An Introduction to Quasi-Symmetric and Noncommutative Symmetric Functions.

Lenny Tevlin
New York University

Affine Schubert Calculus at Fields Institute, July 7-10, 2010

Warning and Outline

Intro to NSym and QSym.

Lenny Tevlin
(Another)
Tale of Two
Algebras:
Motivation
Notations,
conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric
Functions.

This talk has nothing to do with k-Schur functions, affine Grassmanians or any other topic of this school...

Warning and Outline

Intro to
NSym and
QSym.
Lenny Tevlin
(Another)
Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric
Functions.

1 (Another) Tale of Two Algebras: Motivation

2 Notations, conventions, etc.

Warning and Outline

Intro to
NSym and
QSym.
Lenny Tevlin
(Another)
Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric
Functions.

1 (Another) Tale of Two Algebras: Motivation

2 Notations, conventions, etc.

3 Quasi-Symmetric Functions.

Warning and Outline

Intro to
NSym and
QSym.
Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative Symmetric Functions.

1 (Another) Tale of Two Algebras: Motivation

2 Notations, conventions, etc.

3 Quasi-Symmetric Functions.

4 Noncommutative Symmetric Functions.

Magic Triangle

Intro to NSym and QSym.

Lenny Tevlin
(Another)
Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric
Functions.

NSym \longleftrightarrow QSym

Magic Triangle

Intro to NSym and QSym.

Lenny Tevlin
(Another)
Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric
Functions.

Sym : $m_{\boldsymbol{\lambda}}, h_{\boldsymbol{\lambda}}, s_{\boldsymbol{\lambda}}, \ldots$
NSym : $M^{\prime}, L^{\prime}, S^{\prime}, R^{\prime}, \ldots$
QSym : M_{I}, L_{l}, \ldots

Labelling Set: Compositions

Intro to NSym and QSym.

Lenny Tevlin

(Another)

 Tale of Two Algebras: MotivationNotations, conventions, etc.

Quasi-
Symmetric

Functions.

Noncommutative
Symmetric Functions.

A composition is ordered set of integers: $I=\left(i_{1}, \ldots, i_{n}\right)$. The sum of all parts is denoted by $|I|$, and the number of parts - by $\ell(I)$.

$$
I=(3,1,1,4,2),|I|=11, \quad \ell(I)=5
$$

Labelling Set: Compositions

Intro to NSym and QSym.

Lenny Tevlin

(Another)

 Tale of Two Algebras: MotivationNotations, conventions, etc.

Quasi-

Symmetric Functions.

Noncommutative Symmetric Functions.

A composition is ordered set of integers: $I=\left(i_{1}, \ldots, i_{n}\right)$. The sum of all parts is denoted by $|I|$, and the number of parts - by $\ell(I)$.

$$
I=(3,1,1,4,2),|I|=11, \quad \ell(I)=5
$$

Labelling Set: Compositions

Intro to NSym and QSym.

Lenny Tevlin

(Another)

Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative Symmetric Functions.

A composition is ordered set of integers: $I=\left(i_{1}, \ldots, i_{n}\right)$. The sum of all parts is denoted by $|I|$, and the number of parts - by $\ell(I)$.

$$
I=(3,1,1,4,2),|I|=11, \quad \ell(I)=5
$$

Reverse refinement order.

Intro to NSym and QSym.

Lenny Tevlin

(Another)

Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric Functions.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is greater in the reverse refinement order (or, simply, finer) than J,

$$
I \succ J
$$

if every part of J can be obtained by summing some consecutive parts of I :

$$
J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)
$$

Reverse refinement order.

Intro to NSym and QSym.

Lenny Tevlin

(Another)

Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric Functions.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is greater in the reverse refinement order (or, simply, finer) than J,

$$
I \succ J
$$

if every part of J can be obtained by summing some consecutive parts of I :
$J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$ For instance, $(3,3,2)=(3,1+2,2) \prec(3,1,2,2)$,

Reverse refinement order.

Intro to NSym and QSym.

Lenny Tevlin

(Another)

Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative Symmetric Functions.

Let $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{k}\right),|J|=|I|$ then I is greater in the reverse refinement order (or, simply, finer) than J,

$$
I \succ J
$$

if every part of J can be obtained by summing some consecutive parts of I :
$J=\left(i_{1}+\ldots+i_{p_{1}}, \ldots, i_{p_{s-1}+1}+\ldots+i_{p_{s}}, \ldots, i_{p_{k-1}+1}+\ldots+i_{n}\right)$ For instance, $(3,3,2)=(3,1+2,2) \prec(3,1,2,2)$,

Noncommutative Operations on Compositions

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric

Functions.

