A Bijection on Core Partitions and a Parabolic Quotient of the Affine Symmetric Group

Chris Berg Joint with Brant Jones and Monica Vazirani Journal of Combinatorial Theory, Series A

Fields Institute

July 12, 2010

First Description of Φ_{ℓ}^{k}

Fix $\ell \geq 2$, an integer.

Definition: ℓ -cores with first part k

We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ -cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ -cores with first part $\leq k$.

A map on ℓ-cores:

We define a map $\Phi_{\ell}^k : \mathcal{C}_{\ell}^k \to \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^k$, we just delete all rows i of λ if $h_{(i,1)}^{\lambda} \equiv h_{(1,1)}^{\lambda} \mod \ell$.

Theorem

 Φ_{ℓ}^{k} is a bijection

First Description of Φ_{ℓ}^{k}

Fix $\ell \geq 2$, an integer.

Definition: ℓ -cores with first part k

We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ -cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ -cores with first part $\leq k$.

A map on *ℓ*-cores:

We define a map $\Phi_{\ell}^{k}: \mathcal{C}_{\ell}^{k} \to \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^{k}$, we just delete all rows i of λ if $h_{(i,1)}^{\lambda} \equiv h_{(1,1)}^{\lambda} \mod \ell$.

Theorem Φ_{ℓ}^{k} is a bijection

First Description of Φ_{ℓ}^{k}

Fix $\ell \geq 2$, an integer.

Definition: ℓ -cores with first part k

We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ -cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ -cores with first part $\leq k$.

A map on ℓ-cores:

We define a map $\Phi_{\ell}^{k}: \mathcal{C}_{\ell}^{k} \to \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^{k}$, we just delete all rows i of λ if $h_{(i,1)}^{\lambda} \equiv h_{(1,1)}^{\lambda} \mod \ell$.

Theorem

 Φ_{ℓ}^{k} is a bijection.

Example of Bijection: A 4-core with first part 8

From this description, it isn't obvious that Φ_4^8 maps a 4-core to a 3-core. It is also not obvious that this is a bijection. We introduce *abaci* to prove that this map is a bijection.

Example of Bijection: A 4-core with first part 8

From this description, it isn't obvious that Φ_4^8 maps a 4-core to a 3-core. It is also not obvious that this is a bijection. We introduce *abaci* to prove that this map is a bijection.

Definition: Abacus

An **abacus diagram** is a diagram containing ℓ columns labeled $0,1,\ldots,\ell-1$, called **runners**. The horizontal cross-sections or rows will be called **levels** and runner i contains entries labeled by $r\ell+i$ on each level r where $-\infty < r < \infty$.

Definition: Beads and Gaps

Entries in the abacus diagram may be circled; such circled elements are called **beads**. Entries which are not circled will be called **gaps**.

Abaci corresponding to partitions

An abacus for λ will be any abacus diagram such that the i^{th} largest bead has λ_i gaps in smaller positions.

Definition: Abacus

An **abacus diagram** is a diagram containing ℓ columns labeled $0, 1, \ldots, \ell-1$, called **runners**. The horizontal cross-sections or rows will be called **levels** and runner i contains entries labeled by $r\ell+i$ on each level r where $-\infty < r < \infty$.

Definition: Beads and Gaps

Entries in the abacus diagram may be circled; such circled elements are called **beads**. Entries which are not circled will be called **gaps**.

Abaci corresponding to partitions

An abacus for λ will be any abacus diagram such that the i^{th} largest bead has λ_i gaps in smaller positions.

Definition: Abacus

An **abacus diagram** is a diagram containing ℓ columns labeled $0, 1, \ldots, \ell-1$, called **runners**. The horizontal cross-sections or rows will be called **levels** and runner i contains entries labeled by $r\ell+i$ on each level r where $-\infty < r < \infty$.

Definition: Beads and Gaps

Entries in the abacus diagram may be circled; such circled elements are called **beads**. Entries which are not circled will be called **gaps**.

Abaci corresponding to partitions

An abacus for λ will be any abacus diagram such that the i^{th} largest bead has λ_i gaps in smaller positions.

