Combinatorics of a Tropical Integrable Model

Reiho Sakamoto

Affine Schubert Calculus Workshop Fields Institute, Toronto, July 2010

CONTENTS

- Introduction
 Solitons, Tropical Limits
- 2. Definition of the Box-Ball System (BBS)
- 3. Rigged Configurations and the BBS
- 4. Tropical Tau Functions
- 5. Macdonald Polynomials

1. Introduction

Solitons, Tropical Limits

What are Solitons?

- Very stable solitary waves.
- They make NON-linear scatterings.
- Nevertheless they keep their original shapes after the collision.
- Usually we require such property for scattering of more than 3 solitons.

Typical Example

 The KdV equation is a typical example of the soliton equation.

$$u_t - 6uu_x + u_{xxx} = 0$$

- It is a nonlinear PDE.
- N-soliton solutions obtained by Gardner-Greene-Kruskal-Miura (1967).

Animation of the KdV Solitons

Nonlinearity

- Nonlinearity appears in shift of phases.
- phase ≈ position of a soliton.
- Look at the previous solution from above:
- Convention: Time proceeds downwards.

Tropical Limits

- Let us recall the tropical limits.
- For quantities

$$a = e^{A/\epsilon}, b = e^{B/\epsilon}$$

consider the limits

$$\lim_{\epsilon \to +0} \epsilon \log(a+b) = \max(A,B)$$

$$\lim_{\epsilon \to +0} \epsilon \log(a \times b) = A + B$$

Tropical Soliton Systems

- Tropical limit of a soliton system: Tokihiro-Takahashi-Matsukidaira-Satsuma (1996).
- According to their paper, tropical limit is called ultradiscrete limit in this context.
- Their tropical soliton system coincides with the Box-Ball System of Takahashi-Satsuma (1990).

Box-Ball System (BBS)

- During 1980's there were many attempts to find a soliton like cellular automaton.
 e.g. filter automaton of J.K. Park, K. Steiglitz & W.P. Thurston (1986)
- Takahashi-Satsuma added integrability.
- BBS is defined by a simple algorithm using balls moving on an array of boxes.
- BBS looks very simple, nevertheless there are deep mathematical structures.

Example of the BBS

```
22221111332143111111111111111111
11112222111332431111111111111111
1111111122221132433111111111111
111111111111122213224331111111111
11111111111111112211322433211111
11111111111111111122111322143321
```

- 1 \rightarrow empty box
- $2,3,4 \rightarrow$ species of balls

Mathematics Around BBS

- BBS is classical integrable system (soliton).
- BBS is also a quantum integrable system

 → Crystal bases of quantum affine algebras
 (Many authors, 1999).
- Bethe ansatz, Kostka-Foulkas polynomials, rigged configurations (to be explained).
- Tropical theta functions (Kuniba-S, 2006),
 Tropical geometry (Inoue-Takenawa, 2007)

2. Box-Ball System

Kirillov-Reshetikhin (KR) Crystals, Combinatorial R-matrices, Definition of the BBS

Kirillov-Reshetikhin(KR) Crystals

- Consider only type $A_n^{(1)}$.
- Denote by $B^{r,s}$ the set of KR crystals corresponding to KR module (wt. $s\Lambda_r$).
- As the set,
 B^{r,s} = {Semistandard Tableaux,
 height r, width s,
 letters from 1 to n+1}.

KR Crystals (2)

- On the set B^{r,s}, define algebraic structures:
 e_i, f_i Kashiwara operators
- Explicit algorithms for the actions of the Kashiwara operators are known.
 - i≠0 signature rule
 - i=0 promotion op. by Shimozono (1998)
- We will not use explicit actions in this talk.

Combinatorial R-matrices

- There is a simple algorithm for the action of Kashiwara operators on the tensor products.
- Combinatorial R-matrices reverses tensor product;
 - R: $B^{r,s} \otimes B^{r',s'} \simeq B^{r',s'} \otimes B^{r,s}$
- \simeq : R is a crystal isomorphism i.e., R commutes with all e_i and f_i .