Noncommutative
Symmetric Functions.

For two compositions $I=\left(i_{1}, \ldots, i_{r-1}, i_{r}\right)$ and $J=\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ one defines two operations

$$
I \triangleright J=\left(i_{1}, \ldots, i_{r-1}, i_{r}+j_{1}, j_{2}, \ldots, j_{s}\right)
$$

Noncommutative Operations on Compositions

Intro to NSym and QSym.

Lenny Tevlin
For two compositions $I=\left(i_{1}, \ldots, i_{r-1}, i_{r}\right)$ and $J=\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ one defines two operations

$$
I \triangleright J=\left(i_{1}, \ldots, i_{r-1}, i_{r}+j_{1}, j_{2}, \ldots, j_{s}\right)
$$

Noncommutative Operations on Compositions

Intro to
NSym and
QSym.
Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric Functions.

For two compositions $I=\left(i_{1}, \ldots, i_{r-1}, i_{r}\right)$ and $J=\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ one defines two operations

$$
I \triangleright J=\left(i_{1}, \ldots, i_{r-1}, i_{r}+j_{1}, j_{2}, \ldots, j_{s}\right)
$$

and

$$
I \cdot J=\left(i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}\right)
$$

Noncommutative Operations on Compositions

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative Symmetric Functions.

For two compositions $I=\left(i_{1}, \ldots, i_{r-1}, i_{r}\right)$ and $J=\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ one defines two operations

$$
I \triangleright J=\left(i_{1}, \ldots, i_{r-1}, i_{r}+j_{1}, j_{2}, \ldots, j_{s}\right)
$$

and

$$
I \cdot J=\left(i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}\right)
$$

Descent Sets and Compositions.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative
Symmetric Functions.

Another way to encode a composition $/$ of n is by a subset D of $\{1,2, \ldots, n-1\}$. If $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, then

$$
I=\left(d_{1}, d_{2}-d_{1}, d_{3}-d_{2}, \ldots, n-d_{k}\right)
$$

Example: Let $n=6$ and take a set $\{2,3,5\}$

Descent Sets and Compositions.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative

Another way to encode a composition $/$ of n is by a subset D of $\{1,2, \ldots, n-1\}$. If $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, then

$$
I=\left(d_{1}, d_{2}-d_{1}, d_{3}-d_{2}, \ldots, n-d_{k}\right)
$$

Example: Let $n=6$ and take a set $\{2,3,5\}$

Descent Sets and Compositions.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric
Functions.

Another way to encode a composition $/$ of n is by a subset D of $\{1,2, \ldots, n-1\}$. If $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, then

$$
I=\left(d_{1}, d_{2}-d_{1}, d_{3}-d_{2}, \ldots, n-d_{k}\right)
$$

Example: Let $n=6$ and take a set $\{2,3,5\}$

Descent Sets and Compositions.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative
Symmetric Functions.

Another way to encode a composition I of n is by a subset D of $\{1,2, \ldots, n-1\}$. If $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, then

$$
I=\left(d_{1}, d_{2}-d_{1}, d_{3}-d_{2}, \ldots, n-d_{k}\right)
$$

Example: Let $n=6$ and take a set $\{2,3,5\}$

Descent Sets and Compositions.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric Functions.

Another way to encode a composition I of n is by a subset D of $\{1,2, \ldots, n-1\}$. If $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, then

$$
I=\left(d_{1}, d_{2}-d_{1}, d_{3}-d_{2}, \ldots, n-d_{k}\right)
$$

Example: Let $n=6$ and take a set $\{2,3,5\}$

\square

Descent Sets and Compositions.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric Functions.

Another way to encode a composition I of n is by a subset D of $\{1,2, \ldots, n-1\}$. If $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, then

$$
I=\left(d_{1}, d_{2}-d_{1}, d_{3}-d_{2}, \ldots, n-d_{k}\right)
$$

Example: Let $n=6$ and take a set $\{2,3,5\}$

Descent Sets and Compositions.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutative
Symmetric Functions.

Another way to encode a composition I of n is by a subset D of $\{1,2, \ldots, n-1\}$. If $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$, then

$$
I=\left(d_{1}, d_{2}-d_{1}, d_{3}-d_{2}, \ldots, n-d_{k}\right)
$$

Example: Let $n=6$ and take a set $\{2,3,5\}$

Definitions of Quasi-Symmetric Functions.

Intro to
NSym and
QSym.
Lenny Tevlin
(Another)
Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative Symmetric Functions.

