Harmonic Spinors on Homogeneous Spaces

Roger Zierau

This is joint work with Leticia Barchini

I. DIRAC OPERATORS

- G a connected real semisimple Lie group.
- \mathfrak{g} the Lie algebra of G; \langle , \rangle the Killing form.
- $\mathfrak{g} = \mathfrak{k} + \mathfrak{s}$ a Cartan decomposition of \mathfrak{g} ;
- K a maximal compact subgroup of G.
- the Killing form restricts to a positive definite form $\langle , \rangle_{\mathfrak{s}}$ on \mathfrak{s} .

There is a spin representation of K arising from $\operatorname{Ad} : K \to SO(\mathfrak{s})$, call it S. (Maybe pass to cover.) Suppose E_{μ} is a finite dimensional irreducible representation of K. Let $\mathcal{E}_{\mu} \otimes S \to G/K$ be the equivariant vector bundle corresponding to $E_{\mu} \otimes S$. There is a well-known Dirac operator

$$\mathcal{D}: C^{\infty}(G/K, \mathcal{E}_{\mu} \otimes S) \to C^{\infty}(G/K, \mathcal{E}_{\mu} \otimes S)$$
$$\mathcal{D} = \sum R(X_j) \otimes 1 \otimes \gamma(X_j),$$

where:

 $\{X_j\}$ is an orthonormal basis of \mathfrak{s} $\gamma(X_j)$ is Clifford multiplication, and $R(X_j)$ is right translation on sections:

 $(R(X)F)(g) := \frac{d}{dt}F(g\exp(tX))|_{t=0}.$

This is a G-invariant first order operator.

Theorem 1 (Parthasarathy 72, Atiyah-Schmid 77) Suppose that rank(K) = rank(G). Then the L^2 harmonic space

$$\mathcal{H}_2(G/K, E_\mu) := \{ F \in C^\infty(G/K, \mathcal{E}_\mu \otimes S) : \mathcal{D}F = 0 \\ \text{and} \int_{G/K} ||F(g)||^2 \, dg < \infty \}$$

is an irreducible unitary representation in the discrete series of G. Every discrete series representation is realized in this way.

Note. (a) || - || is the norm in $E_{\mu} \otimes S$ for a K-invariant positive definite hermitian form on.

(b) \mathcal{D} is an elliptic operator.

Question: What can one say for Dirac operators on more general G/H?

First Example.

Suppose that $H \subsetneq K$, $\operatorname{rank}(H) = \operatorname{rank}(G)$.

Write $\mathfrak{g} = \mathfrak{h} + \mathfrak{q}, \mathfrak{q} = \mathfrak{h}^{\perp}$. Since *H* is compact we may choose an *H*-invariant positive definite form on \mathfrak{q} .

This gives a spin representation $S_{\mathfrak{q}}$ of H.

There is a Dirac operator with formula as above.

We may consider the L^2 harmonic space.

BUT this is the wrong Dirac operator.

An important formula of Parthasarathy for G/K is

$$\mathcal{D}^2 = R(\Omega_G) \otimes 1 \otimes 1 - (||\mu + \rho_{\mathfrak{k}}||^2 - ||\rho||^2);$$

this fails for G/H.

However, Kostant's "cubic" Dirac operator is the correct differential operator: – There is a good formula for the square.

– There is an induction in stages formula:

$$"\mathcal{D}_{G/H} = \mathcal{D}_{G/K} + \mathcal{D}_{K/H}"$$

under the identification

$$C^{\infty}(G/H, \mathcal{E}_{\mu} \otimes S_{\mathfrak{q}}) \simeq C^{\infty}(G/K, C^{\infty}(K/H, \mathcal{E}_{\mu} \otimes S_{\mathfrak{q} \cap \mathfrak{k}}) \otimes S_{\mathfrak{s}})$$

This leads to the following statement:

Proposition 2 $\mathcal{H}_2(G/H, E_\mu)$ is a discrete series representation.

Let's return to more arbitrary G/H.

We assume that H is a connected reductive group so that the Killing form restricted to $\mathfrak{h} \times \mathfrak{h}$ is nondegenerate.

Write $\mathfrak{g} = \mathfrak{h} + \mathfrak{q}, \quad \mathfrak{q} := \mathfrak{h}^{\perp}.$

Let $\langle \ , \ \rangle_{\mathfrak{q}}$ be the restriction of the Killing form to \mathfrak{q} . (This is nondegenerate and defines a typically indefinite hermitian form.) We therefore have:

Clifford algebra $C\ell(\mathfrak{q})$ and spin represention $S_{\mathfrak{q}}$ of \mathfrak{h}

constructed from $\langle , \rangle_{\mathfrak{q}}$.