Affinization

- For crystal B, define its affinization. As the set, $\mathsf{Aff}(B) := \{b[d] \mid b \in B, \ d \in \mathbb{Z}\}$
- There are actions of the Kashiwara op.
- Combinatorial R-matrices for affine crystals: $R:b[d]\otimes b'[d']\simeq \tilde{b}'[d'-H]\otimes \tilde{b}[d+H]$ where $H=H(b\otimes b')$ is the energy function.
- There is a recursive defining axiom for the energy functions.
- The Yang-Baxter relation holds for affine crystals.

Algorithm for R-matrices (1)

Row word of a tableau t: row(t)

row(t) = hij def abc

Row insertion:

$$t \leftarrow ab = ((t \leftarrow a) \leftarrow b)$$

Algorithm for R-matrices (2)

Theorem [Shimozono 1998](c.f. [Schilling-Warnaar 1998])

$$R:b\otimes b'\simeq \tilde{b}'\otimes \tilde{b}$$
 if and only if $(b'\leftarrow row(b))=(\tilde{b}\leftarrow row(\tilde{b}')).$

 $H = H(b \otimes b')$ is the number of boxes of $(b' \leftarrow row(b))$ outside of the concatenation of the shapes of b and b'.

$$H\left(\begin{array}{|c|c|c|c|c|} 1 & 1 & 4 \\ \hline 2 & 3 & 6 \\ \hline \end{array} \otimes \begin{array}{|c|c|c|c|c|} 2 & 3 \\ \hline 3 & 4 \\ \hline 4 & 5 \\ \hline \end{array}\right) = 3.$$

• Vertex diagram. For $a\otimes b\simeq c\otimes d$, write a

Definition of the BBS

- Highest weight element $u^1 \in B^{r,s}$
- Initial state: $b = b_1 \otimes \cdots \otimes b_L \in \bigotimes B^{r_i, s_i}$.
- Definition of the BBS time evolution op. $T^{r,s}$;

$$T^{r,s}(b) := b'_1 \otimes \cdots \otimes b'_L$$

3. Rigged Configurations

Rigged Configurations

Inverse Scattering Formalism of the BBS

Rigged Configuration Bijection

- is a bijection between two sets:
 - Highest weight elements of tensor products of KR crystals (paths)
 - Rigged Configurations (RC)

RC Bijection (2)

- Originally, RC bijection arises through a combinatorial analysis of the Bethe ansatz.
- Give proofs of the "Fermionic formula" of the Kostka-Foulkas polynomials.
- Type A
 - Kerov-Kirillov-Reshetikhin 1986,
 - Kirillov-Schilling-Shimozono 1999
- Types D, etc.
 - Okado-Schilling-Shimozono 2002,

RC and BBS are related.

- A Basic Observation by Kuniba-Okado-S-Takagi-Yamada (2006)
- RC bijection
 - = inverse scattering formalism of the BBS
 - i.e., it gives a complete set of
 - Conserved quantities &
 - Linearization parameters
 - for nonlinear dynamics of the BBS.

Statement

Theorem [KOSTY 2006]

Let the RC corresponding to p be $(\mu,r) = \{(\mu^{(1)},r^{(1)}),\cdots,(\mu^{(n)},r^{(n)})\}.$ Then the RC corresponding to $T^{a,l}(p)$ be $\{(\mu^{(1)},r^{(1)}),\cdots,(\mu^{(a)},r'^{(a)})\cdots,(\mu^{(n)},r^{(n)})\}$ where the rigging $r'^{(a)}$ shows linear evolution $r'^{(a)}_i = r^{(a)}_i + \min(l,\mu^{(a)}_i).$

4. Tropical Tau Functions

Energy Statistics,

Tropical Tau Functions

Energy Statistics (1)

• Definition.

Crystal formulation by Nakayashiki-Yamada.

C.f. Lascoux-Schützenberger's charge.

