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Early history - Representation theory

Theorem (Frobenius, 1900)

The map from functions on S,, to symmetric
functions given by Ferdinand
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Early History - Combinatorics

Theorem (Littlewood-Richardson, 1934)
PrSy = Z(_l)ht(A/M)s)\
}

where the summation is over all A such that
A/ is a border strip of size r.

Dudley Littlewood

Archibald
Richardson



Early History - Combinatorics
Dudley Littlewood

Theorem (Littlewood-Richardson, 1934)

Prsu = Z(—l)ht()‘/“)sA
y

where the summation is over all A such that
A/ is a border strip of size r.

Corollary Archibald

Iteration gives Richardson

where the sum is over all border strip tableaux
of shape A and type u.



Early History - Further work

» Francis Murnaghan (1937) On representations of the
symmetric group




Early History - Further work

» Francis Murnaghan (1937) On representations of the
symmetric group

» Tadasi Nakayama (1941) On some modular properties of
irreducible representations of a symmetric group
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Border Strips

A border strip of size r is a connected skew partition consisting of
r boxes and containing no 2 x 2 squares.

Example

(4,3,3)/(2,2) is a border strip of size 6:

Definition

ht (A/p) = # vertical dominos in A/

ht =2
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P3s21 = S2,11,1,1 — 52,22




The Murnaghan-Nakayama rule

Theorem

A

sum over all \ such that A/ a border strip of size r.

Example

P3S21 = S2,1,1,1,1 — $2,2,2 — S3.3




The Murnaghan-Nakayama rule

Theorem

A

sum over all \ such that A/ a border strip of size r.

Example

P3s21 = S2,1,1,1,1 — 2,22 — S33 + S5.1

T Te)al 1 Telels]




Border strip tableaux

Definition
A border strip tableau of shape ) is a filling of \ satisfying:
» Restriction to any single entry is a border strip

> Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (# of boxes labelled 7);
Height of a border strip tableau: sum of heights of border strips

Example
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T=1[1[3]3]  my(T)=2+0+2=4



Border strip tableaux

Definition
A border strip tableau of shape ) is a filling of \ satisfying:
» Restriction to any single entry is a border strip

> Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (# of boxes labelled 7);
Height of a border strip tableau: sum of heights of border strips

Example
1/3/3 type(T) = (4,1,5)
112]3
T=11[1[3]3]  my(T)=2+0+2=4



Border strip tableaux

Definition

A border strip tableau of shape ) is a filling of \ satisfying:

» Restriction to any single entry is a border strip

> Restriction to first k entries is partition shape for every k

Type of a border strip tableau: (# of boxes labelled 7);
Height of a border strip tableau: sum of heights of border strips

Example
1133
1123
T—11][1]3]3]

type(T) = (4,1,5)

ht(T)=2+0+2=4



Computing with the Murnaghan-Nakayama rule

Theorem

Py = Z X)‘(,M)SA where X/\(M) = Z(_l)ht(T)
A
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Computing with the Murnaghan-Nakayama rule

Theorem

b= Y s where
A

Example

P21 =

M) =D (=)D

T



Computing with the Murnaghan-Nakayama rule

Theorem
=S (W where )= (-1
A T
Example

P21 = —S1111

|
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Computing with the Murnaghan-Nakayama rule

Theorem

Py = Z X)‘(,M)SA where X/\(M) = Z(_l)ht(T)
A

T

Example

P21 = —S1,11— 21

|
==
|
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Computing with the Murnaghan-Nakayama rule

Theorem
pu=3 x'wsn  where  xMu) = (-1
A T
Example

p21= —S111— 521+t 51

|
=[]
|
—
+
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Computing with the Murnaghan-Nakayama rule

Theorem
pu=3 x'wsn  where  xMu) = (-1
A T
Example
p21= —S1,11— 521+t 51+S3
P21 = —S11,1 1S3
1 7]
__ 1 2‘+ 1 1‘+



The affine Murnaghan-Nakayama rule

Theorem (B-Schilling-Zabrocki, 2010)
For r < k,

PrS,Sk) — Z(_l)ht(/\/u)sg\k)
\

where the summation is over all A such that
A/ is a k-border strip of size r.



