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Simple complex Lie algebra

g simple complex Lie algebra
g = n+ ⊕ h⊕ n−

P,P+ (dominant) weights, R,R+ (positive) roots
n+ = 〈eα | α ∈ R+〉, n− = 〈fα | α ∈ R+〉, h = 〈α∨ | α ∈ R+〉

For λ ∈ P+, V (λ) denotes the irreducible highest weight
module of highest weight λ generated by a nonzero highest
weight vector vλ.
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Current algebra

The current algebra is defined to be

g⊗ C[t ]

with Lie bracket

[x ⊗ t r , y ⊗ ts] = [x , y ]⊗ t r+s.

g = g⊗ 1 ⊂ g⊗ C[t ].

Given a ∈ C, then one can define a g⊗ C[t ]-action on V (λ) by

x ⊗ t .v = ax .v for v ∈ V .

Clearly, the g-action is not changed!
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Fusion product

For λ, µ ∈ P+ and a 6= b ∈ C the tensor product Va(λ)⊗ Vb(µ)
is cyclic generated by vλ ⊗ vµ. The natural filtration on
U(g⊗ C[t ]), given by the degree of t , induces a filtration on
Va(λ)⊗ Vb(µ).
The associated graded module is called the fusion product
(due to B.Feigin/Loktev), denoted by Va(λ) ∗ Vb(µ). Clearly

Va(λ)⊗ Vb(µ) ∼=g Va(λ) ∗ Vb(µ).

Since the module is cyclic one has

Va(λ) ∗ Vb(µ) ∼= U(g⊗ C[t ])/Ia,b(λ, µ)

for some ideal Ia,b(λ, µ).
How does this ideal look like? And why might this be
interesting?
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Conjecture

The ideal Ia,b(λ, µ) is generated by the set
n+ ⊗ C[t ]
h ⊗ t r − 0r (λ+ µ)(h)
(fα ⊗ 1)(λ+µ)(α

∨)+1

(fα ⊗ t)min{λ(α∨),µ(α∨)}+1.

g⊗ t2C[t ]
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The ideal contains these elements, so Va(λ) ∗ Vb(µ) is a
quotient of U(g⊗ C[t ])/(elements).
The ideal would be independent of a,b.
The subalgebra U(g⊗ tC[t ]) acts as a commutative
algebra.

Consider the subspace U(g⊗ tC[t ]).1, it decomposes into h
weight spaces, and the weight multiplicity is conjectured to be
cτλ,µ, the multiplicity of V (µ) in the tensor product V (λ)⊗ V (µ).
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PBW filtration

There is a natural filtration on U(n−), called the ”degree
filtration”

U(n−)s := {x1 · · · xl | xj ∈ n−; j ≤ s}
with

grU(n−) ∼= S(n−).

V (λ) = U(n−).vλ, so there is an induced filtration, called ”PBW
filtration”, on V (λ) given by

V (λ)s = U(n−)svλ
We are mainly interested in the associated graded space
grV (λ).
grV (λ) is a S(n−)-module by construction and since V (λ) is
cyclic, we have for some ideal I(λ) ⊂ S(n−)

grV (λ) ' S(n−)/I(λ)
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Main theorem

f λ(α
∨)+1

α ∈ I(λ)
U(n+) is acting on grV (λ), since n+V (λ)s ⊂ V (λ)s, so

U(n+) ◦ span{f λ(α∨)+1
α } ⊂ I(λ).

From now on let g be of type An.

Theorem (FFL)

We have for λ ∈ P+

I(λ) = S(n−)
(

U(n+) ◦ span{f λ(α∨)+1
α }

)
This is the analogue of the well known theorem in the
non-commutative setting.
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How to prove this?
Find a generating set for S(n−)/I(λ) and show it parametrizes a
linear independent set in V (λ).
As a byproduct we obtain a new class of pattern and basis for
irreducible An-modules. This basis was conjectured by Vinberg
(2005).
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Dyck path

Denote by αi the simple roots for An and set

αi,j = αi + αi+1 + . . .+ αj ,

all positive roots for An have this form.
A Dyck path p of length k is a sequence of roots β(0), . . . , β(k)
satisfying the following rules

