Another basis and pattern for irreducible modules

E. Feigin ${ }^{1} \quad$ G. Fourier ${ }^{2} \quad$ P. Littelmann ${ }^{2}$
${ }^{1}$ Independent University Moscow
${ }^{2}$ Universität zu Köln

July 2010 / Toronto

Simple complex Lie algebra

- \mathfrak{g} simple complex Lie algebra

For $\lambda \in P^{+}, V(\lambda)$ denotes the irreducible highest weight module of highest weight λ generated by a nonzero highest weight vector v_{λ}

Simple complex Lie algebra

- \mathfrak{g} simple complex Lie algebra
- $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$
- P, P^{+}(dominant) weights, R, R^{+}(positive) roots

For $\lambda \in P^{+}, V(\lambda)$ denotes the irreducible highest weight module of highest weight λ generated by a nonzero highest weight vector v_{λ}

Simple complex Lie algebra

- \mathfrak{g} simple complex Lie algebra
- $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$
- P, P^{+}(dominant) weights, R, R^{+}(positive) roots

For $\lambda \in P^{+}, V(\lambda)$ denotes the irreducible highest weight module of highest weight λ generated by a nonzero highest weight vector v_{λ}

Simple complex Lie algebra

- \mathfrak{g} simple complex Lie algebra
- $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$
- P, P^{+}(dominant) weights, R, R^{+}(positive) roots
- $\mathfrak{n}^{+}=\left\langle\boldsymbol{e}_{\alpha} \mid \alpha \in R^{+}\right\rangle, \mathfrak{n}^{-}=\left\langle f_{\alpha} \mid \alpha \in R^{+}\right\rangle, \mathfrak{h}=\left\langle\alpha^{\vee} \mid \alpha \in R^{+}\right\rangle$

For $\lambda \in P^{+}, V(\lambda)$ denotes the irreducible highest weight
module of highest weight λ generated by a nonzero highest
weight vector v_{λ}.

Simple complex Lie algebra

- \mathfrak{g} simple complex Lie algebra
- $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$
- P, P^{+}(dominant) weights, R, R^{+}(positive) roots
- $\mathfrak{n}^{+}=\left\langle\boldsymbol{e}_{\alpha} \mid \alpha \in R^{+}\right\rangle, \mathfrak{n}^{-}=\left\langle f_{\alpha} \mid \alpha \in R^{+}\right\rangle, \mathfrak{h}=\left\langle\alpha^{\vee} \mid \alpha \in R^{+}\right\rangle$

For $\lambda \in P^{+}, V(\lambda)$ denotes the irreducible highest weight
module of highest weight λ generated by a nonzero highest
weight vector v_{λ}.

Simple complex Lie algebra

- \mathfrak{g} simple complex Lie algebra
- $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$
- P, P^{+}(dominant) weights, R, R^{+}(positive) roots
- $\mathfrak{n}^{+}=\left\langle\boldsymbol{e}_{\alpha} \mid \alpha \in R^{+}\right\rangle, \mathfrak{n}^{-}=\left\langle f_{\alpha} \mid \alpha \in R^{+}\right\rangle, \mathfrak{h}=\left\langle\alpha^{\vee} \mid \alpha \in R^{+}\right\rangle$

For $\lambda \in P^{+}, V(\lambda)$ denotes the irreducible highest weight module of highest weight λ generated by a nonzero highest weight vector v_{λ}.

Current algebra

The current algebra is defined to be

$$
\mathfrak{g} \otimes \mathbb{C}[t]
$$

with Lie bracket

$$
\begin{gathered}
{\left[x \otimes t^{r}, y \otimes t^{s}\right]=[x, y] \otimes t^{r+s}} \\
\mathfrak{g}=\mathfrak{g} \otimes 1 \subset \mathfrak{g} \otimes \mathbb{C}[t]
\end{gathered}
$$

Given $a \in \mathbb{C}$, then one can define a $\mathfrak{g} \otimes \mathbb{C}[t]$-action on $V(\lambda)$ by

$$
x \otimes t . v=a x . v \text { for } v \in V
$$

Clearly, the \mathfrak{g}-action is not changed!

Fusion product

For $\lambda, \mu \in P^{+}$and $a \neq b \in \mathbb{C}$ the tensor product $V_{a}(\lambda) \otimes V_{b}(\mu)$ is cyclic generated by $v_{\lambda} \otimes v_{\mu}$. The natural filtration on $\mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t])$, given by the degree of t, induces a filtration on $V_{a}(\lambda) \otimes V_{b}(\mu)$.
The associated graded module is called the fusion product (due to B.Feigin/Loktev), denoted by $V_{a}(\lambda) * V_{b}(\mu)$. Clearly

$$
V_{a}(\lambda) \otimes V_{b}(\mu) \cong_{\mathfrak{g}} V_{a}(\lambda) * V_{b}(\mu)
$$

Since the module is cyclic one has

$$
V_{a}(\lambda) * V_{b}(\mu) \cong \mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) / l_{a, b}(\lambda, \mu)
$$

for some ideal $l_{a, b}(\lambda, \mu)$.
How does this ideal look like? And why might this be