For (not necessarily highst weight elements)

$$p=b_1\otimes\cdots\otimes b_L\in \bigotimes_i B^{r_i,s_i}$$
,

define its energy statistic E(p) by

$$E(p) = \sum_{i < j} H(b_i \otimes b_j^{(i+1)}).$$

Energy Statistics (2)

• Meaning of $b_j^{(i)}$

$$\cdots \otimes b_i \otimes b_{i+1} \otimes \cdots \otimes b_{j-1} \otimes b_j \otimes \cdots \simeq$$

$$\cdots \otimes b_i \otimes b_{i+1} \otimes \cdots \otimes b_j^{(j-1)} \otimes b'_{j-1} \otimes \cdots \simeq$$

$$\cdots \cdots \simeq$$

$$\cdots \otimes b_i \otimes b_j^{(i+1)} \otimes \cdots \otimes b'_{j-2} \otimes b'_{j-1} \otimes \cdots$$

• Recall $E(p) = \sum_{i < j} H(b_i \otimes b_j^{(i+1)})$

Tau Functions

- Generalization of the energy statistics.
- For the highest element $u^{r,s} \in B^{r,s}$ define

$$\tau^{r,s}(p) := E(u^{r,s} \otimes p).$$

ullet For the highest elements $p \in \bigotimes_i B^{r_i,s_i}$ we have

$$\tau^{r,s}(p) = E(p).$$

Tropical Tau Functions (1)

 Tropical tau functions are defined for the case of crystals for symmetric tensor reps:

$$p \in \bigotimes_i B^{1,\lambda_i}$$
.

 Notation: rigged configuration corresponding to p:

$$(\mu, r) = \{(\mu^{(1)}, r^{(1)}), \cdots, (\mu^{(n)}, r^{(n)})\}$$

 $\mu^{(i)} = (\mu^{(i)}_j)$: i-th Young diagram (from left) $r^{(i)}_i$: the rigging corresp. to j-th row

Tropical Tau Functions (2)

Charge Function (of the Fermionic Formula)

$$c(\lambda, \mu, r) = \frac{1}{2} \sum_{a,b=1}^{n} C_{ab} \min(\mu^{(a)}, \mu^{(b)})$$

$$-\min(\lambda, \mu^{(1)}) + \sum_{a=1}^{n} |r^{(a)}|$$

where $\min(\lambda, \mu) = \sum_{i,j} \min(\lambda_i, \mu_j), |r| = \sum_i r_i$ and $C_{a,b}$ is the type A_n (finite) Cartan matrix.

Tropical Tau Functions (3)

Definition.

For
$$1 \leq i \leq n$$
,

$$\tau_i(\lambda) = -\min_{(\nu,s)\subset(\mu,r)} \{c(\lambda,\nu,s) + |\nu^{(i)}|\}.$$

Here, we consider (μ,r) as the set whose elements are the pairs $(\mu_i^{(a)},r_i^{(a)})$.

We take minimum over all possible subsets of (μ,r) in this sense.

Tropical Plücker Relation

- Notations: (1) $\tau_{k,i} := \tau_i(\lambda_1,\ldots,\lambda_k)$. (2) Use $\overline{\tau}$ for tau functions for $T^{1,\infty}(\mathsf{RC})$.
- Theorem [Kuniba-S-Yamada 2006] Tropical Plücker (or UD Hirota bilinear) relation $\bar{\tau}_{k,i-1} + \tau_{k-1,i}$ = $\max(\bar{\tau}_{k,i} + \tau_{k-1,i-1}, \bar{\tau}_{k-1,i-1} + \tau_{k,i} - \lambda_k)$.
- Related with the Weyl group description of the time evolution operators $T^{1,\infty}$.

