A Bijection on Core Partitions and a Parabolic Quotient of the Affine Symmetric Group

Chris Berg
Joint with Brant Jones and Monica Vazirani Journal of Combinatorial Theory, Series A

Fields Institute

$$
\text { July 12, } 2010
$$

First Description of Φ_{ℓ}^{k}

Fix $\ell \geq 2$, an integer.
Definition: ℓ-cores with first part k We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ-cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ-cores with first part $\leq k$.

A map on ℓ-cores:
We define a map $\Phi_{\ell}^{k}: \mathcal{C}_{\ell}^{k} \rightarrow \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^{k}$, we just delete all rows i of λ if $h_{(i, 1)}^{\lambda} \equiv h_{(1,1}^{\lambda}$ $\bmod \ell$

Theorem
Φ_{ℓ}^{k} is a bijection.

First Description of Φ_{ℓ}^{k}

Fix $\ell \geq 2$, an integer.
Definition: ℓ-cores with first part k We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ-cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ-cores with first part $\leq k$.

A map on ℓ-cores:
We define a map $\Phi_{\ell}^{k}: \mathcal{C}_{\ell}^{k} \rightarrow \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^{k}$, we just delete all rows i of λ if $h_{(i, 1)}^{\lambda} \equiv h_{(1,1)}^{\lambda} \bmod \ell$.

Theorem
Φ_{ℓ}^{k} is a bijection.

First Description of Φ_{ℓ}^{k}

Fix $\ell \geq 2$, an integer.
Definition: ℓ-cores with first part k We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ-cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ-cores with first part $\leq k$.

A map on ℓ-cores:
We define a map $\Phi_{\ell}^{k}: \mathcal{C}_{\ell}^{k} \rightarrow \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^{k}$, we just delete all rows i of λ if $h_{(i, 1)}^{\lambda} \equiv h_{(1,1)}^{\lambda} \bmod \ell$.

Theorem
Φ_{ℓ}^{k} is a bijection.

Example of Bijection: A 4-core with first part 8

From this description, it isn't obvious that Φ_{4}^{8} maps a 4-core to a 3 -core. It is also not obvious that this is a bijection. We introduce abaci to prove that this map is a bijection.

Example of Bijection: A 4-core with first

part 8

From this description, it isn't obvious that Φ_{4}^{8} maps a 4-core to a 3 -core. It is also not obvious that this is a bijection. We introduce abaci to prove that this map is a bijection.

Definition: Abacus

An abacus diagram is a diagram containing ℓ columns labeled $0,1, \ldots, \ell-1$, called runners. The horizontal cross-sections or rows will be called levels and runner i contains entries labeled by $r \ell+i$ on each level r where $-\infty<r<\infty$.

Definition: Beads and Gaps
Entries in the abacus diagram may be circled; such circled elements are called beads. Entries which are not circled will be called gaps.

Abaci corresponding to partitions
An abacus for λ will be any abacus diagram such that the $i^{\text {th }}$
largest bead has λ_{i} gaps in smaller positions.

Definition: Abacus

An abacus diagram is a diagram containing ℓ columns labeled $0,1, \ldots, \ell-1$, called runners. The horizontal cross-sections or rows will be called levels and runner i contains entries labeled by $r \ell+i$ on each level r where $-\infty<r<\infty$.

Definition: Beads and Gaps
Entries in the abacus diagram may be circled; such circled elements are called beads. Entries which are not circled will be called gaps.

Abaci corresponding to partitions
An abacus for λ will be any abacus diagram such that the $i^{\text {th }}$
largest bead has λ_{i} gaps in smaller positions.

Definition: Abacus

An abacus diagram is a diagram containing ℓ columns labeled
$0,1, \ldots, \ell-1$, called runners. The horizontal cross-sections or rows will be called levels and runner i contains entries labeled by $r \ell+i$ on each level r where $-\infty<r<\infty$.

Definition: Beads and Gaps
Entries in the abacus diagram may be circled; such circled elements are called beads. Entries which are not circled will be called gaps.

Abaci corresponding to partitions
An abacus for λ will be any abacus diagram such that the $i^{\text {th }}$ largest bead has λ_{i} gaps in smaller positions.

Example of an Abacus: $\ell=4$ and

$$
\lambda=(10,10,4,2,2)
$$

\vdots	\vdots	\vdots	\vdots
$\vdots-8$	-7	(-6)	-5
-4	-3	(-2)	(-1)
0	1	(2)	3
4	5	6	7
8	$(9$	$(10$	11
\vdots	\vdots	\vdots	\vdots

Description of Bijection on Abaci

Lemma: ℓ-cores on an abacus
A partition is an ℓ-core if and only if for every runner has no bead below a gap.

Proposition: Φ_{ℓ}^{k} on abaci
Given an abacus for λ, find the largest bead. Delete the entire runner containing it.

Why abaci?
In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible.