Fusion product

For $\lambda, \mu \in P^{+}$and $a \neq b \in \mathbb{C}$ the tensor product $V_{a}(\lambda) \otimes V_{b}(\mu)$ is cyclic generated by $v_{\lambda} \otimes v_{\mu}$. The natural filtration on $\mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t])$, given by the degree of t, induces a filtration on $V_{a}(\lambda) \otimes V_{b}(\mu)$.
The associated graded module is called the fusion product (due to B.Feigin/Loktev), denoted by $V_{a}(\lambda) * V_{b}(\mu)$. Clearly

$$
V_{a}(\lambda) \otimes V_{b}(\mu) \cong_{\mathfrak{g}} V_{a}(\lambda) * V_{b}(\mu)
$$

Since the module is cyclic one has

$$
V_{a}(\lambda) * V_{b}(\mu) \cong \mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) / I_{a, b}(\lambda, \mu)
$$

for some ideal $l_{a, b}(\lambda, \mu)$.
How does this ideal look like? And why might this be

Fusion product

For $\lambda, \mu \in P^{+}$and $a \neq b \in \mathbb{C}$ the tensor product $V_{a}(\lambda) \otimes V_{b}(\mu)$ is cyclic generated by $v_{\lambda} \otimes v_{\mu}$. The natural filtration on $\mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t])$, given by the degree of t, induces a filtration on $V_{a}(\lambda) \otimes V_{b}(\mu)$.
The associated graded module is called the fusion product (due to B.Feigin/Loktev), denoted by $V_{a}(\lambda) * V_{b}(\mu)$. Clearly

$$
V_{a}(\lambda) \otimes V_{b}(\mu) \cong_{\mathfrak{g}} V_{a}(\lambda) * V_{b}(\mu)
$$

Since the module is cyclic one has

$$
V_{a}(\lambda) * V_{b}(\mu) \cong \mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) / I_{a, b}(\lambda, \mu)
$$

for some ideal $l_{a, b}(\lambda, \mu)$.
How does this ideal look like? And why might this be interesting?

Conjecture

The ideal $l_{a, b}(\lambda, \mu)$ is generated by the set

- $\mathrm{n}^{+} \otimes \mathbb{C}[t]$
- $h \otimes t^{r}-0^{r}(\lambda+\mu)(h)$
- $\left(f_{\alpha} \otimes 1\right)^{(\lambda+\mu)\left(\alpha^{\vee}\right)+1}$
- $\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}$

Conjecture

The ideal $l_{a, b}(\lambda, \mu)$ is generated by the set

- $\mathfrak{n}^{+} \otimes \mathbb{C}[t]$
- $h \otimes t^{r}-0^{r}(\lambda+\mu)(h)$

- $\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}$

Conjecture

The ideal $l_{a, b}(\lambda, \mu)$ is generated by the set

- $\mathfrak{n}^{+} \otimes \mathbb{C}[t]$
- $h \otimes t^{r}-0^{r}(\lambda+\mu)(h)$
- $\left(f_{\alpha} \otimes 1\right)^{(\lambda+\mu)\left(\alpha^{\vee}\right)+1}$
- $\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}$

Conjecture

The ideal $l_{a, b}(\lambda, \mu)$ is generated by the set

- $\mathfrak{n}^{+} \otimes \mathbb{C}[t]$
- $h \otimes t^{r}-0^{r}(\lambda+\mu)(h)$
- $\left(f_{\alpha} \otimes 1\right)^{(\lambda+\mu)\left(\alpha^{\vee}\right)+1}$
- $\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}$

Conjecture

The ideal $I_{a, b}(\lambda, \mu)$ is generated by the set

- $\mathfrak{n}^{+} \otimes \mathbb{C}[t]$
- $h \otimes t^{r}-0^{r}(\lambda+\mu)(h)$
- $\left(f_{\alpha} \otimes 1\right)^{(\lambda+\mu)\left(\alpha^{\vee}\right)+1}$
- $\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}$.

Conjecture

The ideal $I_{a, b}(\lambda, \mu)$ is generated by the set

- $\mathfrak{n}^{+} \otimes \mathbb{C}[t]$
- $h \otimes t^{r}-0^{r}(\lambda+\mu)(h)$
- $\left(f_{\alpha} \otimes 1\right)^{(\lambda+\mu)\left(\alpha^{\vee}\right)+1}$
- $\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}$.
- $\mathfrak{g} \otimes t^{2} \mathbb{C}[t]$
- The ideal contains these elements, so $V_{a}(\lambda) * V_{b}(\mu)$ is a quotient of $\mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) /$ (elements).
- The ideal would be independent of a, b.
- The subalgebra $\mathbf{U}(\mathfrak{g} \otimes t \mathbb{C}[t])$ acts as a commutative algebra.

Consider the subspace $\mathbf{U}(\mathfrak{g} \otimes t \mathbb{C}[t]) .1$, it decomposes into \mathfrak{h} weight spaces, and the weight multiplicity is conjectured to be $c_{\lambda, \mu}^{\tau}$, the multiplicity of $V(\mu)$ in the tensor product $V(\lambda) \otimes V(\mu)$.

- The ideal contains these elements, so $V_{a}(\lambda) * V_{b}(\mu)$ is a quotient of $\mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) /($ elements).
- The ideal would be independent of a, b.
- The subalgebra $\mathbf{U}(g \otimes t \mathbb{C}[t])$ acts as a commutative algebra.

