Harmonic Spinors on Homogeneous Spaces Roger Zierau

This is joint work with Leticia Barchini

I. Dirac Operators

- G a connected real semisimple Lie group.
- \mathfrak{g} the Lie algebra of $G ;\langle$,$\rangle the Killing form.$
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{s}$ a Cartan decomposition of \mathfrak{g};
- K a maximal compact subgroup of G.
- the Killing form restricts to a positive definite form $\langle,\rangle_{\mathfrak{s}}$ on \mathfrak{s}.

There is a spin representation of K arising from $\mathrm{Ad}: K \rightarrow S O(\mathfrak{s})$, call it S. (Maybe pass to cover.) Suppose E_{μ} is a finite dimensional irreducible representation of K. Let $\mathcal{E}_{\mu} \otimes S \rightarrow G / K$ be the equivariant vector bundle corresponding to $E_{\mu} \otimes S$. There is a well-known Dirac operator

$$
\begin{gathered}
\mathcal{D}: C^{\infty}\left(G / K, \mathcal{E}_{\mu} \otimes S\right) \rightarrow C^{\infty}\left(G / K, \mathcal{E}_{\mu} \otimes S\right) \\
\mathcal{D}=\sum R\left(X_{j}\right) \otimes 1 \otimes \gamma\left(X_{j}\right)
\end{gathered}
$$

where:
$\left\{X_{j}\right\}$ is an orthonormal basis of \mathfrak{s}
$\gamma\left(X_{j}\right)$ is Clifford multiplication, and
$R\left(X_{j}\right)$ is right translation on sections:
$(R(X) F)(g):=\left.\frac{d}{d t} F(g \exp (t X))\right|_{t=0}$.
This is a G-invariant first order operator.
Theorem 1 (Parthasarathy 72, Atiyah-Schmid 77) Suppose that $\operatorname{rank}(K)=\operatorname{rank}(G)$. Then the L^{2} harmonic space

$$
\begin{aligned}
\mathcal{H}_{2}\left(G / K, E_{\mu}\right):= & \left\{F \in C^{\infty}\left(G / K, \mathcal{E}_{\mu} \otimes S\right): \mathcal{D} F=0\right. \\
& \text { and } \left.\int_{G / K}\|F(g)\|^{2} d g<\infty\right\}
\end{aligned}
$$

is an irreducible unitary representation in the discrete series of G. Every discrete series representation is realized in this way.

Note. (a) $\|-\|$ is the norm in $E_{\mu} \otimes S$ for a K-invariant positive definite hermitian form on.
(b) \mathcal{D} is an elliptic operator.

Question: What can one say for Dirac operators on more general G / H ?

First Example.
Suppose that $H \subsetneq K, \operatorname{rank}(H)=\operatorname{rank}(G)$.
Write $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}, \mathfrak{q}=\mathfrak{h}^{\perp}$. Since H is compact we may choose an H-invariant positive definite form on \mathfrak{q}.

This gives a spin representation $S_{\mathfrak{q}}$ of H.
There is a Dirac operator with formula as above.
We may consider the L^{2} harmonic space.
BUT this is the wrong Dirac operator.
An important formula of Parthasarathy for G / K is

$$
\mathcal{D}^{2}=R\left(\Omega_{G}\right) \otimes 1 \otimes 1-\left(\left\|\mu+\rho_{\mathfrak{k}}\right\|^{2}-\|\rho\|^{2}\right) ;
$$

this fails for G / H.
However, Kostant's "cubic" Dirac operator is the correct differential operator:

- There is a good formula for the square.
- There is an induction in stages formula:

$$
" \mathcal{D}_{G / H}=\mathcal{D}_{G / K}+\mathcal{D}_{K / H} "
$$

under the identification

$$
C^{\infty}\left(G / H, \mathcal{E}_{\mu} \otimes S_{\mathfrak{q}}\right) \simeq C^{\infty}\left(G / K, C^{\infty}\left(K / H, \mathcal{E}_{\mu} \otimes S_{\mathfrak{q} \cap \mathfrak{k}}\right) \otimes S_{\mathfrak{s}}\right)
$$

This leads to the following statement:
Proposition $2 \mathcal{H}_{2}\left(G / H, E_{\mu}\right)$ is a discrete series representation.