Description of Bijection on Abaci

Lemma: ℓ-cores on an abacus
A partition is an ℓ-core if and only if for every runner has no bead below a gap.

Proposition: Φ_{ℓ}^{k} on abaci
Given an abacus for λ, find the largest bead. Delete the entire runner containing it.

Why abaci?
In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible.

Description of Bijection on Abaci

Lemma: ℓ-cores on an abacus
A partition is an ℓ-core if and only if for every runner has no bead below a gap.

Proposition: Φ_{ℓ}^{k} on abaci
Given an abacus for λ, find the largest bead. Delete the entire runner containing it.

Why abaci?
In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible.

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

\vdots	\vdots	\vdots	\vdots
(-8)	-7	-6	-5
-4	-3	-2	-1
0	1	(2)	3
4	5	$(6$	7
8	9	10	11
\vdots	\vdots	\vdots	\vdots

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

-8)	-7)	-6)	-5)		-6)	-5)	${ }_{*}^{*}$	-4
-4	-3)	-2)	-1)		-3	(-2)	\otimes	-1)
0	(1)	(2)	3	$\xrightarrow{\Phi_{4}^{6}}$	0	(1)	${ }^{\otimes}$	2
4	5	(6)	7		3		${ }^{\otimes}$	5
8	9	(10)	11		6	7	\otimes	8
	!	.	:		\vdots	:		

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

To show that Φ is inverible: We just need to insert a column of beads in such a way that the first part becomes 8 .

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

To show that Φ is inverible: We just need to insert a column of beads in such a way that the first part becomes 8 .

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

To show that Φ is inverible: We just need to insert a column of beads in such a way that the first part becomes 8 .

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

To show that Φ is inverible: We just need to insert a column of beads in such a way that the first part becomes 8 .

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

To show that Φ is inverible: We just need to insert a column of beads in such a way that the first part becomes 8 .

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

To show that Φ is inverible: We just need to insert a column of beads in such a way that the first part becomes 8 .

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

To show that Φ is inverible: We just need to insert a column of beads in such a way that the first part becomes 8 .

Example of Theorem: $\ell=4$ and $\lambda=(8,5,2,2,1,1,1)$

To show that Φ is inverible: We just need to insert a column of beads in such a way that the first part becomes 8 .

Connections to Lapointe Morse bijection

Definition
We let \mathcal{P}_{ℓ}^{k} denote the set of all ℓ bounded partitions with length k, and let $\mathcal{P}_{\ell}^{\leq k}$ denote the ℓ bounded partitions with length less than or equal to k.

Bijection
For $\lambda \in \mathcal{P}_{\ell}^{k}$, define $\Psi_{\ell}^{k}(\lambda)$ to be the partition obtained by removing the first column of λ. Then Ψ_{ℓ}^{k} is a bijection between P_{l}^{k} and $\mathcal{P}_{\ell-1}^{\leq k}$

Connections to Lapointe Morse bijection

Definition
We let \mathcal{P}_{ℓ}^{k} denote the set of all ℓ bounded partitions with length k, and let $\mathcal{P}_{\ell}^{\leq k}$ denote the ℓ bounded partitions with length less than or equal to k.

Bijection

For $\lambda \in \mathcal{P}_{\ell}^{k}$, define $\Psi_{\ell}^{k}(\lambda)$ to be the partition obtained by removing the first column of λ. Then Ψ_{ℓ}^{k} is a bijection between \mathcal{P}_{ℓ}^{k} and $\mathcal{P}_{\ell-1}^{\leq k}$.

Viewed in terms of Lapointe-Morse bijection

Theorem

The following diagram commutes:

All arrows here are bijections!

An equivalent description of Lapointe-Morse bijection

Out of the proof that the diagram commutes, we derived the following corollary.

Corollary
The Lapointe-Morse bijection can be described on ℓ-cores by keeping only the first column of each residue in a Young diagram.

Example

Let $\ell=5$ and $\lambda=(9,5,3,2,2,1,1,1,1)$. We retain the columns $1,3,5,7$ resulting in $\rho_{5}(\lambda)=(4,3,2,1,1,1,1,1,1)$.

Association of cores to reduced words

Recall that ℓ-cores are also in bijection with the reduced words in $\widetilde{S_{\ell}}$ whose reduced words all end in s_{0} (called affine grassmannian permutations).

Equivalently, these words are minimal length coset representatives of $\widetilde{S}_{\ell} / S_{\ell}$.

Example

This shows that the 4-core $(5,2,1,1,1)$ is identified with the affine grassmannian permutation $s_{0} s_{1} s_{2} s_{3} s_{2} s_{1} s_{0}$.

Bijection on Words

We can now interpret our bijection as a map

$$
\Phi_{\ell}: \widehat{S}_{\ell} / S_{\ell} \rightarrow \widehat{S}_{\ell-1} / S_{\ell-1}
$$

Proposition:
For a word $w, \operatorname{len}\left(\Phi_{\ell}(w)\right)=\operatorname{len}(w)-(w \emptyset)_{1}$.