Consider the subspace $\mathrm{U}(g \otimes t \mathbb{C}[t]) .1$, it decomposes into \mathfrak{h} weight spaces, and the weight multiplicity is conjectured to be $c_{\lambda, \mu}^{\tau}$, the multiplicity of $V(\mu)$ in the tensor product $V(\lambda) \otimes V(\mu)$.

- The ideal contains these elements, so $V_{a}(\lambda) * V_{b}(\mu)$ is a quotient of $\mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) /($ elements).
- The ideal would be independent of a, b.
- The subalgebra $\mathbf{U}(\mathfrak{g} \otimes t \mathbb{C}[t])$ acts as a commutative algebra.

Consider the subspace $\mathbf{U}(\mathfrak{g} \otimes t \mathbb{C}[t]) .1$, it decomposes into \mathfrak{h} weight spaces, and the weight multiplicity is conjectured to be the multiplicity of $V(\mu)$ in the tensor product $V(\lambda)$

- The ideal contains these elements, so $V_{a}(\lambda) * V_{b}(\mu)$ is a quotient of $\mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) /($ elements).
- The ideal would be independent of a, b.
- The subalgebra $\mathbf{U}(\mathfrak{g} \otimes t \mathbb{C}[t])$ acts as a commutative algebra.

Consider the subspace $\mathbf{U}(\mathfrak{g} \otimes t \mathbb{C}[t]) .1$, it decomposes into \mathfrak{h} weight spaces, and the weight multiplicity is conjectured to be the multiplicity of $V(\mu)$ in the tensor product $V(\lambda)$

- The ideal contains these elements, so $V_{a}(\lambda) * V_{b}(\mu)$ is a quotient of $\mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) /($ elements).
- The ideal would be independent of a, b.
- The subalgebra $\mathbf{U}(\mathfrak{g} \otimes t \mathbb{C}[t])$ acts as a commutative algebra.

Consider the subspace $\mathbf{U}(\mathfrak{g} \otimes t \mathbb{C}[t]) .1$, it decomposes into \mathfrak{h} weight spaces, and the weight multiplicity is conjectured to be $c_{\lambda, \mu}^{\tau}$, the multiplicity of $V(\mu)$ in the tensor product $V(\lambda) \otimes V(\mu)$.

PBW filtration

There is a natural filtration on $\mathbf{U}\left(\mathfrak{n}^{-}\right)$, called the "degree filtration"

$$
U\left(\mathfrak{n}^{-}\right)_{s}:=\left\{x_{1} \cdots x_{l} \mid x_{j} \in \mathfrak{n}_{-} ; j \leq s\right\}
$$

with

$$
\operatorname{gr} \mathbf{U}\left(\mathfrak{n}^{-}\right) \cong S\left(\mathfrak{n}^{-}\right)
$$

$V(\lambda)=U\left(n^{-}\right) \cdot V_{\lambda}$, so there is an induced filtration, called "PBW filtration", on $V(\lambda)$ given by

$$
V(\lambda)_{s}=U\left(n^{-}\right)_{s} V_{\lambda}
$$

We are mainly interested in the associated graded space $\operatorname{grV}(\lambda)$
$\operatorname{grV}(\lambda)$ is a $S\left(n^{-}\right)$-module by construction and since $V(\lambda)$ is cyclic, we have for some ideal $I(\lambda) \subset S\left(\mathrm{n}^{-}\right)$

PBW filtration

There is a natural filtration on $\mathbf{U}\left(\mathfrak{n}^{-}\right)$, called the "degree filtration"

$$
U\left(\mathfrak{n}^{-}\right)_{s}:=\left\{x_{1} \cdots x_{l} \mid x_{j} \in \mathfrak{n}_{-} ; j \leq s\right\}
$$

with

$$
\operatorname{gr} \mathbf{U}\left(\mathfrak{n}^{-}\right) \cong S\left(\mathfrak{n}^{-}\right)
$$

$V(\lambda)=\mathbf{U}\left(\mathfrak{n}^{-}\right) \cdot v_{\lambda}$, so there is an induced filtration, called "PBW filtration", on $V(\lambda)$ given by

$$
V(\lambda)_{s}=\mathbf{U}\left(\mathfrak{n}^{-}\right)_{s} v_{\lambda}
$$

We are mainly interested in the associated graded space $\operatorname{grV}(\lambda)$.
$\operatorname{grV}(\lambda)$ is a $S\left(n^{-}\right)$-module by construction and since $V(\lambda)$ is cyclic, we have for some ideal $I(\lambda) \subset S\left(\mathrm{n}^{-}\right)$

PBW filtration

There is a natural filtration on $\mathbf{U}\left(\mathfrak{n}^{-}\right)$, called the "degree filtration"

$$
U\left(\mathfrak{n}^{-}\right)_{s}:=\left\{x_{1} \cdots x_{l} \mid x_{j} \in \mathfrak{n}_{-} ; j \leq s\right\}
$$

with

$$
\operatorname{gr} \mathbf{U}\left(\mathfrak{n}^{-}\right) \cong S\left(\mathfrak{n}^{-}\right)
$$