Kostant defined the 'cubic Dirac operator' as follows: Let $\{X_j\}$ be a basis of \mathfrak{q} so that $\langle X_j, X_k \rangle_{\mathfrak{q}} = \epsilon_j \delta_{jk}, \epsilon_j = \pm 1$. $D \in \{\mathcal{U}(\mathfrak{g}) \otimes C\ell(\mathfrak{q})\}^{\mathfrak{h}}$ is defined by

$$D = \sum \epsilon_j X_j \otimes \gamma(X_j) - 1 \otimes \gamma(c),$$

where

$$c = \frac{1}{6} \sum \epsilon_i \epsilon_j \epsilon_k \langle X_i, [X_j, X_k] \rangle X_i X_j X_k.$$

(cubic term).

This gives a 'geometric Dirac operator': Let E_{μ} be a f.d. representation of \mathfrak{h} so that $E \otimes S_{\mathfrak{q}}$ lifts to rep. of H and define

$$\mathcal{D}: C^{\infty}(G/H, \mathcal{E} \otimes S_{\mathfrak{q}}) \to C^{\infty}(G/H, \mathcal{E} \otimes S_{\mathfrak{q}})$$

by

$$\mathcal{D}F(g) = \sum \gamma(X_i)(r(X_i)F)(g) - (1 \otimes \gamma(c))(F(g)).$$

Facts:

- There is a good formula for \mathcal{D}^2 , as above.
- Behaves well under induction in stages, as above.
- \mathcal{D} is in fact a Dirac operator from a *G*-invariant connection. (I. Agricola, 2002.)
- If H = K, then $[\mathfrak{s}, \mathfrak{s}] \subset \mathfrak{k} \perp \mathfrak{s}$, so c = 0.

An Harmonic Spinor is a section F so that $\mathcal{D}F = 0$.

Assume that H is not compact and assume that G and H have the same (complex) rank.

– Given that the bundle has an indefinite hermitian form, what would we mean by an L_2 section???

- Can we define an L^2 -harmonic space, and construct a unitary representation???

II. HARMONIC SPINORS

Is the space of harmonic spinors nonzero?

Under a condition that the highest weight of E is 'sufficiently regular', there is a G-intertwining integral operator

$$\mathcal{P}: C^{\infty}(G/P, \mathcal{W}) \to C^{\infty}(G/H, \mathcal{E} \otimes S_{\mathfrak{q}})$$

with the property that

 $im(\mathcal{P}) \subset Ker(\mathcal{D}).$

We will need an explicit formula: for $\mathcal{P}(\varphi)$.

Remark. There is an analogy here with the Poisson transform: harmonic functions on the disk are Poisson integrals of functions on the boundary.

Construction of \mathcal{P} :

The parabolic subgroup P is defined by choosing a maximal abelian

$$\mathfrak{a} \subset \mathfrak{h} \cap \mathfrak{s}.$$

Then

$$MA = Z_G(\mathfrak{a}).$$

P = MAN, with a little care in the choice of N.

Lemma 3 If $T \in \hom_{P \cap H}(W \otimes \mathbf{C}_{\rho_{\mathfrak{g}}-2\rho_{\mathfrak{h}}}, E_{\mu} \otimes S_{\mathfrak{q}})$ then,

$$(\mathcal{P}\varphi)(g) = \int_{H \cap K} \ell \cdot T(\varphi(g\ell)) \, d\ell$$

is a G-intertwining operator.

Proof:

$$\hom_{G}(C^{\infty}(G/P, \mathcal{W}), C^{\infty}(G/H, \mathcal{E}_{\mu} \otimes S_{\mathfrak{q}}))$$

$$\simeq \hom_{H}(C^{\infty}(G/P, \mathcal{W}), E_{\mu} \otimes S_{\mathfrak{q}})$$

$$\simeq \hom_{H}((E_{\mu} \otimes S_{\mathfrak{q}})', \mathcal{D}'(G/P, \mathcal{W}' \otimes \mathbf{C}_{2\rho}))$$

$$\supset \hom_{H \cap P}((E_{\mu} \otimes S_{\mathfrak{q}})', C^{\infty}(H/H \cap P, \mathcal{W}' \otimes \mathbf{C}_{2\rho_{\mathfrak{h}}}))$$

