulation)
- linear, random superposition of wave Fourier components
- Fourier components based on JONSWAP spectrum

60 day simulation, 10 Hz sampling (51,840,000 data points), 0-6Hz frequency band

275 runs

→ 45 year time series

Monte-Carlo simulations, non-stationarity

Observed H_s values are obtained from 40 minute records [H_s = 4 $\sigma(\zeta(t))$]

Partition simulated surface elevation (45 year stationary) into 40 minute segments

stationary $H_s = 4m$ short-record H_s variability: ±20%

η_{max}/H_s largest at moderate H_s

Monte-Carlo simulations, non-stationarity

Long record stationary data and short record segmentation have same crest-height probability distributions (Weibull)

Non-stationarity

Assume wave height time series with significant wave height H_s but 2 stationary halves:

(H_s is always calculated from entire record length)

$$H_1^2 = H_s^2(1+\epsilon)$$

$$H_2^2 = H_s^2 (1 - \epsilon)$$

$$P(\eta/H_s > z) = \frac{1}{2} \left[\exp\left(-\frac{8z^2}{1+\epsilon}\right) + \exp\left(-\frac{8z^2}{1-\epsilon}\right) \right].$$

Rogue wave occurrence in a nonstationary record of two equal length parts (coloured lines) is much higher than if the record were treated as 2 stationary parts (black).

Monte-Carlo simulations, non-stationarity Analytical approach

$$H_s^2(t) = \frac{\overline{H}_s^2}{(1+\alpha t)^{-1}}$$
 variance changing slowly with time (e.g. ship steaming into region of wave current interactions)

$$P(\eta/H_s > z) = \exp(-Bz^2) \frac{\sinh(B\epsilon z^2)}{B\epsilon z^2}$$

$$\varepsilon = \alpha T, \quad B = \frac{4}{\epsilon} \ln\left(\frac{1+\epsilon}{1-\epsilon}\right).$$

$$\epsilon \to 0, B \to 8$$

Increased probabilities, but constant slope (for fixed ε)

Higher harmonics (Stokes correction)

higher harmonics:

- same phase speed as primary wave
- multiple frequency (2ω, 3ω,...)
- multiple wave number (2k, 3k,...)

bound wave

$$\omega^2 = gk$$

$$(2\omega)^2 \neq g2k$$

Higher harmonics, simulations

2nd

$$\zeta = a\cos\theta + \frac{1}{2}ka^2\cos(2\theta)$$

Up to 4th
$$\zeta = a\cos\theta + \left(\frac{1}{2}ka^2 + \frac{17}{24}k^3a^4\right)\cos(2\theta) + \frac{3}{8}k^2a^3\cos(3\theta) + \frac{1}{8}k^3a^4\cos(4\theta)$$

wave phase $\theta = kx - \omega t$ wave number $k = 2\pi/\lambda$ wave amplitude a

wave steepness ak

Exceedance probability, 2nd order Stokes waves

Recall:

Linear crest height
$$\frac{\eta_l}{H_s} \rightarrow P(\eta_l/H_s > z) = \exp(-8z^2)$$
 (normalized):

2nd order crest height:

$$\zeta = a\cos\theta + \frac{1}{2}ka^2\cos(2\theta)$$
 \Rightarrow $\frac{\eta}{H_s} = \frac{\eta_l}{H_s} + \frac{1}{2}R\left(\frac{\eta_l}{H_s}\right)^2$, $R = kH_s$: wave steepness

$$\frac{\eta_l}{H_s} = \frac{\left(1 + 2R\eta / H_s\right)^{1/2} - 1}{R}$$

$$P(\eta/H_s > z) = \exp\left\{-\frac{8}{R^2} \left[(1 + 2Rz)^{1/2} - 1 \right]^2 \right\}$$
 (Tayf

(Tayfun, 1980)

Exceedance probability, 2nd order Stokes waves

- Occurrence rate of large crests increased overall (compared to linear waves)
- no "extra" increase of extreme crests (still straight line)