$V(\lambda)=\mathbf{U}\left(\mathfrak{n}^{-}\right) \cdot v_{\lambda}$, so there is an induced filtration, called "PBW filtration", on $V(\lambda)$ given by

$$
V(\lambda)_{s}=\mathbf{U}\left(\mathfrak{n}^{-}\right)_{s} v_{\lambda}
$$

We are mainly interested in the associated graded space $\operatorname{grV}(\lambda)$. $\operatorname{grV}(\lambda)$ is a $S\left(\mathfrak{n}^{-}\right)$-module by construction and since $V(\lambda)$ is

PBW filtration

There is a natural filtration on $\mathbf{U}\left(\mathfrak{n}^{-}\right)$, called the "degree filtration"

$$
U\left(\mathfrak{n}^{-}\right)_{s}:=\left\{x_{1} \cdots x_{l} \mid x_{j} \in \mathfrak{n}_{-} ; j \leq s\right\}
$$

with

$$
\operatorname{gr} \mathbf{U}\left(\mathfrak{n}^{-}\right) \cong S\left(\mathfrak{n}^{-}\right)
$$

$V(\lambda)=\mathbf{U}\left(\mathfrak{n}^{-}\right) \cdot v_{\lambda}$, so there is an induced filtration, called "PBW filtration", on $V(\lambda)$ given by

$$
V(\lambda)_{s}=\mathbf{U}\left(\mathfrak{n}^{-}\right)_{s} v_{\lambda}
$$

We are mainly interested in the associated graded space $\operatorname{grV}(\lambda)$. $\operatorname{grV}(\lambda)$ is a $S\left(\mathfrak{n}^{-}\right)$-module by construction and since $V(\lambda)$ is cyclic, we have for some ideal $I(\lambda) \subset S\left(\mathfrak{n}^{-}\right)$

$$
\operatorname{grV}(\lambda) \simeq S\left(\mathfrak{n}^{-}\right) / I(\lambda)
$$

Main theorem

- $f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1} \in I(\lambda)$
- $\mathbf{U}\left(n^{+}\right)$is acting on $\operatorname{grV}(\lambda)$, since $\mathfrak{n}^{+} V(\lambda)_{s} \subset V(\lambda)_{s}$, so $\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\} \subset I(\lambda)$.

From now on let \mathfrak{g} be of type A_{n}.

This is the analogue of the well known theorem in the non-commutative setting.

Main theorem

- $f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1} \in I(\lambda)$
- $\mathbf{U}\left(n^{+}\right)$is acting on $\operatorname{gr} V(\lambda)$, since $\mathfrak{n}^{+} V(\lambda)_{s} \subset V(\lambda)_{s}$, so

$$
\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\} \subset I(\lambda) .
$$

From now on let \mathfrak{g} be of type A_{n}.

This is the analogue of the well known theorem in the

Main theorem

- $f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1} \in I(\lambda)$
- $\mathbf{U}\left(n^{+}\right)$is acting on $\operatorname{gr} V(\lambda)$, since $\mathfrak{n}^{+} V(\lambda)_{s} \subset V(\lambda)_{s}$, so

$$
\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\} \subset I(\lambda) .
$$

From now on let \mathfrak{g} be of type A_{n}.

This is the analogue of the well known theorem in the

Main theorem

- $f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1} \in I(\lambda)$
- $\mathbf{U}\left(n^{+}\right)$is acting on $\operatorname{gr} V(\lambda)$, since $\mathfrak{n}^{+} V(\lambda)_{s} \subset V(\lambda)_{s}$, so

$$
\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\} \subset I(\lambda) .
$$

From now on let \mathfrak{g} be of type A_{n}.

Theorem (FFL)

We have for $\lambda \in P^{+}$

$$
I(\lambda)=S\left(\mathfrak{n}^{-}\right)\left(\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\}\right)
$$

This is the analogue of the well known theorem in the non-commutative setting.

Main theorem

- $f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1} \in I(\lambda)$
- $\mathbf{U}\left(n^{+}\right)$is acting on $\operatorname{gr} V(\lambda)$, since $\mathfrak{n}^{+} V(\lambda)_{s} \subset V(\lambda)_{s}$, so

$$
\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\} \subset I(\lambda) .
$$

From now on let \mathfrak{g} be of type A_{n}.

Theorem (FFL)

We have for $\lambda \in P^{+}$

$$
I(\lambda)=S\left(\mathfrak{n}^{-}\right)\left(\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\}\right)
$$

This is the analogue of the well known theorem in the non-commutative setting.

Main theorem

- $f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1} \in I(\lambda)$
- $\mathbf{U}\left(n^{+}\right)$is acting on $\operatorname{gr} V(\lambda)$, since $\mathfrak{n}^{+} V(\lambda)_{s} \subset V(\lambda)_{s}$, so

$$
\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\} \subset I(\lambda)
$$

From now on let \mathfrak{g} be of type A_{n}.

Theorem (FFL)

We have for $\lambda \in P^{+}$

$$
I(\lambda)=S\left(\mathfrak{n}^{-}\right)\left(\mathbf{U}\left(\mathfrak{n}^{+}\right) \circ \operatorname{span}\left\{f_{\alpha}^{\lambda\left(\alpha^{\vee}\right)+1}\right\}\right)
$$

This is the analogue of the well known theorem in the non-commutative setting.

How to prove this?

Find a generating set for $S\left(\mathfrak{n}^{-}\right) / I(\lambda)$ and show it parametrizes a linear independent set in $V(\lambda)$.
As a byproduct we obtain a new class of pattern and basis for irreducible A_{n}-modules. This basis was conjectured by Vinberg (2005).