Let's return to more arbitrary G / H.
We assume that H is a connected reductive group so that the Killing form restricted to $\mathfrak{h} \times \mathfrak{h}$ is nondegenerate.
Write $\quad \mathfrak{g}=\mathfrak{h}+\mathfrak{q}, \quad \mathfrak{q}:=\mathfrak{h}^{\perp}$.
Let $\langle,\rangle_{\mathfrak{q}}$ be the restriction of the Killing form to \mathfrak{q}. (This is nondegenerate and defines a typically indefinite hermitian form.) We therefore have:

Clifford algebra $C \ell(\mathfrak{q})$ and
spin represention $S_{\mathfrak{q}}$ of \mathfrak{h}
constructed from \langle,\rangle_{q}.
Kostant defined the 'cubic Dirac operator' as follows:
Let $\left\{X_{j}\right\}$ be a basis of \mathfrak{q} so that $\left\langle X_{j}, X_{k}\right\rangle_{\mathfrak{q}}=\epsilon_{j} \delta_{j k}, \epsilon_{j}= \pm 1$.
$D \in\{\mathcal{U}(\mathfrak{g}) \otimes C \ell(\mathfrak{q})\}^{\mathfrak{h}}$ is defined by

$$
D=\sum \epsilon_{j} X_{j} \otimes \gamma\left(X_{j}\right)-1 \otimes \gamma(c)
$$

where

$$
c=\frac{1}{6} \sum \epsilon_{i} \epsilon_{j} \epsilon_{k}\left\langle X_{i},\left[X_{j}, X_{k}\right]\right\rangle X_{i} X_{j} X_{k} .
$$

(cubic term).
This gives a 'geometric Dirac operator': Let E_{μ} be a f.d. representation of \mathfrak{h} so that $E \otimes S_{\mathfrak{q}}$ lifts to rep. of H and define

$$
\mathcal{D}: C^{\infty}\left(G / H, \mathcal{E} \otimes S_{\mathfrak{q}}\right) \rightarrow C^{\infty}\left(G / H, \mathcal{E} \otimes S_{\mathfrak{q}}\right)
$$

by

$$
\mathcal{D} F(g)=\sum \gamma\left(X_{i}\right)\left(r\left(X_{i}\right) F\right)(g)-(1 \otimes \gamma(c))(F(g))
$$

Facts:

- There is a good formula for \mathcal{D}^{2}, as above.
- Behaves well under induction in stages, as above.
- \mathcal{D} is in fact a Dirac operator from a G-invariant connection. (I. Agricola, 2002.)
- If $H=K$, then $[\mathfrak{s}, \mathfrak{s}] \subset \mathfrak{k} \perp \mathfrak{s}$, so $c=0$.

An Harmonic Spinor is a section F so that $\mathcal{D} F=0$.
Assume that H is not compact and assume that G and H have the same (complex) rank.

- Given that the bundle has an indefinite hermitian form, what would we mean by an L_{2} section???
- Can we define an L^{2}-harmonic space, and construct a unitary reprsentation???

II. Harmonic spinors

Is the space of harmonic spinors nonzero?
Under a condition that the highest weight of E is 'sufficiently regular', there is a G-intertwining integral operator

$$
\mathcal{P}: C^{\infty}(G / P, \mathcal{W}) \rightarrow C^{\infty}\left(G / H, \mathcal{E} \otimes S_{\mathfrak{q}}\right)
$$

with the property that

$$
\operatorname{im}(\mathcal{P}) \subset \operatorname{Ker}(\mathcal{D})
$$

We will need an explicit formula: for $\mathcal{P}(\varphi)$.
Remark. There is an analogy here with the Poisson transform: harmonic functions on the disk are Poisson integrals of functions on the boundary.
Construction of \mathcal{P} :
The parabolic subgroup P is defined by choosing a maximal abelian

$$
\mathfrak{a} \subset \mathfrak{h} \cap \mathfrak{s}
$$

Then

$$
M A=Z_{G}(\mathfrak{a})
$$

$P=M A N$, with a little care in the choice of N.