For every composition $I=\left(i_{1}, \ldots, i_{k}\right)$, the quasi-symmetric monomial is defined

$$
M_{I}=\sum_{s_{1}<\ldots<s_{k}} x_{s_{1}}^{i_{1}} \ldots x_{s_{k}}^{i_{k}}
$$

Definitions of Quasi-Symmetric Functions.

Intro to
NSym and
QSym.
Lenny Tevlin
(Another)
Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative
Symmetric Functions.

For every composition $I=\left(i_{1}, \ldots, i_{k}\right)$, the quasi-symmetric monomial is defined

$$
M_{I}=\sum_{s_{1}<\ldots<s_{k}} x_{s_{1}}^{i_{1}} \ldots x_{s_{k}}^{i_{k}}
$$

and quasi-symmetric fundamental

$$
L_{I}=\sum_{J \succeq I} M_{J}
$$

Examples of Quasi-Symmetric Functions

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative Symmetric Functions.

Monomials:

$$
\begin{aligned}
& M_{12}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2} \\
& M_{21}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}
\end{aligned}
$$

Examples of Quasi-Symmetric Functions

Intro to
NSym and
QSym.
Lenny Tevlin
(Another)
Tale of Two
Algebras: Motivation

Notations, conventions etc.

Quasi-
Symmetric Functions.

Noncommutative Symmetric Functions.

Monomials:

$$
\begin{aligned}
& M_{12}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2} \\
& M_{21}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}
\end{aligned}
$$

So that

$$
m_{21}=M_{21}+M_{12}
$$

Examples of Quasi-Symmetric Functions

Intro to
NSym and
QSym.
Lenny Tevlin
(Another)
Tale of Two
Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric Functions.

Monomials:

$$
\begin{aligned}
& M_{12}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2} \\
& M_{21}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}
\end{aligned}
$$

So that

$$
m_{21}=M_{21}+M_{12}
$$

In general,

$$
m_{\boldsymbol{\lambda}}=\sum_{I: \mathfrak{S}(I)=\boldsymbol{\lambda}} M_{l}
$$

Examples of Quasi-Symmetric Functions

Intro to NSym and QSym.

Lenny Tevlin

(Another)

Tale of Two

Notations, conventions, etc.

Quasi-
Symmetric Functions.

Monomials:

$$
\begin{aligned}
& M_{12}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2} \\
& M_{21}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}
\end{aligned}
$$

So that

$$
m_{21}=M_{21}+M_{12}
$$

In general,

$$
m_{\lambda}=\sum_{I: \mathfrak{S}(I)=\lambda} M_{l}
$$

Fundamental:

$$
L_{12}=M_{12}+M_{1^{3}}
$$

Examples of Quasi-Symmetric Functions

Intro to NSym and QSym.

Lenny Tevlin

(Another)

Tale of Two

Monomials:

$$
\begin{aligned}
& M_{12}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2} \\
& M_{21}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}
\end{aligned}
$$

So that

$$
m_{21}=M_{21}+M_{12}
$$

In general,

$$
m_{\boldsymbol{\lambda}}=\sum_{I: \mathfrak{S}(I)=\lambda} M_{l}
$$

Fundamental:

$$
\begin{gathered}
L_{12}=M_{12}+M_{1^{3}} \\
L_{13}=M_{13}+M_{1^{2} 2}+M_{121}+M_{1^{4}}
\end{gathered}
$$

Expansion of Schur Functions in Quasi-Symmetric Fundamental.

Intro to NSym and

QSym.
Lenny Tevlin
(Another)
Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative Symmetric Functions.

Consider a standard (skew-)tableau. A descent of SYT T is an integer i such that $i+1$ appears in a row of T above i. The descent set of $T, \operatorname{Des}(T)$ - is the set of all descents of T. Example: (desents are marked in bold)

Expansion of Schur Functions in Quasi-Symmetric Fundamental.

Consider a standard (skew-)tableau. A descent of SYT T is an integer i such that $i+1$ appears in a row of T above i. The descent set of $T, \operatorname{Des}(T)$ - is the set of all descents of T. Example: (desents are marked in bold)

$$
s_{\boldsymbol{\lambda} / \boldsymbol{\mu}}=\sum_{T: S Y T \text { of shape } \boldsymbol{\lambda} / \boldsymbol{\mu}} L_{\operatorname{Des}(T)}
$$

Expansion of Schur Functions in Quasi-Symmetric Fundamental.

Intro to NSym and QSym.