How to prove this?

Find a generating set for $S\left(\mathfrak{n}^{-}\right) / I(\lambda)$ and show it parametrizes a linear independent set in $V(\lambda)$.
As a byproduct we obtain a new class of pattern and basis for irreducible A_{n}-modules. This basis was conjectured by Vinberg (2005).

Dyck path

Denote by α_{i} the simple roots for A_{n} and set

$$
\alpha_{i, j}=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j},
$$

all positive roots for A_{n} have this form.
A Dyck path \mathbf{p} of length k is a sequence of roots $\beta(0)$, satisfying the following rules

Dyck path

Denote by α_{i} the simple roots for A_{n} and set

$$
\alpha_{i, j}=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j},
$$

all positive roots for A_{n} have this form.
A Dyck path \mathbf{p} of length k is a sequence of roots $\beta(0), \ldots, \beta(k)$ satisfying the following rules

- If $k=0$, then $\beta(0)=\alpha_{i}$ for some i, so assume $k>0$:

Example
$\mathbf{p}=\left(\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}\right)$
Denote by \mathbb{D} the set of all Dyck paths.

Dyck path

Denote by α_{i} the simple roots for A_{n} and set

$$
\alpha_{i, j}=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j},
$$

all positive roots for A_{n} have this form.
A Dyck path \mathbf{p} of length k is a sequence of roots $\beta(0), \ldots, \beta(k)$ satisfying the following rules

- If $k=0$, then $\beta(0)=\alpha_{i}$ for some i, so assume $k>0$:
- $\beta(0), \beta(k)$ are simple roots, say $\beta(0)=\alpha_{i}, \beta(k)=\alpha_{j}$, with $i<j$.

[^0]$\mathbf{p}=\left(\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}\right)$
Denote by \mathbb{D} the set of all Dyck paths.

Dyck path

Denote by α_{i} the simple roots for A_{n} and set

$$
\alpha_{i, j}=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j},
$$

all positive roots for A_{n} have this form.
A Dyck path \mathbf{p} of length k is a sequence of roots $\beta(0), \ldots, \beta(k)$ satisfying the following rules

- If $k=0$, then $\beta(0)=\alpha_{i}$ for some i, so assume $k>0$:
- $\beta(0), \beta(k)$ are simple roots, say $\beta(0)=\alpha_{i}, \beta(k)=\alpha_{j}$, with $i<j$.
- If $\beta(\ell)=\alpha_{i, j}$, then $\beta(\ell)=\alpha_{i, j+1}$ or $\beta(\ell)=\alpha_{i+1, j}$

Example

$\mathbf{p}=\left(\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}\right)$
Denote by \mathbb{D} the set of all Dyck paths.

Dyck path

Denote by α_{i} the simple roots for A_{n} and set

$$
\alpha_{i, j}=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j},
$$

all positive roots for A_{n} have this form.
A Dyck path \mathbf{p} of length k is a sequence of roots $\beta(0), \ldots, \beta(k)$ satisfying the following rules

- If $k=0$, then $\beta(0)=\alpha_{i}$ for some i, so assume $k>0$:
- $\beta(0), \beta(k)$ are simple roots, say $\beta(0)=\alpha_{i}, \beta(k)=\alpha_{j}$, with $i<j$.
- If $\beta(\ell)=\alpha_{i, j}$, then $\beta(\ell)=\alpha_{i, j+1}$ or $\beta(\ell)=\alpha_{i+1, j}$

Example

$\mathbf{p}=\left(\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}\right)$
Denote by \mathbb{D} the set of all Dyck paths.

Dyck path

Denote by α_{i} the simple roots for A_{n} and set

$$
\alpha_{i, j}=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j},
$$

all positive roots for A_{n} have this form.
A Dyck path \mathbf{p} of length k is a sequence of roots $\beta(0), \ldots, \beta(k)$ satisfying the following rules

- If $k=0$, then $\beta(0)=\alpha_{i}$ for some i, so assume $k>0$:
- $\beta(0), \beta(k)$ are simple roots, say $\beta(0)=\alpha_{i}, \beta(k)=\alpha_{j}$, with $i<j$.
- If $\beta(\ell)=\alpha_{i, j}$, then $\beta(\ell)=\alpha_{i, j+1}$ or $\beta(\ell)=\alpha_{i+1, j}$

Example

$\mathbf{p}=\left(\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}\right)$
Denote by \mathbb{D} the set of all Dyck paths.

Dyck path

Denote by α_{i} the simple roots for A_{n} and set

$$
\alpha_{i, j}=\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j},
$$

all positive roots for A_{n} have this form.
A Dyck path \mathbf{p} of length k is a sequence of roots $\beta(0), \ldots, \beta(k)$ satisfying the following rules

- If $k=0$, then $\beta(0)=\alpha_{i}$ for some i, so assume $k>0$:
- $\beta(0), \beta(k)$ are simple roots, say $\beta(0)=\alpha_{i}, \beta(k)=\alpha_{j}$, with $i<j$.
- If $\beta(\ell)=\alpha_{i, j}$, then $\beta(\ell)=\alpha_{i, j+1}$ or $\beta(\ell)=\alpha_{i+1, j}$

Example

$\mathbf{p}=\left(\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}\right)$
Denote by \mathbb{D} the set of all Dyck paths.