For a description of Φ_{ℓ}, see our paper.

The Root Lattice
Pick an orthonormal basis $\epsilon_{1}, \ldots, \epsilon_{\ell}$ of \mathbb{R}^{ℓ}. Let $R=\left\{\epsilon_{i}-\epsilon_{j}: i \neq j\right\}$. Let Λ_{R} be the lattice of R and let V be the subspace of \mathbb{R}^{n} spanned by R.

There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ}. S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_{R} and V.

The action of S_{ℓ} on V can be extended to an action of S_{ℓ} : the generator s_{0} acts by reflection of an affine hyperplane.

The Root Lattice

Pick an orthonormal basis $\epsilon_{1}, \ldots, \epsilon_{\ell}$ of \mathbb{R}^{ℓ}. Let
$R=\left\{\epsilon_{i}-\epsilon_{j}: i \neq j\right\}$. Let Λ_{R} be the lattice of R and let V be the subspace of \mathbb{R}^{n} spanned by R.

There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ}. S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_{R} and V.

The action of S_{ℓ} on V can be extended to an action of \widetilde{S}_{ℓ} : the generator s_{0} acts by reflection of an affine hyperplane.

The Root Lattice

Pick an orthonormal basis $\epsilon_{1}, \ldots, \epsilon_{\ell}$ of \mathbb{R}^{ℓ}. Let
$R=\left\{\epsilon_{i}-\epsilon_{j}: i \neq j\right\}$. Let Λ_{R} be the lattice of R and let V be the subspace of \mathbb{R}^{n} spanned by R.

There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ}. S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_{R} and V.

The action of S_{ℓ} on V can be extended to an action of $\widetilde{S_{\ell}}$: the generator s_{0} acts by reflection of an affine hyperplane.

The action of \widetilde{S}_{ℓ} on the chambers is transitive and faithful. Hence we can associate each element of \widetilde{S}_{0} to a chamber.

The action of \widetilde{S}_{ℓ} on the chambers is transitive and faithful. Hence we can associate each element of \widetilde{S}_{ℓ} to a chamber.

Cosets of $\widetilde{S}_{\ell} / S_{\ell}$ are in bijection with translations from the root lattice. Hence ℓ-cores are also in bijection with translations by the root lattice. All triangles which are 3 cores are blue.

Proposition:
The $\ell^{\text {-cores with first part } k \text { all lie on an affine hyperplane. }}$

Proposition:

The ℓ-cores with first part k all lie on an affine hyperplane.

Theorem
Proiecting the minimal length cosets corresponding to ℓ-cores with first part k onto this hyperplane is a description of ϕ_{ℓ}^{k}.

Theorem

Projecting the minimal length cosets corresponding to ℓ-cores with first part k onto this hyperplane is a description of Φ_{ℓ}^{k}.

Applications of bijection

Corollary of bijection
The number of ℓ-cores with first part k is $\binom{k+\ell-2}{k}$.
Problem
Count the set $S_{\mu}(n):=$
$\left\{\lambda \vdash n:\right.$ core $_{e}(\lambda)=\mu$ and S^{λ} is an irreducible
representation of $H_{n}(q)$, for q an e^{h} root of unity. $\}$.

Solution
The number of partitions of $\frac{n-\text { core }(\mu) 1}{}$ of length at most r, where r is minimal such that $\mu_{r}-\mu_{r+1} \neq \ell-1$.

Applications of bijection

Corollary of bijection
The number of ℓ-cores with first part k is $\binom{k+\ell-2}{k}$.
Problem
Count the set $S_{\mu}(n):=$

$$
\left\{\lambda \vdash n: \operatorname{core}_{\ell}(\lambda)=\mu \text { and } S^{\lambda}\right. \text { is an irreducible }
$$ representation of $H_{n}(q)$, for q an $\ell^{\text {th }}$ root of unity. $\}$.

Solution
The number of partitions of $\frac{n-\left|\operatorname{core}_{\ell}(\mu)\right|}{\ell}$ of length at most r, where r is minimal such that $\mu_{r}-\mu_{r+1} \neq \ell-1$.

Applications of bijection

Corollary of bijection
The number of ℓ-cores with first part k is $\binom{k+\ell-2}{k}$.
Problem
Count the set $S_{\mu}(n):=$

$$
\begin{aligned}
& \left\{\lambda \vdash n: \operatorname{core} e_{\ell}(\lambda)=\mu \text { and } S^{\lambda}\right. \text { is an irreducible } \\
& \text { representation of } \left.H_{n}(q) \text {, for } q \text { an } \ell^{t h} \text { root of unity. }\right\} \text {. }
\end{aligned}
$$

Solution

The number of partitions of $\frac{n-\mid \text { core }_{\ell}(\mu) \mid}{\ell}$ of length at most r, where r is minimal such that $\mu_{r}-\mu_{r+1} \neq \ell-1$.

