A Bijection on Core Partitions and a Parabolic Quotient of the Affine Symmetric Group Chris Berg Joint with Brant Jones and Monica Vazirani Journal of Combinatorial Theory, Series A Fields Institute July 12, 2010 # First Description of Φ_{ℓ}^{k} Fix $\ell \geq 2$, an integer. Definition: ℓ -cores with first part k We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ -cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ -cores with first part $\leq k$. # A map on ℓ-cores: We define a map $\Phi_{\ell}^k : \mathcal{C}_{\ell}^k \to \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^k$, we just delete all rows i of λ if $h_{(i,1)}^{\lambda} \equiv h_{(1,1)}^{\lambda} \mod \ell$. ### **Theorem** Φ_{ℓ}^{k} is a bijection # First Description of Φ_{ℓ}^{k} Fix $\ell \geq 2$, an integer. # Definition: ℓ -cores with first part k We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ -cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ -cores with first part $\leq k$. # A map on *ℓ*-cores: We define a map $\Phi_{\ell}^{k}: \mathcal{C}_{\ell}^{k} \to \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^{k}$, we just delete all rows i of λ if $h_{(i,1)}^{\lambda} \equiv h_{(1,1)}^{\lambda} \mod \ell$. # Theorem Φ_{ℓ}^{k} is a bijection # First Description of Φ_{ℓ}^{k} Fix $\ell \geq 2$, an integer. # Definition: ℓ -cores with first part k We let \mathcal{C}_{ℓ}^{k} denote the set of ℓ -cores with first part k, and let $\mathcal{C}_{\ell}^{\leq k}$ denote the set of ℓ -cores with first part $\leq k$. # A map on ℓ-cores: We define a map $\Phi_{\ell}^{k}: \mathcal{C}_{\ell}^{k} \to \mathcal{C}_{\ell-1}^{\leq k}$. To a partition $\lambda \in \mathcal{C}_{\ell}^{k}$, we just delete all rows i of λ if $h_{(i,1)}^{\lambda} \equiv h_{(1,1)}^{\lambda} \mod \ell$. #### **Theorem** Φ_{ℓ}^{k} is a bijection. # Example of Bijection: A 4-core with first part 8 From this description, it isn't obvious that Φ_4^8 maps a 4-core to a 3-core. It is also not obvious that this is a bijection. We introduce *abaci* to prove that this map is a bijection. # Example of Bijection: A 4-core with first part 8 From this description, it isn't obvious that Φ_4^8 maps a 4-core to a 3-core. It is also not obvious that this is a bijection. We introduce *abaci* to prove that this map is a bijection. #### **Definition: Abacus** An **abacus diagram** is a diagram containing ℓ columns labeled $0,1,\ldots,\ell-1$, called **runners**. The horizontal cross-sections or rows will be called **levels** and runner i contains entries labeled by $r\ell+i$ on each level r where $-\infty < r < \infty$. ## Definition: Beads and Gaps Entries in the abacus diagram may be circled; such circled elements are called **beads**. Entries which are not circled will be called **gaps**. # Abaci corresponding to partitions An abacus for λ will be any abacus diagram such that the i^{th} largest bead has λ_i gaps in smaller positions. #### **Definition: Abacus** An **abacus diagram** is a diagram containing ℓ columns labeled $0, 1, \ldots, \ell-1$, called **runners**. The horizontal cross-sections or rows will be called **levels** and runner i contains entries labeled by $r\ell+i$ on each level r where $-\infty < r < \infty$. ## Definition: Beads and Gaps Entries in the abacus diagram may be circled; such circled elements are called **beads**. Entries which are not circled will be called **gaps**. # Abaci corresponding to partitions An abacus for λ will be any abacus diagram such that the i^{th} largest bead has λ_i gaps in smaller positions. #### **Definition: Abacus** An **abacus diagram** is a diagram containing ℓ columns labeled $0, 1, \ldots, \ell-1$, called **runners**. The horizontal cross-sections or rows will be called **levels** and runner i contains entries labeled by $r\ell+i$ on each level r where $-\infty < r < \infty$. ### Definition: Beads and Gaps Entries in the abacus diagram may be circled; such circled elements are called **beads**. Entries which are not circled will be called **gaps**. # Abaci corresponding to partitions An abacus for λ will be any abacus diagram such that the i^{th} largest bead has λ_i gaps in smaller positions. # Example of an Abacus: $\ell = 4$ and $\lambda = (10, 10, 4, 2, 2)$ # Description of Bijection on Abaci #### Lemma: ℓ-cores on an abacus A partition is an ℓ -core if and only if for every runner has no bead below a gap. # Proposition: Φ_{ℓ}^{k} on abaci Given an abacus for λ , find the largest bead. Delete the entire runner containing it. ## Why abaci? In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible # Description of Bijection on Abaci #### Lemma: ℓ-cores on an abacus A partition is an ℓ -core if and only if for every runner has no bead below a gap. # Proposition: Φ_{ℓ}^{k} on abaci Given an abacus for λ , find the largest bead. Delete the entire runner containing it. ## Why abaci? In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible # Description of Bijection on Abaci #### Lemma: ℓ-cores on an abacus A partition is an ℓ -core if and only if for every runner has no bead below a gap. # Proposition: Φ_{ℓ}^{k} on abaci Given an abacus for λ , find the largest bead. Delete the entire runner containing it. ### Why abaci? In this setting, it is very easy to see that Φ_{ℓ}^{k} is invertible. 8 # Connections to Lapointe Morse bijection #### Definition We let \mathcal{P}_{ℓ}^k denote the set of all ℓ bounded partitions with length k, and let $\mathcal{P}_{\ell}^{\leq k}$ denote the ℓ bounded partitions with length less than or equal to k. ## Bijection For $\lambda \in \mathcal{P}_{\ell}^{k}$, define $\Psi_{\ell}^{k}(\lambda)$ to be the partition obtained by removing the first column of λ . Then Ψ_{ℓ}^{k} is a bijection between \mathcal{P}_{ℓ}^{k} and $\mathcal{P}_{\ell-1}^{\leq k}$. # Connections to Lapointe Morse bijection #### **Definition** We let \mathcal{P}_{ℓ}^{k} denote the set of all ℓ bounded partitions with length k, and let $\mathcal{P}_{\ell}^{\leq k}$ denote the ℓ bounded partitions with length less than or equal to k. ## **Bijection** For $\lambda \in \mathcal{P}_{\ell}^k$, define $\Psi_{\ell}^k(\lambda)$ to be the partition obtained by removing the first column of λ . Then Ψ_{ℓ}^k is a bijection between \mathcal{P}_{ℓ}^k and $\mathcal{P}_{\ell-1}^{\leq k}$. # Viewed in terms of Lapointe-Morse bijection #### **Theorem** The following diagram commutes: All arrows here are bijections! # An equivalent description of Lapointe-Morse bijection Out of the proof that the diagram commutes, we derived the following corollary. # Corollary The Lapointe-Morse bijection can be described on ℓ -cores by keeping only the first column of each residue in a Young diagram. ### Example Let $\ell=5$ and $\lambda=(9,5,3,2,2,1,1,1,1)$. We retain the columns 1,3,5,7 resulting in $\rho_5(\lambda)=(4,3,2,1,1,1,1,1)$. ### Association of cores to reduced words Recall that ℓ -cores are also in bijection with the reduced words in $\widetilde{S_\ell}$ whose reduced words all end in s_0 (called affine grassmannian permutations). Equivalently, these words are minimal length coset representatives of $\widetilde{S}_{\ell}/S_{\ell}$. Example This shows that the 4-core (5, 2, 1, 1, 1) is identified with the affine grassmannian permutation $s_0s_1s_2s_3s_2s_1s_0$. # Bijection on Words We can now interpret our bijection as a map $$\Phi_\ell: \widehat{S}_\ell/S_\ell o \widehat{S}_{\ell-1}/S_{\ell-1}$$ #### Proposition: For a word $$w$$, $len(\Phi_{\ell}(w)) = len(w) - (w\emptyset)_1$. For a description of Φ_{ℓ} , see our paper. #### The Root Lattice Pick an orthonormal basis $\epsilon_1, \ldots, \epsilon_\ell$ of \mathbb{R}^ℓ . Let $R = \{\epsilon_i - \epsilon_j : i \neq j\}$. Let Λ_R be the