(distributions supported on the closed submanifold $H/H\cap P)$

$$\simeq \hom_{H \cap P}((E_{\mu} \otimes S_{\mathfrak{q}})', \mathcal{W}' \otimes \mathbf{C}_{2\rho_{\mathfrak{h}}})$$
$$\simeq \hom_{H \cap P}(\mathcal{W} \otimes \mathbf{C}_{-2\rho_{\mathfrak{h}}}, E_{\mu} \otimes S_{\mathfrak{q}}).$$

The representation of P on W:

Action of
$$A : \nu = (\text{highest wt. of } E) + \rho_{\mathfrak{h}} + \rho_{\mathfrak{g}},$$

Action of $N : \text{trivial},$
Action of $M : \text{discrete series realized as a space of}$
 L_2 harmonic spinors on $M/M \cap H$.

Note that

$$W \subset C^{\infty}(M/M \cap H, U_{\mu'} \otimes S_{\mathfrak{m} \cap \mathfrak{q}}),$$

for some $M \cap K$ -representation $U_{\mu'}$.

 π_0 : $U_{\mu'} \otimes S_{\mathfrak{m} \cap \mathfrak{q}} \to V_0$ is a projection to the subspace V_0 of $\mathfrak{h} \cap \mathfrak{n}$ -invariants in $E_{\mu+\rho(\mathfrak{q})-2\rho(\mathfrak{m}\cap\mathfrak{k}\cap\mathfrak{q})} \subset E_{\mu} \otimes S_{\mathfrak{q}}.$ Then $T(w) = \pi_0(w(e))$ gives the *G*-intertwining operator

$$(\mathcal{P}\varphi)(g) = \int_{H \cap K} \ell \cdot \pi_0(\varphi(g\ell)(e)) \, d\ell.$$

Theorem 4 (Mehdi-Z.) Under the 'sufficiently dominant' condition

$$\mathcal{P}\varphi \in ker(\mathcal{D}).$$

III. SQUARE INTEGRABILITY.

In general $E \otimes S_{\mathfrak{q}}$ does not have a positive definite *H*-invariant hermitian form, so it is not clear what we mean by a square integrable section of $\mathcal{E} \otimes S_{\mathfrak{q}}$. To get started we have:

Lemma 5 Suppose an irreducible finite dimensional representation of H has highest weight λ such that $\langle \lambda, \alpha \rangle \in \mathbf{R}$, $\alpha \in \Delta(\mathfrak{g})$. Then the representation has a positive definite hermitian form $\langle , \rangle_{\text{pos}}$ with the property that

$$\langle h \cdot v, w \rangle_{\text{pos}} = \langle v, \theta(h^{-1}) \cdot w \rangle_{\text{pos}},$$

for $h \in H$.

Not every finite dimensional representation has an H-invariant hermitian form. (There is one, for example, in case H and $H \cap K$ have the same complex rank.) The form is typically of indefinite signature.

Lemma 6 If E has an H-invariant hermitian form \langle , \rangle , then there is a constant C so that

$$|\langle v, w \rangle| \le C ||v||_{\text{pos}} ||w||_{\text{pos}},$$

for all $v \in S_{\mathfrak{q}} \otimes E$.

Note that $||F(g)||_{\text{pos}}$ is not a function on G/H. We use the Mostow decomposition

$$G = K \exp(\mathfrak{q} \cap \mathfrak{s}) \exp(\mathfrak{h} \cap \mathfrak{s}),$$
$$g = k(g) \exp(X(g)) \exp(Y(g)).$$

It is easy to check that

$$||F(k(g)\exp(X(g))||_{\text{pos}}^2$$

is a function on G/H. (Note that $|| \cdot ||_{\text{pos}}$ is $K \cap H$ -invariant by Lemma 5.)

Definition 7 Let $\mathcal{H}_2(G/H, E)$ be the space of harmonic spinors F so that

$$||F||_{pos}^{2} := \int_{G/H} ||F(k(g)\exp(X(g)))||_{pos}^{2} dg$$

is finite.

(This definition comes from Rawnsley-Schmid-Wolf, where is was used in the context of differential forms in an indefinite metric setting.)

It follows from Lemma 6 that

$$\langle F_1, F_2 \rangle_{\text{inv}} := \int_{G/H} \langle F_1(g), F_2(g) \rangle \, dg$$

is finite for all $F_1, F_2 \in \mathcal{H}_2(G/H, E)$, so defines a G-invariant hermitian form on $\mathcal{H}_2(G/H, E)$.

The following theorem holds (under the condition that the highest weight of E is sufficiently regular).