The affine Murnaghan-Nakayama rule

Anne Schilling

Theorem (B-Schilling-Zabrocki, 2010)
For r < k,

prS,(,k) — Z(_l)ht(/\/u)sgk)
)

where the summation is over all A such that
A/ is a k-border strip of size r.

Mike Zabrocki
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k-Schur functions first introduced in 2000 by Luc Lapointe, Alain
Lascoux and Jennifer Morse.



k-Schur functions
k-Schur functions first introduced in 2000 by Luc Lapointe, Alain
Lascoux and Jennifer Morse.




k-Schur functions

| will use the definition due to Lapointe and Morse in 2004:

hesiO(x) = 50 (x)

I

where the sum is over those y such that ¢(u)/c(A) is a horizontal
strip.
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Example

k=3

2|1 2|1
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6/5/2] 6/3]2




Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

2|1 2|1
3]2 312
5/4]1 312|1
652 4[3]2




Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

2|1 2|1

312 32

5/4]1 312|1
6/5[2] _ 413]1]




Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

201 201

312 32

51411 3(2|1
6/5[2] _ 412]1]




Partitions and cores

k-bounded partitions: First part < k

k + 1-cores: No hook length = k+1
Bijection: Slide rows with big hooks

Example

k=3

2[1 2[1

3]2 3[2

5/4]1 716[3]2]1

6/5/2] _, |11fio/7][6]5]3]2]1]
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k-conjugate
The k-conjugate of a k-bounded partition A is found by

A= c(A) = c(A) — Ak

Example
k=3

w
DN =

o
~
(@)}
(6]

- 3[2]1]




k-conjugate
The k-conjugate of a k-bounded partition A is found by

A= c(A) = c(A) — Ak

Example
k=3
1]
2]
3
501
2[1 62
3[2 713
716[3]2]1 10[6]2
~ [fioj7]6]5[3]2]1] - [11]7]3




k-conjugate
The k-conjugate of a k-bounded partition A is found by

A= c(A) = c(A) — Ak

Example
k=3
1]
12
3
501
2[1 62
3[2 713
716[3]2]1 10[6]2
~ [fioj7]6]5[3]2]1] - [11]7]3
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(column index) — (row index)

Example




content
When k = oo, the content of a cell in a diagram is

(column index) — (row index)

Example
—3—2
—2—1
-10|1]2
0/1/2]3

For k < oo we use the residue mod k + 1 of the associated core

Example

R IOoO|WiN

OIWIN|F

2/3]0[1]2]3]




k-connected

A skew k + 1 core is k-connected if the residues are a proper
subinterval of the numbers {0, --- , k}, considered on a circle.



k-connected

A skew k + 1 core is k-connected if the residues are a proper
subinterval of the numbers {0, --- , k}, considered on a circle.

Example
A 3-connected skew core:

.-nooo‘m

I\)P—‘O‘
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w
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3[0]1]2]3]0]




k-connected
A skew k + 1 core is k-connected if the residues are a proper
subinterval of the numbers {0,--- , k}, considered on a circle.
Example
A 3-connected skew core:

0

1112)
2130
3/0][1]2]3]0
o[1]2]3]0]1]2]3]0]

A skew core which is not 3-connected:

[
N
w
o

OUJI\)I—‘O‘
HIOIWIN
o

2[3]0]1]2]3]0]




k-border strips
The skew of two k-bounded partitions \/p is a k-border strip of
size r if it satisfies the following conditions:
> (size) [Nyl = r
> (containment) p C A and p(k) c A(K)
» (connectedness) ¢(\)/¢(u) is k-connected
» (first ribbon condition) ht(A/u) + ht ()\(k)/,u(k)) =r—1
» (second ribbon condition) ¢(\)/c(p) contains no 2 x 2 squares



k-border strips
The skew of two k-bounded partitions \/p is a k-border strip of
size r if it satisfies the following conditions:
> (size) |\ ul = r
(containment) € A and pu(9) c A9

v

» (connectedness) ¢(\)/¢(u) is k-connected
» (first ribbon condition) ht(A/u) + ht ()\(k)/,u(k)) =r—1
» (second ribbon condition) ¢(\)/c(p) contains no 2 x 2 squares
Example
k=3,r=2
.
Rl
. | 2
° 2|3
i = A/ =L LT e /e(n) = 23]




k-ribbons at oo

At k = oo the conditions

(size) |\/u] = r
containment) 1 C X and (k) ¢ A(K)

v

v

v

connectedness) ¢(\)/c(u) is k-connected
first ribbon condition) ht(\/u) + ht (A /p(K) = r — 1
second ribbon condition) ¢(A)/¢(x) contains no 2 x 2 squares
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k-ribbons at oo

At k = oo the conditions become
> (size) |\/ul = r
> (containment) u C A
» (connectedness) \/pu is connected
» (first ribbon condition) ht(\/u) +ht (N /p') =r—1
» (second ribbon condition) A\/u contains no 2 x 2 squares

Proposition
At k = oo the first four conditions imply the fifth.



The ribbon statistic at kK = oo

Let A/ be connected of size r, and
ht (A/p)+ht (X'/p') = #vert. dominos + #horiz. dominos = r—1

Then A/u is a ribbon



The ribbon statistic at kK = oo

Let \/u be connected of size r, and
ht (A/p)+ht (X' /p') = #vert. dominos+ #horiz. dominos = r—1

Then \/p is a ribbon

Example

3+3=6



The ribbon statistic at kK = oo

Let A/ be connected of size r, and
ht (A/p)+ht (X'/p') = #vert. dominos + #horiz. dominos = r—1

Then A/u is a ribbon

Example

B+1)+(B+1)=8#7



Recap for general k

For r < k,

prsth) = 3 (—1)hms{
A

where the summation is over all A such that \/u satifies
(size) |\l = r
containment) 1 C A and (k) ¢ A(K)

v

v

v

(
(connectedness) ¢(A)/c(u) is k-connected

(first ribbon condition) ht(A\/s) + ht (AK) /pk)) = r —1
(second ribbon condition) ¢(\)/c(x) is a ribbon

v

v
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For r < k,
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(
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The first four conditions imply the fifth.



Recap for general k

For r < k,

prS,Sk) _ Z(_l)ht(z\/u)sgk)
A

where the summation is over all A such that \/u satifies

(size) |\/ul = 1
containment) 1 C A and (k) ¢ A(K)

v

v

v

(
(connectedness) ¢(A)/c(u) is k-connected

(first ribbon condition) ht(A\/s) + ht (AK) /pk)) = r —1
(second ribbon condition) ¢(\)/c(x) is a ribbon

v

v

Conjecture
The first four conditions imply the fifth.

This has been verified for all k,r < 11, all p of size < 12 and all A
of size |u| + r.



The non-commutative setting

Sergey Fomin

Theorem (Fomin-Greene, 1998)

Any algebra with a linearly ordered set of
generators uy, - - - , U, satisfying certain
relations contains an homomorphic image of A\.

Example

The type A nilCoxeter algebra. Generators
S1,-++,S,—1. Relations

> s,-2 =0
> SiSi+1si = Si+1SiSi+1
> sisp = s;s; for |i — j| > 2.

Curtis Greene



The affine nilCoxeter algebra

The affine nilCoxeter algebra Ay is the Z-algebra generated by
up, - - - , Ux with relations

» u? =0 forall j € [0, k]
> Ujljp1yi = Uir1Ujuiy for all i € [0, k]
> ujuj = uju; for all i,j with [i —j| > 1

All indices are taken modulo k + 1 in this definition.



A word in the affine nilCoxeter algebra is called cyclically
decreasing if

> its length is < k
> each generator appears at most once

» if uj and uj_1 appear, than u; occurs first (as usual, the
indices should be taken mod k).