lattice of R and let V be the subspace of \mathbb{R}^n spanned by R. There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ} . S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_R and V. The action of S_{ℓ} on V can be extended to an action of S_{ℓ} : the generator s_0 acts by reflection of an affine hyperplane. #### The Root Lattice Pick an orthonormal basis $\epsilon_1, \ldots, \epsilon_\ell$ of \mathbb{R}^ℓ . Let $R = \{\epsilon_i - \epsilon_j : i \neq j\}$. Let Λ_R be the lattice of R and let V be the subspace of \mathbb{R}^n spanned by R. There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ} . S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_R and V. The action of S_{ℓ} on V can be extended to an action of S_{ℓ} : the generator s_0 acts by reflection of an affine hyperplane. #### The Root Lattice Pick an orthonormal basis $\epsilon_1, \ldots, \epsilon_\ell$ of \mathbb{R}^ℓ . Let $R = \{\epsilon_i - \epsilon_j : i \neq j\}$. Let Λ_R be the lattice of R and let V be the subspace of \mathbb{R}^n spanned by R. There is a natural action of S_{ℓ} on \mathbb{R}^{ℓ} . S_{ℓ} just acts by permuting the indices. This actually gives an action of S_{ℓ} on R and hence on Λ_R and V. The action of S_{ℓ} on V can be extended to an action of S_{ℓ} : the generator s_0 acts by reflection of an affine hyperplane. The action of S_{ℓ} on the chambers is transitive and faithful. Hence we can associate each element of \widetilde{S}_{ℓ} to a chamber. The action of \widetilde{S}_{ℓ} on the chambers is transitive and faithful. Hence we can associate each element of \widetilde{S}_{ℓ} to a chamber. Cosets of $\widetilde{S}_\ell/S_\ell$ are in bijection with translations from the root lattice. Hence ℓ -cores are also in bijection with translations by the root lattice. All triangles which are 3 cores are blue. ### Proposition: The ℓ -cores with first part k all lie on an affine hyperplane. # Proposition: The ℓ -cores with first part k all lie on an affine hyperplane. #### Theorem Projecting the minimal length cosets corresponding to ℓ -cores with first part k onto this hyperplane is a description of Φ_{ℓ}^{k} . ## **Theorem** Projecting the minimal length cosets corresponding to ℓ -cores with first part k onto this hyperplane is a description of Φ_{ℓ}^{k} . # Applications of bijection # Corollary of bijection The number of ℓ -cores with first part k is $\binom{k+\ell-2}{k}$. #### Problem Count the set $S_{\mu}(n) :=$ $\{\lambda \vdash n : core_{\ell}(\lambda) = \mu \text{ and } S^{\lambda} \text{ is an irreducible representation of } H_n(q), \text{ for } q \text{ an } \ell^{th} \text{ root of unity.} \}$ #### Solution The number of partitions of $\frac{n-|core_{\ell}(\mu)|}{\ell}$ of length at most r, where r is minimal such that $\mu_r - \mu_{r+1} \neq \ell - 1$. # Applications of bijection # Corollary of bijection The number of ℓ -cores with first part k is $\binom{k+\ell-2}{k}$. #### **Problem** Count the set $S_{\mu}(n) :=$ $\{\lambda \vdash n : core_{\ell}(\lambda) = \mu \text{ and } S^{\lambda} \text{ is an irreducible representation of } H_n(q), \text{ for } q \text{ an } \ell^{th} \text{ root of unity.} \}.$ #### Solution The number of partitions of $\frac{n-|core_{\ell}(\mu)|}{\ell}$ of length at most r, where r is minimal such that $\mu_r - \mu_{r+1} \neq \ell - 1$. # Applications of bijection # Corollary of bijection The number of ℓ -cores with first part k is $\binom{k+\ell-2}{k}$. #### **Problem** Count the set $S_{\mu}(n) :=$ $\{\lambda \vdash n : core_{\ell}(\lambda) = \mu \text{ and } S^{\lambda} \text{ is an irreducible representation of } H_n(q), \text{ for } q \text{ an } \ell^{th} \text{ root of unity.} \}.$ #### Solution The number of partitions of $\frac{n-|core_{\ell}(\mu)|}{\ell}$ of length at most r, where r is minimal such that $\mu_r - \mu_{r+1} \neq \ell - 1$.