Lenny Tevlin

Consider a standard (skew-)tableau. A descent of SYT T is an integer i such that $i+1$ appears in a row of T above i. The descent set of $T, \operatorname{Des}(T)$ - is the set of all descents of T. Example: (desents are marked in bold)

$$
s_{\boldsymbol{\lambda} / \boldsymbol{\mu}}=\sum_{T: \text { SYT of shape } \boldsymbol{\lambda} / \boldsymbol{\mu}} L_{\operatorname{Des}(T)}
$$

Example continues:

$$
s_{32 / 1}=L_{3,1}+L_{1,2,1}+L_{1,3}+2 L_{2,2}
$$

Backsteps.

Intro to
NSym and
QSym.
Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions etc.

Quasi-
Symmetric Functions.

Noncommutative Symmetric Functions.

The backsteps of a permutation $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in S_{n}$ are $B S(w)=\{i \mid i+1$ is to the left of i in $w\}$. Denote the reading word (left to right, top to bottom) of T $w(T)$. Then

$$
\operatorname{Des}(T)=B S(w(T))
$$

Backsteps.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutative Symmetric Functions.

The backsteps of a permutation $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in S_{n}$ are $B S(w)=\{i \mid i+1$ is to the left of i in $w\}$.
Denote the reading word (left to right, top to bottom) of T $w(T)$. Then

$$
\operatorname{Des}(T)=B S(w(T))
$$

So, equivalently, one can look at the reading words of these tableaux: 1423, 2413, 2314, 3412, 1324 and record their backsteps.

$$
s_{\boldsymbol{\lambda} / \boldsymbol{\mu}}=\sum_{T: S Y T \text { of shape } \boldsymbol{\lambda} / \boldsymbol{\mu}} L_{B S(w(T))}
$$

Classical Symmetric Functions as Determinats.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutati Symmetric Functions.

Recall that in Sym there is a number of identities expressing one type of function (elementary, complete, Schur) as a determinant of other (power sums, complete, etc.). For instance,

$$
e_{n}=\frac{1}{n!}\left|\begin{array}{ccccc}
p_{1} & 1 & \ldots & 0 & 0 \\
p_{2} & p_{1} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
p_{n-1} & \ldots & \ldots & p_{1} & n-1 \\
p_{n} & \ldots & \ldots & p_{2} & p_{1}
\end{array}\right|
$$

Quasi-Determinants.

Consider an almost-triangular matrix with noncommutative entries $a_{i j}$ and commutative off-diagonal entries b_{j}. Its quasideterminant (with respect to the bottom left element) is a sum of all weighted paths starting at the bottom row, ending at the first column, taking northward until encoutering commutative off-diagonal entry and then turning east.

$$
\left|\begin{array}{ccc}
a_{11} & b_{1} & 0 \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{31}-\frac{a_{32} a_{11}}{b_{1}}-\frac{a_{33} a_{21}}{b_{2}}+\frac{a_{33} a_{22} a_{11}}{b_{1} b_{2}}
$$

Noncommutative Elementary and Homogeneous Symmetric Functions.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutati Symmetric Functions.

Define elementary symmetric functions Λ_{n} :

$$
\Lambda_{n}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{ccccc}
\Psi_{1} & 1 & 0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{n-1} & \Psi_{n-2} & \ldots & \ldots & n-1 \\
\Psi_{n} & \Psi_{n-1} & \ldots & \ldots & \Psi_{1}
\end{array}\right|
$$

Noncommutative Elementary and Homogeneous Symmetric Functions.

Intro to NSym and QSym.

Define elementary symmetric functions Λ_{n} :

$$
\Lambda_{n}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{ccccc}
\Psi_{1} & 1 & 0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{n-1} & \Psi_{n-2} & \ldots & \ldots & n-1 \\
\Psi_{n} & \Psi_{n-1} & \ldots & \ldots & \Psi_{1}
\end{array}\right|
$$

and complete symmetric functions S_{n} :

$$
S_{n}=\frac{1}{n}\left|\begin{array}{ccccc}
\Psi_{1} & -(n-1) & 0 & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{n-1} & \Psi_{n-2} & \ldots & \ldots & -1 \\
\Psi_{n} & \Psi_{n-1} & \ldots & \ldots & \Psi_{1}
\end{array}\right|
$$

Noncommutative Monomials.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two

Motivation

Notations, conventions, etc.

Quasi-

Symmetric
Functions.
Noncommutati Symmetric Functions.

Define noncommutative monomial symmetric function corresponding to a composition $I=\left(i_{1}, \ldots, i_{n}\right)$ as a quasideterminant of an n by n matrix:

$$
M^{\prime}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{cccccc}
\Psi_{i_{n}} & 1 & 0 & \ldots & 0 & 0 \\
\Psi_{i_{n-1}+i_{n}} & \Psi_{i_{n-1}} & 2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{i_{2}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{2}} & n-1 \\
\Psi_{i_{1}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{1}+i_{2}} & \Psi_{i_{1}}
\end{array}\right|
$$

where $n=\ell(I)$.

