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First Description of Φk
`

Fix ` ≥ 2, an integer.

Definition: `-cores with first part k
We let Ck

` denote the set of `-cores with first part k , and let C≤k
`

denote the set of `-cores with first part ≤ k .

A map on `-cores:
We define a map Φk

` : Ck
` → C≤k

`−1. To a partition λ ∈ Ck
` , we just

delete all rows i of λ if hλ(i,1) ≡ hλ(1,1) mod `.

Theorem
Φk
` is a bijection.
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Example of Bijection: A 4-core with first
part 8
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From this description, it isn’t obvious that Φ8
4 maps a 4-core to a

3-core. It is also not obvious that this is a bijection. We
introduce abaci to prove that this map is a bijection.
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Definition: Abacus
An abacus diagram is a diagram containing ` columns labeled
0,1, . . . , `− 1, called runners. The horizontal cross-sections or
rows will be called levels and runner i contains entries labeled
by r`+ i on each level r where −∞ < r <∞.

Definition: Beads and Gaps
Entries in the abacus diagram may be circled; such circled
elements are called beads. Entries which are not circled will be
called gaps.

Abaci corresponding to partitions
An abacus for λ will be any abacus diagram such that the i th

largest bead has λi gaps in smaller positions.
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Example of an Abacus: ` = 4 and
λ = (10,10,4,2,2)

..

. ..
. ..

...
.

-8 -7 -6 -5
-4 -3 -2 -1
0 1 2 3
4 5 6 7
8 9 10 11

ll
l l

l

l

l
ll

...
...

...
...



Description of Bijection on Abaci

Lemma: `-cores on an abacus
A partition is an `-core if and only if for every runner has no
bead below a gap.

Proposition: Φk
` on abaci

Given an abacus for λ, find the largest bead. Delete the entire
runner containing it.

Why abaci?
In this setting, it is very easy to see that Φk

` is invertible.
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Example of Theorem: ` = 4 and λ = (8,5,2,2,1,1,1)
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Example of Theorem: ` = 4 and λ = (8,5,2,2,1,1,1)

To show that Φ is inverible: We just need to insert a column of
beads in such a way that the first part becomes 8.
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Connections to Lapointe Morse
bijection

Definition
We let Pk

` denote the set of all ` bounded partitions with length
k , and let P≤k

` denote the ` bounded partitions with length less
than or equal to k .

Bijection
For λ ∈ Pk

` , define Ψk
` (λ) to be the partition obtained by

removing the first column of λ. Then Ψk
` is a bijection between

Pk
` and P≤k

`−1.
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Viewed in terms of Lapointe-Morse
bijection

Theorem
The following diagram commutes:

Ck
`

Φk
` > C≤k

`−1

C len=k
`

t

∨
C len≤k
`−1

t

∨

Pk
`−1

ρ`

∨
Ψk

`−1
> P≤k

`−2

ρ`−1

∨

All arrows here are bijections!



An equivalent description of
Lapointe-Morse bijection

Out of the proof that the diagram commutes, we derived the
following corollary.

Corollary
The Lapointe-Morse bijection can be described on `-cores by
keeping only the first column of each residue in a Young
diagram.



Example
Let ` = 5 and λ = (9,5,3,2,2,1,1,1,1). We retain the columns
1,3,5,7 resulting in ρ5(λ) = (4,3,2,1,1,1,1,1,1).

0 1 2 3 4 0 1 2 3

4 0 1 2 3

3 4 0
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4
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ρ57→



Association of cores to reduced words

Recall that `-cores are also in bijection with the reduced words
in S̃` whose reduced words all end in s0 (called affine
grassmannian permutations).

Equivalently, these words are minimal length coset
representatives of S̃`/S`.



Example

0 1 2 3 0

3 0

2

1

0

s0←−
0 1 2 3

3

2

1

s1←−
0 1 2 3

3

2

s2←−
0 1 2 3

3

s3←−
0 1 2 s2←−

0 1

s1←−
0 s0←− ∅.

This shows that the 4-core (5,2,1,1,1) is identified with the
affine grassmannian permutation s0s1s2s3s2s1s0.



Bijection on Words

We can now interpret our bijection as a map

Φ` : Ŝ`/S` → Ŝ`−1/S`−1

Proposition:
For a word w , len(Φ`(w)) = len(w)− (w∅)1.

For a description of Φ`, see our paper.



The Root Lattice
Pick an orthonormal basis ε1, . . . , ε` of R`. Let
R = {εi − εj : i 6= j}. Let ΛR be the lattice of R and let V be the
subspace of Rn spanned by R.

There is a natural action of S` on R`. S` just acts by permuting
the indices. This actually gives an action of S` on R and hence
on ΛR and V .

The action of S` on V can be extended to an action of S̃`: the
generator s0 acts by reflection of an affine hyperplane.
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The action of S̃` on the chambers is transitive and faithful.
Hence we can associate each element of S̃` to a chamber.
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Cosets of S̃`/S` are in bijection with translations from the root
lattice. Hence `-cores are also in bijection with translations by
the root lattice. All triangles which are 3 cores are blue.
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Proposition:
The `-cores with first part k all lie on an affine hyperplane.
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Theorem
Projecting the minimal length cosets corresponding to `-cores
with first part k onto this hyperplane is a description of Φk

` .
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Applications of bijection

Corollary of bijection
The number of `-cores with first part k is

(k+`−2
k

)
.

Problem
Count the set Sµ(n) :=

{λ ` n : core`(λ) = µ and Sλ is an irreducible
representation of Hn(q), for q an `th root of unity.}.

Solution
The number of partitions of n−|core`(µ)|

` of length at most r ,
where r is minimal such that µr − µr+1 6= `− 1.
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