To have a picture:

Polytope

Let $\lambda=\sum m_{i} \omega_{i} \in P^{+}$, define $P(\lambda) \subset \mathbb{R}_{\geq 0}^{\sharp r o o t s}$ by

$$
P(\lambda):=\left\{\begin{array}{l|l}
\left(s_{\alpha}\right)_{\alpha>0} \mid & \begin{array}{l}
\forall \mathbf{p} \in \mathbb{D}: \text { If } \beta(0)=\alpha_{i}, \beta(k)=\alpha_{j}, \text { then } \\
s_{\beta(0)}+\cdots+s_{\beta(k)} \leq m_{i}+\cdots+m_{j}
\end{array}
\end{array}\right\} .
$$

Let $S(\lambda)$ be the set of integer points in $P(\lambda)$

$$
S(\lambda)=P(\lambda) \cap \mathbb{Z}_{\geq 0}^{\text {troots }}
$$

Pattern

$\left(\begin{array}{ccccccc}\mathbf{m}_{\mathbf{1}} & & & & & & \\ s_{1} & & & & & & \\ & \mathbf{m}_{\mathbf{2}} & & & & & \\ s_{12} & s_{2} & & & & & \\ & \downarrow & & \mathbf{m}_{\mathbf{3}} & & & \\ & s_{123} & s_{23} & & s_{3} & & \\ & \downarrow & & & & \mathbf{m}_{\mathbf{4}} & \\ & s_{1234} & s_{234} & \rightarrow & s_{34} & \rightarrow & s_{4} \\ & & & & & \downarrow & \\ s_{12345} & s_{2345} & & s_{345} & & s_{45} & \rightarrow \\ & & & & & s_{5}\end{array}\right)$

Example

For \mathfrak{g} of type A_{2}, there are only three Dyck paths

- the two of length 1 corresponding to the simple roots
- the path which involves all positive roots.

For $\lambda=m_{1} \omega_{1}+m_{2} \omega_{2}$ the associated polytope is

$$
P(\lambda)=\left\{\left(\begin{array}{ll}
s_{1} & \\
s_{12} & s_{2}
\end{array}\right) \left\lvert\, \begin{array}{l}
0 \leq s_{1} \leq m_{1}, 0 \leq s_{2} \leq m_{2} \\
s_{1}+s_{2}+s_{12} \leq m_{1}+m_{2}
\end{array}\right.\right\},
$$

This is just a transformation of the Gelfand-Tsetlin pattern for A_{2} and highest weight λ.

Example

For \mathfrak{g} of type A_{2}, there are only three Dyck paths

- the two of length 1 corresponding to the simple roots
- the path which involves all positive roots.

For $\lambda=m_{1} \omega_{1}+m_{2} \omega_{2}$ the associated polytope is
$P(\lambda)=\left\{\left(\begin{array}{ll}s_{1} & \\ s_{12} & s_{2}\end{array}\right) \left\lvert\, \begin{array}{l}0 \leq s_{1} \leq m_{1}, 0 \leq s_{2} \leq m_{2}, \\ s_{1}+s_{2}+s_{12} \leq m_{1}+m_{2}\end{array}\right.\right\}$
This is just a transformation of the Gelfand-Tsetlin pattern for A_{2} and highest weight λ.

Example

For \mathfrak{g} of type A_{2}, there are only three Dyck paths

- the two of length 1 corresponding to the simple roots
- the path which involves all positive roots.

For $\lambda=m_{1} \omega_{1}+m_{2} \omega_{2}$ the associated polytope is
$P(\lambda)=\left\{\left(\begin{array}{cc}s_{1} & \\ s_{12} & s_{2}\end{array}\right) \left\lvert\, \begin{array}{l}0 \leq s_{1} \leq m_{1}, 0 \leq s_{2} \leq m_{2} \\ s_{1}+s_{2}+s_{12} \leq m_{1}+m_{2}\end{array}\right.\right\}$
This is just a transformation of the Gelfand Tsetlin pattern for Δ_{2} and highest weight λ.

Example

For \mathfrak{g} of type A_{2}, there are only three Dyck paths

- the two of length 1 corresponding to the simple roots
- the path which involves all positive roots.

For $\lambda=m_{1} \omega_{1}+m_{2} \omega_{2}$ the associated polytope is
$P(\lambda)=\left\{\left(\begin{array}{cc}s_{1} & \\ s_{12} & s_{2}\end{array}\right) \left\lvert\, \begin{array}{l}0 \leq s_{1} \leq m_{1}, 0 \leq s_{2} \leq m_{2} \\ s_{1}+s_{2}+s_{12} \leq m_{1}+m_{2}\end{array}\right.\right\}$
This is just a transformation of the Gelfand Tsetlin pattern for Δ_{2} and highest weight λ.

Example

For \mathfrak{g} of type A_{2}, there are only three Dyck paths

- the two of length 1 corresponding to the simple roots
- the path which involves all positive roots.