As elements of the nilCoxeter algebra, cyclically decreasing words
are completely determined by their support.

Example
k=6

(uous)(uausup) = (ususun)(upue) = uguouzUeur = - - -



Noncommutative h functions

For a subset S C [0, k], we write us for the unique cyclically
decreasing nilCoxeter element with support S.
For r < k we define

h, = Z us

IS[=r
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For a subset S C [0, k], we write us for the unique cyclically
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Theorem (Lam, 2005)

The elements {hy,--- ,hy} commute and are
algebraically independent.




Noncommutative h functions

For a subset S C [0, k], we write us for the unique cyclically
decreasing nilCoxeter element with support S.
For r < k we define

h, = Z us

IS[=r

Theorem (Lam, 2005)

The elements {hy,--- ,hy} commute and are
algebraically independent.

This immediately implies that the algebra
Q[h1,- -+ ,hy] Z Q[hy,- -, hx] where the latter functions are the
usual homogeneous symmetric functions.
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functions by their relationship with the h basis.
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Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric
functions by their relationship with the h basis.

r

Z(—l)ier_,'h; =0

i=0
r—1
Pr= rhr - Z pihn—i
i=1

s) = det (hy, 1)



Noncommutative symmetric functions

We can now define non-commutative analogs of symmetric
functions by their relationship with the h basis.

r

Z(—l)ier_,'h; =0

i=0
r—1
Pr= rhr - Z pihn—i
i=1

s) = det (hy, 1)

sE\k) by the k-Pieri rule



k-Pieri rule

The k-Pieri rule is
hrSE\k) — Zs/(tk)

7

where the sum is over all k-bounded partitions x such that p/\ is
a horizontal strip of length r and u(k)/)\(k) is a vertical strip of
length r. This can be re-written as

k k
A= Y,

IS[=r



The action on cores

There is an action of A, on k + 1-cores given by

0 no addable j-residue
up-c=
' c U all addable i-residues otherwise

Example
k=4



The action on cores

There is an action of A, on k + 1-cores given by

c 0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4

112

213

3/0(1(2]3
sy5010/112[3[0]1]2]3]




The action on cores

There is an action of A, on k + 1-cores given by

c 0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4
(0]
112
213|0
3/1011/2(3]|0
sys00011]2[3[0]1]2[3]0]




The action on cores

There is an action of A, on k + 1-cores given by

c 0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4

(0] 0]

112 1(2

21310 21310

3/0(1(2[3]0 31011/2(3/|0
s,50101112[3[0]1[2]3[0]—,.[0[1]2[3][0]1[2]3]0]



The action on cores

There is an action of A, on k + 1-cores given by

0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4
- 3]
0 0|1
112 1(2]3
213]0 2/3|0|1
3/0(1(2(3]|0 3/0/1/2]3|0]|1
sy500011]2[3[0]1]2[3]0]—,[0]1][2]3]0[1]2[3]0]1]



The action on cores

There is an action of A, on k + 1-cores given by

c 0 no addable j-residue
up-c=
c U all addable i-residues otherwise
Example
=4

- 3]

0 0|1

112 1(2]3

213|0 2/13/0]1

3/1011/213 31011(213 1
s501011]12[3[0]1]2[3]0]—,.0]1[2]3]0[1]2[3]0[1]—0



Multiplication rule

A corollary of the k-Pieri rule is that if f is any non-commutative
symmetric function of the form

f:Zcuu

then
fsE\k) = Z cusff))\



Hook words

Fomin and Greene define a hook word in the context of an algebra
with a totally ordered set of generators to be a word of the form

ual...uarubl...ub

S

where
aa>a>-->a>b <b<--< b

To extend this notion to A, which has a cyclically ordered set of
generators, we only consider words whose support is a proper
subset of [0, -, k].