Exceedance probability, modulational instability

$$P(\eta/H_s > z) = \exp(-8z^2) \left[1 + \frac{8}{3} \kappa_{40} z^2 (4z^2 - 1) \right].$$
 From Mori & Janssen, JPO 2006 (with H=2 η)

kurtosis = $3 + \kappa_{40}$

- Occurrence rate of large crests increased overall (compared to linear waves)
- no "extra" increase of extreme crests (still straight line)

Exceedance probability, 4th order Stokes waves

from Monte-Carlo simulations

Increased occurrence of extreme crests and of extreme wave heights (curved lines, consistent with data)

Higher order harmonics may play a role in the generation of rogue waves

Linear superposition

- → large waves (= steep)
- → increased 4th order correction
- → extra large wave

Generalized extreme value theory GEV

Asymptotic formulae for the exceedance probability for the maximum in a block of data containing a large number of individual events

Starting point: exceedance probability for individual waves (Weibull distribution)

$$P(\eta/H_s > z) = \exp\left(-\frac{z^{\alpha}}{\beta}\right)$$
 (W

 M_n is the maximum of $z=\eta/H_s$ in a block of N waves

define
$$a_N = (\beta \ln N)^{1/\alpha}, \quad b_N = \frac{a_N}{\alpha \ln N},$$

$$P\left(\frac{M_N - a_N}{b_N} < z\right) = \left\{1 - \exp\left[-\frac{(b_N z + a_N)^{\alpha}}{\beta}\right]\right\}^N.$$

Generalized Extreme Value theory, GEV

$$\begin{array}{ll}
\Rightarrow & \exp\left[-\frac{(b_N z + a_N)^{\alpha}}{\beta}\right] = \exp\left[-\ln N\left(1 + \frac{z}{\alpha \ln N}\right)^{\alpha}\right] \\
& \simeq \exp(-\ln N - z) \quad \text{if} \quad z \ll \alpha \ln N \\
& = N^{-1}e^{-z}.
\end{array}$$

Then it follows

$$P\left(\frac{M_N - a_N}{b_N} < z\right) = \left\{1 - \exp\left[-\frac{(b_N z + a_N)^{\alpha}}{\beta}\right]\right\}^N$$

$$\simeq \left(1 - N^{-1}e^{-z}\right)^N \to \exp\left(e^{-z}\right) \quad \text{as} \quad N \to \infty$$

$$\Rightarrow$$
 $F \equiv P(M_N < z) \simeq \exp\left[-\exp\left(-\frac{z - a_N}{b_N}\right)\right]$. Gumbel distribution

Generalized extreme value theory GEV

i.e. the exceedance probability of the block maximum may be approximated by the Gumbel distribution

$$F \equiv P(M_N < z) \simeq \exp\left[-\exp\left(-\frac{z - a_N}{b_N}\right)\right].$$

Note that
$$P(\eta/H_s > z) \equiv 1 - F^{1/N}$$

Idea: find a_N , b_N from data records \rightarrow predict occurrence rates for large waves

Generalized extreme value theory GEV

i.e. the exceedance probability of the block maximum may be approximated by the Gumbel distribution

$$F \equiv P(M_N < z) \simeq \exp\left[-\exp\left(-\frac{z - a_N}{b_N}\right)\right].$$

Note that $P(\eta/H_s > z) \equiv 1 - F^{1/N}$

Idea: find a_N , b_N from data records \rightarrow predict occurrence rates for large waves

Approximation may be tested by comparing

$$\ln[-\ln P(\eta_l / H_s > z)] = \alpha \ln z + \ln \beta$$
 with $\ln[-\ln(1 - F^{1/N})]$

$$\Rightarrow \alpha \ln z + \ln \beta \approx \ln \left[-\ln \left(1 - \left\{ \exp \left[-\exp \left(-\frac{z - a_N}{b_N} \right) \right] \right\}^{1/N} \right) \right]$$

Generalized Extreme Value theory GEV

Does the Gumbel distribution provide a reliable way for extrapolating the distribution for rare events (large z)?