Noncommutative Monomials.

Define noncommutative monomial symmetric function corresponding to a composition $I=\left(i_{1}, \ldots, i_{n}\right)$ as a quasideterminant of an n by n matrix:

$$
M^{I}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{cccccc}
\Psi_{i_{n}} & 1 & 0 & \ldots & 0 & 0 \\
\Psi_{i_{n-1}+i_{n}} & \Psi_{i_{n-1}} & 2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{i_{2}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{2}} & n-1 \\
\Psi_{i_{1}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{1}+i_{2}} & \Psi_{i_{1}}
\end{array}\right|
$$

where $n=\ell(I)$. In particular

$$
M^{1^{n}}=\Lambda_{n}
$$

where Λ_{n} is an elementary symmetric function.

Noncommutative Monomials.

Define noncommutative monomial symmetric function

 corresponding to a composition $I=\left(i_{1}, \ldots, i_{n}\right)$ as a quasideterminant of an n by n matrix:$$
M^{\prime}=\frac{(-1)^{n-1}}{n}\left|\begin{array}{cccccc}
\Psi_{i_{n}} & 1 & 0 & \ldots & 0 & 0 \\
\Psi_{i_{n-1}+i_{n}} & \Psi_{i_{n-1}} & 2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\Psi_{i_{2}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{2}} & n-1 \\
\Psi_{i_{1}+\ldots+i_{n}} & \ldots & \ldots & \ldots & \Psi_{i_{1}+i_{2}} & \Psi_{i_{1}}
\end{array}\right|
$$

where $n=\ell(I)$. If one were to allow power sums to commute, say $\chi\left(\Psi_{k}\right)=p_{k}, \forall k$, i.e. projecting from NSym to Sym, then

$$
m_{\boldsymbol{\lambda}}=\sum_{I: \mathfrak{S}(I)=\lambda} \chi\left(M^{\prime}\right)
$$

Noncommutative Fundamental and Ribbon Schur Functions.

Define noncommutative fundamental symmetric functions mimicing the definition in QSym

$$
L^{\prime}=\sum_{J \succeq 1} M^{J}
$$

and ribbon Schur functions by Jacobi-Trudi formula using quasi-determinants:

$$
R^{\prime}=(-1)^{\ell(I)-1}\left|\begin{array}{ccccc}
S_{i_{n}} & 1 & 0 & \ldots & \ldots \\
S_{i_{n}+i_{n-1}} & S_{i_{n-1}} & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
S_{i_{n}+\ldots+i_{2}} & S_{i_{n-1}+\ldots+i_{2}} & \ldots & S_{i_{2}} & 1 \\
S_{i_{n}+\ldots+i_{1}} & S_{i_{n-1}+\ldots+i_{1}} & \ldots & \ldots & S_{i_{1}}
\end{array}\right|
$$

Genocchi Backsteps.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutati Symmetric Functions.

The G-backsteps of a permutation $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in S_{n}$ are positions of $\operatorname{GBS}(w)=\{i \mid i+1$ is to the left of i in $w\}$ minus 1.

Genocchi Backsteps.

Intro to NSym and QSym.

Lenny Tevlin

(Another)

Tale of Two
Algebras:
Motivation
Notations, conventions, etc.

Quasi-
Symmetric Functions.

Noncommutati Symmetric Functions.

The G-backsteps of a permutation $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in S_{n}$ are positions of $G B S(w)=\{i \mid i+1$ is to the left of i in $w\}$ minus 1.

Example

$$
\begin{aligned}
& G B S(1423)=\{3\} \\
& G B S(2413)=\{2,3\} \\
& G B S(2314)=\{2\} \\
& G B S(3412)=\{3\} \\
& G B S(1324)=\{2\}
\end{aligned}
$$

Expansion of Ribbon Schur in Noncommutative Fundamental.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutati Symmetric Functions.

$$
R^{\prime}=\sum_{T: \text { SYT of shape } I} L^{G B S(w((T))}
$$

Expansion of Ribbon Schur in Noncommutative Fundamental.

Intro to NSym and QSym.

Lenny Tevlin
(Another) Tale of Two Algebras: Motivation

Notations, conventions, etc.

Quasi-
Symmetric
Functions.
Noncommutati Symmetric Functions.

$$
R^{\prime}=\sum_{T: \text { SYT of shape } I} L^{G B S(w((T))}
$$

Example:

$$
R^{2,2}=2 L^{3,1}+L^{2,1,1}+2 L^{2,2}
$$