Lemma 3 If $T \in \operatorname{hom}_{P \cap H}\left(W \otimes \mathbf{C}_{\rho_{\mathfrak{g}}-2 \rho_{\mathfrak{l}}}, E_{\mu} \otimes S_{\mathfrak{q}}\right)$ then,

$$
(\mathcal{P} \varphi)(g)=\int_{H \cap K} \ell \cdot T(\varphi(g \ell)) d \ell
$$

is a G-intertwining operator.
Proof:

$$
\begin{aligned}
\operatorname{hom}_{G} & \left(C^{\infty}(G / P, \mathcal{W}), C^{\infty}\left(G / H, \mathcal{E}_{\mu} \otimes S_{\mathfrak{q}}\right)\right) \\
& \simeq \operatorname{hom}_{H}\left(C^{\infty}(G / P, \mathcal{W}), E_{\mu} \otimes S_{\mathfrak{q}}\right) \\
& \simeq \operatorname{hom}_{H}\left(\left(E_{\mu} \otimes S_{\mathfrak{q}}\right)^{\prime}, \mathcal{D}^{\prime}\left(G / P, \mathcal{W}^{\prime} \otimes \mathbf{C}_{2 \rho}\right)\right) \\
& \supset \operatorname{hom}_{H \cap P}\left(\left(E_{\mu} \otimes S_{\mathfrak{q}}\right)^{\prime}, C^{\infty}\left(H / H \cap P, \mathcal{W}^{\prime} \otimes \mathbf{C}_{2 \rho_{\mathfrak{\mathfrak { G }}}}\right)\right)
\end{aligned}
$$

(distributions supported on the closed submanifold $H / H \cap P$)

$$
\begin{aligned}
& \simeq \operatorname{hom}_{H \cap P}\left(\left(E_{\mu} \otimes S_{\mathfrak{q}}\right)^{\prime}, \mathcal{W}^{\prime} \otimes \mathbf{C}_{2 \rho_{\mathfrak{h}}}\right) \\
& \simeq \operatorname{hom}_{H \cap P}\left(\mathcal{W} \otimes \mathbf{C}_{-2 \rho_{\mathfrak{h}}}, E_{\mu} \otimes S_{\mathfrak{q}}\right)
\end{aligned}
$$

The representation of P on W :
Action of $A: \nu=($ highest wt. of $E)+\rho_{\mathfrak{h}}+\rho_{\mathfrak{g}}$,
Action of N : trivial,
Action of M : discrete series realized as a space of L_{2} harmonic spinors on $M / M \cap H$.

Note that

$$
W \subset C^{\infty}\left(M / M \cap H, U_{\mu^{\prime}} \otimes S_{\mathfrak{m} \cap \mathfrak{q}}\right)
$$

for some $M \cap K$-representation $U_{\mu^{\prime}}$.
$\pi_{0}: U_{\mu^{\prime}} \otimes S_{\mathfrak{m} \cap \mathfrak{q}} \rightarrow V_{0}$ is a projection to the subspace V_{0} of $\mathfrak{h} \cap \mathfrak{n}$-invariants in $E_{\mu+\rho(\mathfrak{q})-2 \rho(\mathfrak{m} \cap \mathfrak{k} \cap \mathfrak{q})} \subset E_{\mu} \otimes S_{\mathfrak{q}}$.
Then $T(w)=\pi_{0}(w(e))$ gives the G-intertwining operator

$$
(\mathcal{P} \varphi)(g)=\int_{H \cap K} \ell \cdot \pi_{0}(\varphi(g \ell)(e)) d \ell
$$

Theorem 4 (Mehdi-Z.) Under the 'sufficiently dominant' condition

$$
\mathcal{P} \varphi \in \operatorname{ker}(\mathcal{D})
$$

III. Square integrability.

In general $E \otimes S_{\mathfrak{q}}$ does not have a positive definite H-invariant hermitian form, so it is not clear what we mean by a square integrable section of $\mathcal{E} \otimes S_{\mathfrak{q}}$. To get started we have:

Lemma 5 Suppose an irreducible finite dimensional representation of H has highest weight λ such that $\langle\lambda, \alpha\rangle \in \mathbf{R}, \alpha \in \Delta(\mathfrak{g})$. Then the representation has a positive definite hermitian form $\langle,\rangle_{\text {pos }}$ with the property that

$$
\langle h \cdot v, w\rangle_{\mathrm{pos}}=\left\langle v, \theta\left(h^{-1}\right) \cdot w\right\rangle_{\mathrm{pos}},
$$

for $h \in H$.
Not every finite dimensional representation has an H -invariant hermitian form. (There is one, for example, in case H and $H \cap K$ have the same complex rank.) The form is typically of indefinite signature.