If k = 0, then β(0) = αi for some i , so assume k > 0:
β(0), β(k) are simple roots, say β(0) = αi , β(k) = αj , with
i < j .
If β(`) = αi,j , then β(`) = αi,j+1 or β(`) = αi+1,j

Example

p = (α2, α2 + α3, α2 + α3 + α4, α3 + α4, α4, α4 + α5, α5)

Denote by D the set of all Dyck paths.
Fourier PBW filtration
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To have a picture:

α1

α12 α2
↓

α123 α23 α3
↓

α1234 α234 → α34 → α4
↓

α12345 α2345 α345 α45 → α5
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Polytope

Let λ =
∑

miωi ∈ P+, define P(λ) ⊂ R]roots
≥0 by

P(λ) :=

{
(sα)α>0 |

∀p ∈ D : If β(0) = αi , β(k) = αj , then
sβ(0) + · · ·+ sβ(k) ≤ mi + · · ·+ mj

}
.

Let S(λ) be the set of integer points in P(λ)

S(λ) = P(λ) ∩ Z]roots
≥0 .
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Pattern



m1
s1

m2
s12 s2

↓ m3
s123 s23 s3

↓ m4
s1234 s234 → s34 → s4

↓ m5
s12345 s2345 s345 s45 → s5
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Example
For g of type A2, there are only three Dyck paths

the two of length 1 corresponding to the simple roots

the path which involves all positive roots.

For λ = m1ω1 + m2ω2 the associated polytope is

P(λ) =

{(
s1
s12 s2

)
| 0 ≤ s1 ≤ m1,0 ≤ s2 ≤ m2,

s1 + s2 + s12 ≤ m1 + m2

}
,

This is just a transformation of the Gelfand-Tsetlin pattern for A2 and
highest weight λ.
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Basis

For a tuple s = (sα)α we define

f s =
∏
α

f sα
α ∈ S(n−)

Theorem (FFL)

The set {
∏

f sβ
β vλ | s ∈ S(λ)} is a basis for grV (λ).

If we fix an order in every tuple s, then we obtain

Corollary

The set {
∏

f sβ
β vλ | s ∈ S(λ)} is a basis of V (λ).
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This concept also works for type Cn, the definition of a Dyck
path has to be adjusted.
A Dyck path ends either in a simple root or in the highest root of
a Cr subalgebra of Cn (coming from a Cr subdiagram).
The polytope, pattern and basis is defined in the same way.
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GT pattern

There are a lot of other patterns for irreducible modules already
known, for example Gelfand-Tsetlin pattern GT (λ). In this
pattern there are ]roots-variables

ri,j | 1 ≤ j ≤ n, j ≤ i ≤ n,

and two inequalities for every variable

ri−1,j−1 ≥ ri,j ≥ ri,j−1,

where ri,0 := mn + . . .+ mi+1, for i = 0, . . . ,n.
Compare to S(λ):

Same polytope for A2.
For n > 2, S(λ) has more inequalities, much more. Every
Dyck path gives an inequality and the number of Dyck
paths is huge.
So what is the advantage??
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Advantages

We obtain generators and relation for grV (λ).
Obvious generalization to arbitrary types (exists for
GT-pattern as well, more complicated).
We obtain an graded character formula.
With the Minkowski sum we have S(λ) + S(µ) = S(λ+ µ).
Is P(λ) + P(µ) = P(λ+ µ)??
We obtain pattern for certain Demazure modules.
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back to the beginning....

V (λ)a ∗ V (λ)b
∼= U(g⊗ C[t ])/Ia,b(λ, µ)

Conjecture

The ideal Ia,b(λ, µ) is generated by the set

n+ ⊗ C[t ],h ⊗ t r − 0r (λ+ µ)(h), g⊗ t2C[t ]

(fα ⊗ 1)(λ+µ)(α
∨)+1, (fα ⊗ t)min{λ(α∨),µ(α∨)}+1.

.... we have proven this conjecture in the case, where λ >> µ.
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