For $\lambda=m_{1} \omega_{1}+m_{2} \omega_{2}$ the associated polytope is

$$
P(\lambda)=\left\{\left(\begin{array}{ll}
s_{1} & \\
s_{12} & s_{2}
\end{array}\right) \left\lvert\, \begin{array}{l}
0 \leq s_{1} \leq m_{1}, 0 \leq s_{2} \leq m_{2} \\
s_{1}+s_{2}+s_{12} \leq m_{1}+m_{2}
\end{array}\right.\right\}
$$

This is just a transformation of the Gelfand-Tsetlin pattern for A_{2} and highest weight λ.

Basis

For a tuple $\mathbf{s}=\left(s_{\alpha}\right)_{\alpha}$ we define

$$
f^{\mathbf{s}}=\prod_{\alpha} f_{\alpha}^{s_{\alpha}} \in \mathbf{S}\left(\mathfrak{n}^{-}\right)
$$

If we fix an order in every tuple s, then we obtain

Basis

For a tuple $\mathbf{s}=\left(s_{\alpha}\right)_{\alpha}$ we define

$$
f^{\mathbf{s}}=\prod_{\alpha} f_{\alpha}^{s_{\alpha}} \in \mathbf{S}\left(\mathfrak{n}^{-}\right)
$$

Theorem (FFL)

The set $\left\{\prod f_{\beta}^{s_{\beta}} v_{\lambda} \mid \mathbf{s} \in S(\lambda)\right\}$ is a basis for $\operatorname{gr} V(\lambda)$.

If we fix an order in every tuple s, then we obtain

Basis

For a tuple $\mathbf{s}=\left(s_{\alpha}\right)_{\alpha}$ we define

$$
f^{\mathbf{s}}=\prod_{\alpha} f_{\alpha}^{s_{\alpha}} \in \mathbf{S}\left(\mathfrak{n}^{-}\right)
$$

Theorem (FFL)

The set $\left\{\prod f_{\beta}^{s_{\beta}} v_{\lambda} \mid \mathbf{s} \in S(\lambda)\right\}$ is a basis for $\operatorname{gr} V(\lambda)$.

If we fix an order in every tuple s, then we obtain

Basis

For a tuple $\mathbf{s}=\left(s_{\alpha}\right)_{\alpha}$ we define

$$
f^{\mathbf{s}}=\prod_{\alpha} f_{\alpha}^{s_{\alpha}} \in \mathbf{S}\left(\mathfrak{n}^{-}\right)
$$

Theorem (FFL)

The set $\left\{\prod f_{\beta}^{s_{\beta}} v_{\lambda} \mid \mathbf{s} \in S(\lambda)\right\}$ is a basis for $\operatorname{grV}(\lambda)$.
If we fix an order in every tuple s, then we obtain

Corollary

The set $\left\{\prod f_{\beta}^{s_{\beta}} v_{\lambda} \mid \mathbf{s} \in S(\lambda)\right\}$ is a basis of $V(\lambda)$.

This concept also works for type C_{n}, the definition of a Dyck path has to be adjusted.
A Dyck path ends either in a simple root or in the highest root of a C_{r} subalgebra of C_{n} (coming from a C_{r} subdiagram). The polytope, pattern and basis is defined in the same way.

GT pattern

There are a lot of other patterns for irreducible modules already known, for example Gelfand-Tsetlin pattern $G T(\lambda)$. In this pattern there are \sharp roots-variables

$$
r_{i, j} \mid 1 \leq j \leq n, j \leq i \leq n,
$$

and two inequalities for every variable

$$
r_{i-1, j-1} \geq r_{i, j} \geq r_{i, j-1}
$$

where $r_{i, 0}:=m_{n}+\ldots+m_{i+1}$, for $i=0, \ldots, n$.

GT pattern

There are a lot of other patterns for irreducible modules already known, for example Gelfand-Tsetlin pattern $G T(\lambda)$. In this pattern there are \sharp roots-variables

$$
r_{i, j} \mid 1 \leq j \leq n, j \leq i \leq n,
$$

and two inequalities for every variable

$$
r_{i-1, j-1} \geq r_{i, j} \geq r_{i, j-1}
$$

where $r_{i, 0}:=m_{n}+\ldots+m_{i+1}$, for $i=0, \ldots, n$.
Compare to $S(\lambda)$:

- Same polytope for A_{2}.
- For $n>2, S(\lambda)$ has more inequalities, much more. Every

Dyck path gives an inequality and the number of Dyck
paths is huge.

- So what is the advantage??

GT pattern

There are a lot of other patterns for irreducible modules already known, for example Gelfand-Tsetlin pattern $G T(\lambda)$. In this pattern there are \sharp roots-variables

$$
r_{i, j} \mid 1 \leq j \leq n, j \leq i \leq n,
$$

and two inequalities for every variable

$$
r_{i-1, j-1} \geq r_{i, j} \geq r_{i, j-1}
$$

where $r_{i, 0}:=m_{n}+\ldots+m_{i+1}$, for $i=0, \ldots, n$.
Compare to $S(\lambda)$:

- Same polytope for A_{2}.
- For $n>2, S(\lambda)$ has more inequalities, much more. Every Dyck path gives an inequality and the number of Dyck paths is huge.