Theorem 8 (Barchini-Z.) If G/H is a semisimple symmetric space, then $\mathcal{H}_2(G/H, E) \neq \{0\}$. If, in addition, E has an invariant hermitian form, then $\mathcal{H}_2(G/H, E)$ carries a G-invariant hermitian form.

The proof is to use the explicit form of \mathcal{P} to show that $F = \mathcal{P}\varphi$ is square integrable (for K-finite φ).

The proof involves numerous changes of variables and identities for Iwasawa and Mostow decompositions. Here are a few intermediate steps.

Lemma 9 For $\varphi \in C^{\infty}(G/P, W)$ and $g \in G$, $||\mathcal{P}\varphi(g)||_{pos}^2 =$

$$\int_{K\cap H} \int_{\overline{N}\cap H} \langle \pi_0(\varphi(g\ell)(e)), \pi_0(\varphi(g\ell\overline{n}_H)(e)) \rangle_{\text{pos}} \, d\overline{n}_H d\ell.$$

In case G/H is semisimple symmetric, $H = G^{\sigma}$, we have

Lemma 10 If $\sigma\theta(g) = g$, then $\overline{H}(g) = -H(g)$ and $\overline{m}(g) = m(g)$.

This relates the Iwasawa decompositions

$$G = K \exp(\mathfrak{m} \cap \mathfrak{s}) NA$$
$$g = \kappa(g) m(g) n(g) e^{H(g)}$$

and

$$G = K \exp(\mathfrak{m} \cap \mathfrak{s}) \overline{N} A$$
$$g = \overline{\kappa}(g) \overline{m}(g) \overline{n}(g) \mathrm{e}^{\overline{H}(g)}$$

Combining the two lemmas (and numerous integration formulas and changes of variables) we get

$$\int_{G/H} ||\mathcal{P}\varphi(k(g)\exp(X(g)))||_{\text{pos}}^2 dg$$

is bounded by a constant multiple of

$$\int_{\overline{N}} \mathrm{e}^{-\nu(H(\overline{n}))} d\overline{n}$$

which is known to converge (by our choice of ν).

IV. DOLBEAULT COHOMOLOGY.

Consider an elliptic coadjoint orbit G/L.

G/L has a G-invariant complex structure.

The anti-holomorphic tangent space at eL may be identified with a subalgebra \mathfrak{u} , and $\mathfrak{l} + \mathfrak{u}$ is a parabolic subalgebra of \mathfrak{g} .

Suppose χ is a unitary character of L, $\mathcal{L}_{\chi} \to G/L$ the corresponding homogeneous holo. line bundle.

This gives the Dolbeault complex

$$\overline{\partial}: C^{\infty}(G/L, \mathbf{C}_{\chi} \otimes \wedge^{m} \overline{\mathfrak{u}}) \to C^{\infty}(G/L, \mathbf{C}_{\chi} \otimes \wedge^{m+1} \overline{\mathfrak{u}}),$$

and the formal adjoint of $\overline{\partial}$

$$\overline{\partial}^*: C^{\infty}(G/L, \mathbf{C}_{\chi} \otimes \wedge^{m+1}\overline{\mathfrak{u}}) \to C^{\infty}(G/L, \mathbf{C}_{\chi} \otimes \wedge^m\overline{\mathfrak{u}}).$$

(This is the formal adjoint with respect to the natural invariant hermitian form on $\mathbf{C}_{\chi} \otimes \wedge^{\bullet} \overline{\mathfrak{u}}$.)

Well-known basic (but nontrivial) facts:

(a) $H^m(G/L, \mathcal{L}_{\chi})$ is an admissible representation of G, and is a maximal globalization.

(b) If $\langle \chi + \rho, \beta \rangle > 0, \beta \in \Delta(\mathfrak{g})$, then

- vanishing in degrees $m \neq s := \dim_{\mathbf{C}}(K/K \cap L)$

 $-H^{s}(G/L, \mathcal{L}_{\chi})$ is irreducible with Harish-Chandra module equal to a unitarizable $A_{\mathfrak{q}}(\lambda)$ (cohomologically induced (\mathfrak{g}, K) -module).

Rawnsley, Schmid and Wolf suggested a way to construct the irreducible UNI-TARY representations of G:

Define an L^2 space of strongly harmonic forms:

 $\overline{\partial}\omega = 0, \overline{\partial}^*\omega = 0$ and L^2 as described earlier.

Then attempt to prove:

(A) each (K-finite) cohomology class contains an L^2 strongly harmonic form.

