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A map on /-cores:
We define a map ok : ¢k — =¥ To a partition \ € C¥, we just
delete all rows j of A if A ;) = Iy ;) mod £.

Theorem
®k is a bijection.



Example of Bijection: A 4-core with first
part 8




Example of Bijection: A 4-core with first
part 8

From this description, it isn’t obvious that ®§ maps a 4-core to a
3-core. It is also not obvious that this is a bijection. We
introduce abaci to prove that this map is a bijection.



Definition: Abacus

An abacus diagram is a diagram containing ¢ columns labeled
0,1,...,¢—1, called runners. The horizontal cross-sections or
rows will be called levels and runner i contains entries labeled
by r¢ + i on each level r where —oco < r < 0.



Definition: Abacus

An abacus diagram is a diagram containing ¢ columns labeled
0,1,...,¢—1, called runners. The horizontal cross-sections or
rows will be called levels and runner i contains entries labeled
by r¢ + i on each level r where —oco < r < 0.

Definition: Beads and Gaps

Entries in the abacus diagram may be circled; such circled
elements are called beads. Entries which are not circled will be
called gaps.



Definition: Abacus

An abacus diagram is a diagram containing ¢ columns labeled
0,1,...,¢—1, called runners. The horizontal cross-sections or
rows will be called levels and runner i contains entries labeled
by r¢ + i on each level r where —oco < r < 0.

Definition: Beads and Gaps

Entries in the abacus diagram may be circled; such circled
elements are called beads. Entries which are not circled will be
called gaps.

Abaci corresponding to partitions

An abacus for A will be any abacus diagram such that the i
largest bead has A; gaps in smaller positions.



Example of an Abacus: ¢/ = 4 and
A=(10,10,4,2,2)
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Description of Bijection on Abaci

Lemma: ¢-cores on an abacus
A partition is an ¢-core if and only if for every runner has no
bead below a gap.
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Description of Bijection on Abaci

Lemma: ¢-cores on an abacus
A partition is an ¢-core if and only if for every runner has no
bead below a gap.

Proposition: ®¥ on abaci
Given an abacus for ), find the largest bead. Delete the entire
runner containing it.

Why abaci?
In this setting, it is very easy to see that ¥ is invertible.



Example of Theorem: / =4 and A\ = (8,5,2,2,1,1,1)
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(8,5,2,2,1,1,1)

Example of Theorem: ¢ = 4 and A
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Example of Theorem: / =4 and A\ = (8,5,2,2,1,1,1)
To show that ¢ is inverible: We just need to insert a column of
beads in such a way that the first part becomes 8.
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Example of Theorem: / =4 and A\ = (8,5,2,2,1,1,1)
To show that ¢ is inverible: We just need to insert a column of
beads in such a way that the first part becomes 8.
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Connections to Lapointe Morse
bijection

Definition
We let P¥ denote the set of all ¢ bounded partitions with length
k, and let Pf" denote the ¢ bounded partitions with length less

than or equal to k.



Connections to Lapointe Morse
bijection

Definition

We let P¥ denote the set of all ¢ bounded partitions with length
k, and let Pf" denote the ¢ bounded partitions with length less
than or equal to k.

Bijection

For \ € Pk, define W()) to be the partition obtained by
removing the first column of A. Then V¥ is a bijection between
Pk and P=X.



Viewed in terms of Lapointe-Morse
bijection
Theorem
The following diagram commutes:

Pk <
cF ———= ¢k

pe Pe—1

\Uk
k 2—1 <k
Pry —>Pi,

All arrows here are bijections!



An equivalent description of
Lapointe-Morse bijection

Out of the proof that the diagram commutes, we derived the
following corollary.

Corollary

The Lapointe-Morse bijection can be described on ¢-cores by
keeping only the first column of each residue in a Young
diagram.



Example
Let¢=5and A =(9,5,3,2,2,1

,1,1,1). We retain the columns
1,3,5,7 resulting in ps(\) = (4 ,3,2 o1

,1,1,1,1).
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Association of cores to reduced words

Recall that ¢-cores are also in bijection with the reduced words
in S; whose reduced words all end in sy (called affine
grassmannian permutations).

Equivalently, these words are minimal length coset
representatives of S;/S;.
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This shows that the 4-core (5,2,1,1, 1) is identified with the
affine grassmannian permutation syS15>535051Sp.



Bijection on Words

We can now interpret our bijection as a map

& S;/S;— Si_1/S1

Proposition:
For a word w, len(®,(w)) = len(w) — (w);.

For a description of ®,, see our paper.
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The Root Lattice

Pick an orthonormal basis 1, . . ., ¢, of RY. Let

R = {e; — ¢ : i # j}. Let Ag be the lattice of R and let V be the
subspace of R” spanned by R.

There is a natural action of S, on RY. S; just acts by permuting
the indices. This actually gives an action of S, on R and hence
onAgand V.

The action of S, on V can be extended to an action of ’Svg: the
generator sy acts by reflection of an affine hyperplane.






The action of S; on the chambers is transitive and faithful.
Hence we can associate each element of S, to a chamber.



Cosets of S, /S¢ are in bijection with translations from the root
lattice. Hence ¢-cores are also in bijection with translations by
the root lattice. All triangles which are 3 cores are blue.
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Proposition:
The ¢-cores with first part k all lie on an affine hyperplane.
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Theorem
Projecting the minimal length cosets corresponding to ¢-cores
with first part k onto this hyperplane is a description of .
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Applications of bijection

Corollary of bijection
The number of ¢-cores with first part k is (¥, 2).

Problem
Count the set S,,(n) :=

{\F n: core,(\) = uand S* is an irreducible
representation of H,(q), for g an £ root of unity.}.

Solution
The number of partitions of 2=1%2€(tl of |ength at most r,
where r is minimal such that p, — pr11 # ¢ — 1.
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