Fitting GEVs to block maxima obtained from data, without any a priori assumption about the pdf of the individual crest heights, does not seem appropriate. (Derivation required $\ln N$ to be large, note only N)

Other "extreme wave" phenomena

- unexpected waves
- wave-current interaction (may increase wave height, but not statistics)

II. Unexpected waves

Unexpected waves

in record

Unexpected waves – data example, simulations

A wave crest twice as high as any in the preceding 30 waves.

unexpected wave

Monte Carlo simulations:

- linear, random superposition,
- 2nd order Stokes correction
- intermediate water depth correction

Occurrence rate of *unexpected* waves (deep water):

about 1 in 14,000 (daily) more frequent in shallow water

Gemmrich & Garrett: Unexpected Waves, JPO, 2008, Ocean Eng. 2009

III. Wave intensification by currents

Motivated by hourly time series of significant wave heights H_s from northeast Pacific wave buoys (up to 30 year records)

Wave intensification by currents

Wave breaking due to wave-current interaction in a tidal front (Haro Strait, BC). *Photo: B. Baschek*

Strait of Gibraltar: Internal waves → inhomogeneous surface currents → modify steepness of surface waves → modified sun glint → observable from space

The effect of currents (casual observations)

waves with an initial phase speed c in still water propagating into an opposing current u will steepen

→ increased wave amplitude (e.g. river estuaries, tidal fronts, Agulhas current)

Waves will be stopped completely by a current of $\mathbf{u} \ge \alpha \mathbf{c}$.

 $\alpha = 1/4!$

(factor 2: $c_q = \frac{1}{2} c_p$

factor 2: waves shorten \rightarrow decrease in c_p)

What is the value of α ?

Spectral content of wave and wind fluctuations

Spectral content of wave fluctuations -- latitude

Wind-induced "inertial" current:

$$\mathbf{v} = v_o \begin{pmatrix} \sin \omega t \\ \cos \omega t \end{pmatrix}, \quad \omega = 2\Omega \sin \phi$$

$$\phi: \text{ latitude}$$

Increasing frequency with latitude (Foucault pendulum)

Can this be seen in the wave height as well?

Spectral content of wave fluctuations -- latitude

Wave height modulation:

- frequency increases with latitude
- same as inertial currents

Wave heights are modulated by inertial currents

Spectral content of wave and wind fluctuations, Dixon Entrance

Semi-diurnal peak

no semi-diurnal peak in wind forcing

wave - tidal current interaction

Significant wave height – tidal current

 ΔH_s : wave height fluctuations (12h median band-pass filter)

u: E-W barotropic tidal current (positive towards E)

v: N-S barotropic tidal current (positive towards N)

wave height fluctuations – current are in phase!

Average significant wave height fluctuations—tidal current

10-year record, hourly observations

 ΔH_s : wave height fluctuations

(12h median band-pass filter)

u_{max}: maximum amplitude of tidal current

wave height fluctuations – current are in phase!

Significant wave height fluctuations—tidal current

wave height fluctuations - current are in phase!

i.e. wave height increases when waves follow the current wave height decreases in opposing currents

Contrary to casual observations: wave height increases when waves oppose the current (wave blocking at opposing current $u = c_p/4$)

Wave – current interaction (2-d)

Wave propagating obliquely into current jet (conservation of wave action flux)

→ wave refraction → narrowing of ray tube → wave intensification

from: Garrett, 1976, J. Mar. Res.

Wave – current interaction (conservation of wave action)

$$\frac{\partial A}{\partial t} + \nabla \left[\left(\mathbf{c_g'} + \mathbf{U} \right) A \right] = 0, \quad \frac{E}{E_0} = B \sin \theta \left[1 - \left(\frac{\cos \theta}{B} \right)^2 \right]^{-1/2}, B = \left(1 - U^* \cos \theta \right)^2, U^* = U(k_0 / g)^{1/2}$$

Enhancement: 0 ≤ θ ≤ 45 (waves following current)

Attenuation: $135 \le \theta \le 180$ (waves opposing current)

Consistent with observations

Conclusions

- Simple probability distributions models underpredict rogue wave occurrences
- Monte-Carlo simulations :
 - 4th order Stokes wave corrections give best agreement with observations
 - > non-resonant interactions
- "Unexpected waves", may be relevant to recreational boating
- Wave height (H_s) modifications due to tidal and inertial currents are significant (up to 45%, not included in wave forecast models)
- GEV analysis does not extend statistical prediction range

not every large wave is a rogue wave!