(B) the invariant hermitian form (as discussed earlier) is positive semi-definite, with null space $im(\overline{\partial})$.

Then $\langle \ , \ \rangle_{\rm inv}$ will be positive definite on cohomology, completion will be a unitary representation.

The success of this method has is limited to cases where G/L is semisimple symmetric or there is a chain $L = L_1 \subset L_2 \subset \cdots \subset L_k = G$ with each L_{i+1}/L_i symmetric with invariant complex structure. (RSW, Barchini-Z.)

Now consider the Dirac operator \mathcal{D} associated to a bundle on G/L (elliptic orbit as above).

$$\begin{split} \mathfrak{g} &= \mathfrak{l} + \mathfrak{q}, \quad \mathfrak{q}_{\mathbf{C}} = \mathfrak{u} + \overline{\mathfrak{u}}. \\ \text{Facts:} \\ &- S_{\mathfrak{q}} \simeq \wedge^{\bullet} \overline{\mathfrak{u}} \otimes \mathbf{C}_{\rho(\mathfrak{u})} = \sum_{m} \wedge^{m} \overline{\mathfrak{u}} \otimes \mathbf{C}_{\rho(\mathfrak{u})}. \\ &- \mathcal{D} = \overline{\partial} + \overline{\partial}^{*}. \\ \text{So, if } F \in C^{\infty}(G/L, \mathbf{C}_{\chi + \rho(\mathfrak{u})} \otimes \wedge^{m} \overline{\mathfrak{u}}) \text{ and } \mathcal{D}F = 0, \text{ then } F \text{ is strongly harmonic.} \end{split}$$

For the remainder of the lecture we look at an example where we can use the Dirac operator to obtain L^2 strongly harmonic forms representing Dolbeault cohomology classes (G/L not symmetric).

V. AN EXAMPLE.

Consider the following example.

$$G = Sp(n, \mathbf{R}),$$

$$H = Sp(p, \mathbf{R}) \times Sp(q, \mathbf{R}), \quad n = p + q,$$

$$L = U(p) \times Sp(q, \mathbf{R}).$$

Then $L \subset H \subset G$, each symmetric in the next, BUT G/H has no invariant complex structure. (Note that $\mathfrak{l}_{\mathbf{C}} + \mathfrak{u}$ is a max parabolic subalg. of $\mathfrak{g}_{\mathbf{C}}$.) Write $\mathfrak{g} = \mathfrak{l} + \mathfrak{q} = \mathfrak{h} + \mathfrak{q}_1$. Look for a *G*-intertwining operator

$$\mathcal{P}: C^{\infty}(G/P, \mathcal{W}) \to C^{\infty}(G/L, \mathbf{C}_{\chi} \otimes S_{\mathfrak{q}}).$$

Since

$$C^{\infty}(G/H, \mathcal{H}_2(H/L, \mathbf{C}_{\chi} \otimes S_{\mathfrak{h} \cap \mathfrak{q}}) \otimes S_{\mathfrak{q}_1}) \subset C^{\infty}(G/L, \mathbf{C}_{\chi} \otimes S_{\mathfrak{q}})$$

it is enough to look for

$$\mathcal{P}: C^{\infty}(G/P, \mathcal{W}) \to C^{\infty}(G/H, \mathcal{H}_2(H/L, \mathbf{C}_{\chi} \otimes S_{\mathfrak{h} \cap \mathfrak{q}}) \otimes S_{\mathfrak{q}_1}).$$

P = MAN, $\mathfrak{a} = \text{diagonal}(0, ..., 0, a_{p+1}, ..., a_n | 0, ..., 0, -a_{p+1}, ..., -a_n)$, The same principal as before applies: we look for

$$T \in \hom_{P \cap H}(W \otimes \mathbf{C}_{-2\rho_{\mathfrak{h}}}, \mathcal{H}_2(H/L, \mathbf{C}_{\chi}) \otimes S_{\mathfrak{q}_1})$$

But this is fairly easy, since

$$M \cap H/M \cap K \simeq H/L \quad (\simeq Sp(p, \mathbf{R})/U(p)).$$

Proposition 11 For χ dominant

$$im(\mathcal{P}) \subset \mathcal{H}_2(G/H, \mathcal{H}_2(H/L, \mathbf{C}_{\chi}))$$

$$\subset \mathcal{H}_2(G/L, \mathbf{C}_{\chi})$$

In fact the image of \mathcal{P} is contained in L^2 harmonic forms of type (0, s), and the invariant form is positive semidefinite on the image of \mathcal{P} .