GT pattern

There are a lot of other patterns for irreducible modules already known, for example Gelfand-Tsetlin pattern $G T(\lambda)$. In this pattern there are \sharp roots-variables

$$
r_{i, j} \mid 1 \leq j \leq n, j \leq i \leq n,
$$

and two inequalities for every variable

$$
r_{i-1, j-1} \geq r_{i, j} \geq r_{i, j-1}
$$

where $r_{i, 0}:=m_{n}+\ldots+m_{i+1}$, for $i=0, \ldots, n$.
Compare to $S(\lambda)$:

- Same polytope for A_{2}.
- For $n>2, S(\lambda)$ has more inequalities, much more. Every Dyck path gives an inequality and the number of Dyck paths is huge.
- So what is the advantage??

Advantages

- We obtain generators and relation for $\operatorname{gr} V(\lambda)$.
- Obvious generalization to arbitrary types (exists for GT-pattern as well, more complicated).
- We obtain an araded character formula.
- With the Minkowski sum we have $S(\lambda)+S(\mu)=S(\lambda+\mu)$. Is $P(\lambda)+P(\mu)=P(\lambda+\mu) ? ?$
- We obtain pattern for certain Demazure modules.

Advantages

- We obtain generators and relation for $\operatorname{grV}(\lambda)$.
- Obvious generalization to arbitrary types (exists for GT-pattern as well, more complicated).
- We obtain an graded character formula.
- With the Minkowski sum we have $S(\lambda)+S(\mu)=S(\lambda+\mu)$. Is $P(\lambda)+P(\mu)=P(\lambda+\mu)$??
- We obtain pattern for certain Demazure modules.

Advantages

- We obtain generators and relation for $\operatorname{gr} V(\lambda)$.
- Obvious generalization to arbitrary types (exists for GT-pattern as well, more complicated).
- We obtain an graded character formula.
- With the Minkowski sum we have $S(\lambda)+S(\mu)=S(\lambda+\mu)$.
Is $P(\lambda)+P(\mu)=P(\lambda+\mu)$??
- We obtain pattern for certain Demazure modules.

Advantages

- We obtain generators and relation for $\operatorname{gr} V(\lambda)$.
- Obvious generalization to arbitrary types (exists for GT-pattern as well, more complicated).
- We obtain an graded character formula.
- With the Minkowski sum we have $S(\lambda)+S(\mu)=S(\lambda+\mu)$. Is $P(\lambda)+P(\mu)=P(\lambda+\mu) ? ?$
- We obtain pattern for certain Demazure modules.

Advantages

- We obtain generators and relation for $\operatorname{gr} V(\lambda)$.
- Obvious generalization to arbitrary types (exists for GT-pattern as well, more complicated).
- We obtain an graded character formula.
- With the Minkowski sum we have $S(\lambda)+S(\mu)=S(\lambda+\mu)$. Is $P(\lambda)+P(\mu)=P(\lambda+\mu) ? ?$
- We obtain pattern for certain Demazure modules.

back to the beginning....

$$
V(\lambda)_{a} * V(\lambda)_{b} \cong \mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) / I_{a, b}(\lambda, \mu)
$$

back to the beginning....

$$
V(\lambda)_{a} * V(\lambda)_{b} \cong \mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) / I_{a, b}(\lambda, \mu)
$$

Conjecture

The ideal $l_{a, b}(\lambda, \mu)$ is generated by the set

$$
\begin{gathered}
\mathfrak{n}^{+} \otimes \mathbb{C}[t], h \otimes t^{r}-0^{r}(\lambda+\mu)(h), \mathfrak{g} \otimes t^{2} \mathbb{C}[t] \\
\left(f_{\alpha} \otimes 1\right)^{(\lambda+\mu)\left(\alpha^{\vee}\right)+1},\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}
\end{gathered}
$$

we have proven this conjecture in the case, where $\lambda \gg \mu$.
back to the beginning....

$$
V(\lambda)_{a} * V(\lambda)_{b} \cong \mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) / I_{a, b}(\lambda, \mu)
$$

Conjecture

The ideal $l_{a, b}(\lambda, \mu)$ is generated by the set

$$
\begin{gathered}
\mathfrak{n}^{+} \otimes \mathbb{C}[t], h \otimes t^{r}-0^{r}(\lambda+\mu)(h), \mathfrak{g} \otimes t^{2} \mathbb{C}[t] \\
\left(f_{\alpha} \otimes 1\right)^{(\lambda+\mu)\left(\alpha^{\vee}\right)+1},\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}
\end{gathered}
$$

we have proven this conjecture in the case, where $\lambda \gg \mu$.
back to the beginning....

$$
V(\lambda)_{a} * V(\lambda)_{b} \cong \mathbf{U}(\mathfrak{g} \otimes \mathbb{C}[t]) / l_{a, b}(\lambda, \mu)
$$

Conjecture

The ideal $l_{a, b}(\lambda, \mu)$ is generated by the set

$$
\begin{gathered}
\mathfrak{n}^{+} \otimes \mathbb{C}[t], h \otimes t^{r}-0^{r}(\lambda+\mu)(h), \mathfrak{g} \otimes t^{2} \mathbb{C}[t] \\
\left(f_{\alpha} \otimes 1\right)^{(\lambda+\mu)\left(\alpha^{\vee}\right)+1},\left(f_{\alpha} \otimes t\right)^{\min \left\{\lambda\left(\alpha^{\vee}\right), \mu\left(\alpha^{\vee}\right)\right\}+1}
\end{gathered}
$$

.... we have proven this conjecture in the case, where $\lambda \gg \mu$.

[^0]: Example