Hook words

There is a canonical order on any proper subset of [0, k] given by
thinking of the smallest (in integer order) element which does not
appear as the smallest element of the circle.
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There is a canonical order on any proper subset of [0, k] given by
thinking of the smallest (in integer order) element which does not
appear as the smallest element of the circle.

Example

For {0,1,3,4,6} C [0, 6], we have the order

2<3<4<bh<b<0<«1

Hook words in A have (support = proper subset) and form

ual...uarubl...ub

S

where
ai>a>-->a >b <b <---<bs



Hook words

There is a canonical order on any proper subset of [0, k] given by
thinking of the smallest (in integer order) element which does not
appear as the smallest element of the circle.

Example
For {0,1,3,4,6} C [0, 6], we have the order

2<3<4<bh<b<0<«1

Hook words in A have (support = proper subset) and form

ual...uarubl...ub

S

where
ai>a>-->a >b <b <---<bs

Hook word representations are unique; therefore the number of
ascents in a hook word is well-defined as s — 1.



The non-commutative rule

Theorem (B-Schilling-Zabrocki, 2010)

prS/&k) _ Z(_l)asc(w)s(wlﬁ)u

w
where the sum is over all words in the affine nilCoxeter algebra
satisfying

> (size) len(w) = r

» (containment) w - p1 # 0

» (connectedness) w is a k-connected word

» (ribbon condition) w is a hook word
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Compute expansion of sy into words using
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Sketch of non-commutative proof

Compute expansion of spook into words using
Sr—ili = h_iei — hr_iy1€i—1+ -+ (=1)'h,

and description of h (resp. e) as sums of cyclically increasing
(resp. cyclically decreasing) words.

Pair words of opposite sign to conclude

Sr—ili = E w
w

where the sum is over all hook words of size r with exactly i
ascents.



Sketch of non-commutative proof

S,_j1i = E w sum over hook words with / ascents
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where the sum is over all (not necessarily connected) hook words
of length r.
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A sign-reversing involution (Fomin and Greene) restricts the sum
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Use the usual Murnaghan-Nakayama identity

r—1
Pr = Z(_l)isr—i,lf to conclude pPr= Z(_l)asc(w)w
i=0 —

where the sum is over all (not necessarily connected) hook words
of length r.

A sign-reversing involution (Fomin and Greene) restricts the sum
to connected hook-words. The multiplication rule

prsg\k) — Z(_l)asc(w)s(wlﬁ&

w

completes the proof.
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Sketch of commutative proof

Characterize the image of the map (w — w -y = A):

conditions on words: conditions on shapes:
> (Size) > (size)
len(w) =r Nl =r
> (containment) » (containment)
w-p#0 p C Aand pk) c AR

» (connectedness)

. > (connectedness)
w is a k-connected

¢(M\)/c¢(u) is k-connected

word
» (first ribbon condition)
» (ribbon condition) ht(A/p) + ht ()‘(k)/“(k)) =r—1
w is a hook word » (second ribbon condition)

¢(N\)/c(p) is a ribbon



[teration

Iterating the rule

prsgk) _ Z(_l)ht(u/A)slgk)
o

gives

= S sy = S

T

where the sum is over all k-ribbon tableaux, defined analogously to
the classical case.



Duality

In the classical case, the inner product immediately gives

1
=Y s, <= 5= Zo0)py
o

A

In the affine case we have
p= S = o =3 Ll
A 2, A

We would like the inverse matrix



Back to Frobenius

For V any S, representation, we can find the
decomposition into irreducible submodules

with 1
D oxv(mpe =) _as:
® A

o
So finding

K 1 «
5,(\ ) = Z gxg\ )(M)Pu
o

would potentially allow one to verify that a
given representation had a character equal to
k-Schur functions.



Back to Frobenius

For V any S, representation, we can find the
decomposition into irreducible submodules

with 1
D oxv(mpe =) _as:
m

I A
So finding

K 1 «
5,(\ ) = Z gxg\ )(M)Pu
o

would potentially allow one to verify that a
given representation had a character equal to
k-Schur functions.

Full paper available at arXiv:1004.8886
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