Example of an Abacus: $\ell = 4$ and $\lambda = (10, 10, 4, 2, 2)$

Description of Bijection on Abaci

Lemma: ℓ-cores on an abacus

A partition is an ℓ -core if and only if for every runner has no bead below a gap.

Proposition: Φ_{ℓ}^{k} on abaci

Given an abacus for λ , find the largest bead. Delete the entire runner containing it.

Why abaci?

In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible

Description of Bijection on Abaci

Lemma: ℓ-cores on an abacus

A partition is an ℓ -core if and only if for every runner has no bead below a gap.

Proposition: Φ_{ℓ}^{k} on abaci

Given an abacus for λ , find the largest bead. Delete the entire runner containing it.

Why abaci?

In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible

Description of Bijection on Abaci

Lemma: ℓ-cores on an abacus

A partition is an ℓ -core if and only if for every runner has no bead below a gap.

Proposition: Φ_{ℓ}^{k} on abaci

Given an abacus for λ , find the largest bead. Delete the entire runner containing it.

Why abaci?

In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible.

8

Connections to Lapointe Morse bijection

Definition

We let \mathcal{P}_{ℓ}^k denote the set of all ℓ bounded partitions with length k, and let $\mathcal{P}_{\ell}^{\leq k}$ denote the ℓ bounded partitions with length less than or equal to k.

Bijection

For $\lambda \in \mathcal{P}_{\ell}^{k}$, define $\Psi_{\ell}^{k}(\lambda)$ to be the partition obtained by removing the first column of λ . Then Ψ_{ℓ}^{k} is a bijection between \mathcal{P}_{ℓ}^{k} and $\mathcal{P}_{\ell-1}^{\leq k}$.

Connections to Lapointe Morse bijection

Definition

We let \mathcal{P}_{ℓ}^{k} denote the set of all ℓ bounded partitions with length k, and let $\mathcal{P}_{\ell}^{\leq k}$ denote the ℓ bounded partitions with length less than or equal to k.

Bijection

For $\lambda \in \mathcal{P}_{\ell}^k$, define $\Psi_{\ell}^k(\lambda)$ to be the partition obtained by removing the first column of λ . Then Ψ_{ℓ}^k is a bijection between \mathcal{P}_{ℓ}^k and $\mathcal{P}_{\ell-1}^{\leq k}$.

Viewed in terms of Lapointe-Morse bijection

Theorem

The following diagram commutes:

All arrows here are bijections!

An equivalent description of Lapointe-Morse bijection

Out of the proof that the diagram commutes, we derived the following corollary.

Corollary

The Lapointe-Morse bijection can be described on ℓ -cores by keeping only the first column of each residue in a Young diagram.

Example

Let $\ell=5$ and $\lambda=(9,5,3,2,2,1,1,1,1)$. We retain the columns 1,3,5,7 resulting in $\rho_5(\lambda)=(4,3,2,1,1,1,1,1)$.

Association of cores to reduced words

Recall that ℓ -cores are also in bijection with the reduced words in $\widetilde{S_\ell}$ whose reduced words all end in s_0 (called affine grassmannian permutations).

Equivalently, these words are minimal length coset representatives of $\widetilde{S}_{\ell}/S_{\ell}$.

Example

This shows that the 4-core (5, 2, 1, 1, 1) is identified with the affine grassmannian permutation $s_0s_1s_2s_3s_2s_1s_0$.

Bijection on Words

We can now interpret our bijection as a map

$$\Phi_\ell: \widehat{S}_\ell/S_\ell o \widehat{S}_{\ell-1}/S_{\ell-1}$$

Proposition:

For a word
$$w$$
, $len(\Phi_{\ell}(w)) = len(w) - (w\emptyset)_1$.

For a description of Φ_{ℓ} , see our paper.

The Root Lattice

Pick an orthonormal basis $\epsilon_1, \ldots, \epsilon_\ell$ of \mathbb{R}^ℓ . Let $R = \{\epsilon_i - \epsilon_j : i \neq j\}$. Let Λ_R be the lattice of R and let V be the subspace of \mathbb{R}^n spanned by R.