Piecewise Linear Formula

- Tropical tau functions give a piecewise linear (PL) formula for energy statistics and their generalizations as follows:
- Theorem [Kuniba-S-Yamada 2006 & S 2006] Suppose that p corresponds to RC. Then

$$\tau^{1,\infty}(p) = \tau_{n+1}(RC).$$

Tropical RC Bijection

- Tropical tau functions give an explicit piecewise linear formula for the RC bijection.
- For the path $p=p_1\otimes\cdots\otimes p_L\in\otimes_i B^{r_i,s_i}$ denote the number of i in the tableaux representation of p_k by $x_{k,i}$.
- Theorem [Kuniba-S-Yamada 2006 & S 2006] For the image of the map RC \rightarrow p, we have $x_{k,i}=\tau_{k,i}-\tau_{k-1,i}-\tau_{k,i-1}+\tau_{k-1,i-1}.$

Initial value problem for BBS

- Combining
 - Inverse scattering formalism for the BBS
 - PL formula for the RC→path map

we obtain a solution for the initial value problem for the BBS.

5. Macdonald Polynomials

Macdonald polynomials & tau functions

Macdonald Polynomials

- We consider the following version of the Macdonald polynomials: $\widetilde{H}_{n}(x; x, t) = \sum_{i} \widetilde{K}_{n}(x, t) \cdot (x, t) \cdot (x, t)$
 - $\tilde{H}_{\mu}(x;q,t) = \sum_{\lambda} \tilde{K}_{\lambda,\mu}(q,t) s_{\lambda}(x),$ where $\tilde{K}_{\lambda,\mu}(q,t)$ is the Kostka-Macdonald polynomials and $s_{\lambda}(x)$ is the Schur Polynomial.
- We consider the Haglund-Haiman-Loehr (2004) formula for the Macdonald polynomials.

Tau functions with partition

- Consider $(B^{1,1})^{\otimes L}$ type path $p = p_1 p_2 \cdots p_L$.
- Let $\mu=(\mu_1\cdots\mu_m)$ be a composition. Denote by $p_{[1]}$ the first μ_1 letters of p, by $p_{[2]}$ the next μ_2 letters of p, and so on.
- Definition

$$\tau_{\mu}^{r,s}(p) = \sum_{i} \tau^{r,s}(p_{[i]}).$$

Conjecture

Conjecture [Kirillov-S 2009]

$$q^{-\sum_{i>r}\alpha_i}\sum_{p\in\mathcal{P}(\alpha)}q^{\tau_{\mu}^{r,1}(p)}=\sum_{\eta\vdash|\mu|}K_{\eta,\alpha}\tilde{K}_{\eta,\mu}(q,1).$$

 $\mathcal{P}(\alpha)$: set of all paths of weight α .

• $r=\infty$; t=1 specialization of a simplified version of the Haglund-Haiman-Loehr formula. $\tau^{\infty,1}$ coincides with Haglund's maj statistics. r=1; tau functions for the BBS.

Table of all paths of L = 6, wt= (4, 1, 1)

111123	111132	111213	111231	111312	111321
112113	112131	112311	113112	113121	113211
121113	121131	121311	123111	131112	131121
131211	132111	211113	211131	211311	213111
231111	311112	311121	311211	312111	321111

Table of $\tau_{(4,2)}^{3,1}(p)$

1	0	2	1	2	1
3	2	3	3	2	2
4	3	4	5	4	3
4	3	1	0	1	2
3	1	0	1	2	0

$$\sum q^{\tau} = (q^5 + 4q^4 + 7q^3 + 7q^2 + 7q + 4)$$

Table of $\tau_{(4,2)}^{2,1}(p)$

1	2	2	3	2	1
3	4	3	3	2	2
4	5	4	5	4	3
4	3	1	2	1	2
3	5	4	5	6	4

blue
$$\to$$
+2, red \to +4
 $\sum q^{\tau} = q(q^5 + 4q^4 + 7q^3 + 7q^2 + 7q + 4)$

Table of $\tau_{(4,2)}^{1,1}(p)$

3	2	2	3	2	3
3	4	3	3	4	2
4	5	4	5	4	5
4	3	5	6	5	6
7	5	6	5	6	4

blue
$$\to$$
+2, red \to +4
 $\sum q^{\tau} = q^2(q^5 + 4q^4 + 7q^3 + 7q^2 + 7q + 4)$

Thank you!