There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ} . S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_R and V.

The action of S_{ℓ} on V can be extended to an action of S_{ℓ} : the generator s_0 acts by reflection of an affine hyperplane.

The Root Lattice

Pick an orthonormal basis $\epsilon_1, \ldots, \epsilon_\ell$ of \mathbb{R}^ℓ . Let $R = \{\epsilon_i - \epsilon_j : i \neq j\}$. Let Λ_R be the lattice of R and let V be the subspace of \mathbb{R}^n spanned by R.

There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ} . S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_R and V.

The action of S_{ℓ} on V can be extended to an action of S_{ℓ} : the generator s_0 acts by reflection of an affine hyperplane.

The Root Lattice

Pick an orthonormal basis $\epsilon_1, \ldots, \epsilon_\ell$ of \mathbb{R}^ℓ . Let $R = \{\epsilon_i - \epsilon_j : i \neq j\}$. Let Λ_R be the lattice of R and let V be the subspace of \mathbb{R}^n spanned by R.

There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ} . S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_R and V.

The action of S_{ℓ} on V can be extended to an action of S_{ℓ} : the generator s_0 acts by reflection of an affine hyperplane.

The action of S_{ℓ} on the chambers is transitive and faithful. Hence we can associate each element of \widetilde{S}_{ℓ} to a chamber.

The action of \widetilde{S}_{ℓ} on the chambers is transitive and faithful. Hence we can associate each element of \widetilde{S}_{ℓ} to a chamber.

Cosets of $\widetilde{S}_\ell/S_\ell$ are in bijection with translations from the root lattice. Hence ℓ -cores are also in bijection with translations by the root lattice. All triangles which are 3 cores are blue.

Proposition:

The ℓ -cores with first part k all lie on an affine hyperplane.

Proposition:

The ℓ -cores with first part k all lie on an affine hyperplane.

Theorem

Projecting the minimal length cosets corresponding to ℓ -cores with first part k onto this hyperplane is a description of Φ_{ℓ}^{k} .

Theorem

Projecting the minimal length cosets corresponding to ℓ -cores with first part k onto this hyperplane is a description of Φ_{ℓ}^{k} .

Applications of bijection

Corollary of bijection

The number of ℓ -cores with first part k is $\binom{k+\ell-2}{k}$.

Problem

Count the set $S_{\mu}(n) :=$

 $\{\lambda \vdash n : core_{\ell}(\lambda) = \mu \text{ and } S^{\lambda} \text{ is an irreducible representation of } H_n(q), \text{ for } q \text{ an } \ell^{th} \text{ root of unity.} \}$

Solution

The number of partitions of $\frac{n-|core_{\ell}(\mu)|}{\ell}$ of length at most r, where r is minimal such that $\mu_r - \mu_{r+1} \neq \ell - 1$.

Applications of bijection

Corollary of bijection

The number of ℓ -cores with first part k is $\binom{k+\ell-2}{k}$.

Problem

Count the set $S_{\mu}(n) :=$

 $\{\lambda \vdash n : core_{\ell}(\lambda) = \mu \text{ and } S^{\lambda} \text{ is an irreducible representation of } H_n(q), \text{ for } q \text{ an } \ell^{th} \text{ root of unity.} \}.$

Solution

The number of partitions of $\frac{n-|core_{\ell}(\mu)|}{\ell}$ of length at most r, where r is minimal such that $\mu_r - \mu_{r+1} \neq \ell - 1$.

Applications of bijection

Corollary of bijection

The number of ℓ -cores with first part k is $\binom{k+\ell-2}{k}$.

Problem

Count the set $S_{\mu}(n) :=$

 $\{\lambda \vdash n : core_{\ell}(\lambda) = \mu \text{ and } S^{\lambda} \text{ is an irreducible representation of } H_n(q), \text{ for } q \text{ an } \ell^{th} \text{ root of unity.} \}.$

Solution

The number of partitions of $\frac{n-|core_{\ell}(\mu)|}{\ell}$ of length at most r, where r is minimal such that $\mu_r - \mu_{r+1} \neq \ell - 1$.