Lemma 6 If E has an H-invariant hermitian form \langle,$\rangle , then there is a constant C$ so that

$$
|\langle v, w\rangle| \leq C\|v\|_{\mathrm{pos}}| | w \|_{\mathrm{pos}},
$$

for all $v \in S_{\mathfrak{q}} \otimes E$.
Note that $\|F(g)\|_{\text {pos }}$ is not a function on G / H.
We use the Mostow decomposition

$$
\begin{gathered}
G=K \exp (\mathfrak{q} \cap \mathfrak{s}) \exp (\mathfrak{h} \cap \mathfrak{s}), \\
g=k(g) \exp (X(g)) \exp (Y(g)) .
\end{gathered}
$$

It is easy to check that

$$
\| F\left(k(g) \exp (X(g)) \|_{\mathrm{pos}}^{2}\right.
$$

is a function on G / H. (Note that $\|\cdot\|_{\text {pos }}$ is $K \cap H$-invariant by Lemma 5.)
Definition 7 Let $\mathcal{H}_{2}(G / H, E)$ be the space of harmonic spinors F so that

$$
\|F\|_{\text {pos }}^{2}:=\int_{G / H} \| F\left(k(g) \exp (X(g)) \|_{p o s}^{2} d g\right.
$$

is finite.
(This definition comes from Rawnsley-Schmid-Wolf, where is was used in the context of differential forms in an indefinite metric setting.)

It follows from Lemma 6 that

$$
\left\langle F_{1}, F_{2}\right\rangle_{\mathrm{inv}}:=\int_{G / H}\left\langle F_{1}(g), F_{2}(g)\right\rangle d g
$$

is finite for all $F_{1}, F_{2} \in \mathcal{H}_{2}(G / H, E)$, so defines a G-invariant hermitian form on $\mathcal{H}_{2}(G / H, E)$.

The following theorem holds (under the condition that the highest weight of E is sufficiently regular).

Theorem 8 (Barchini-Z.) If G / H is a semisimple symmetric space, then $\mathcal{H}_{2}(G / H, E) \neq$ $\{0\}$. If, in addition, E has an invariant hermitian form, then $\mathcal{H}_{2}(G / H, E)$ carries a G-invariant hermitian form.

The proof is to use the explicit form of \mathcal{P} to show that $F=\mathcal{P} \varphi$ is square integrable (for K-finite φ).
The proof involves numerous changes of variables and identities for Iwasawa and Mostow decompositions. Here are a few intermediate steps.

Lemma 9 For $\varphi \in C^{\infty}(G / P, \mathcal{W})$ and $g \in G,\|\mathcal{P} \varphi(g)\|_{\text {pos }}^{2}=$

$$
\int_{K \cap H} \int_{\bar{N} \cap H}\left\langle\pi_{0}(\varphi(g \ell)(e)), \pi_{0}\left(\varphi\left(g \ell \bar{n}_{H}\right)(e)\right)\right\rangle_{\operatorname{pos}} d \bar{n}_{H} d \ell .
$$

In case G / H is semisimple symmetric, $H=G^{\sigma}$, we have
Lemma 10 If $\sigma \theta(g)=g$, then $\bar{H}(g)=-H(g)$ and $\bar{m}(g)=m(g)$.
This relates the Iwasawa decompositions

$$
\begin{aligned}
G & =K \exp (\mathfrak{m} \cap \mathfrak{s}) N A \\
g & =\kappa(g) m(g) n(g) \mathrm{e}^{H(g)}
\end{aligned}
$$

and

$$
\begin{aligned}
G & =K \exp (\mathfrak{m} \cap \mathfrak{s}) \bar{N} A \\
g & =\bar{\kappa}(g) \bar{m}(g) \bar{n}(g) \mathrm{e}^{\bar{H}(g)}
\end{aligned}
$$

Combining the two lemmas (and numerous integration formulas and changes of variables) we get

$$
\int_{G / H} \| \mathcal{P} \varphi\left(k(g) \exp (X(g)) \|_{\mathrm{pos}}^{2} d g\right.
$$

is bounded by a constant multiple of

$$
\int_{\bar{N}} \mathrm{e}^{-\nu(H(\bar{n}))} d \bar{n}
$$

which is known to converge (by our choice of ν).

IV. Dolbeault Cohomology.

Consider an elliptic coadjoint orbit G / L.
G / L has a G-invariant complex structure.
The anti-holomorphic tangent space at $e L$ may be identified with a subalgebra \mathfrak{u}, and $\mathfrak{l}+\mathfrak{u}$ is a parabolic subalgebra of \mathfrak{g}.

Suppose χ is a unitary character of $L, \mathcal{L}_{\chi} \rightarrow G / L$ the corresponding homogeneous holo. line bundle.
This gives the Dolbeault complex

$$
\bar{\partial}: C^{\infty}\left(G / L, \mathbf{C}_{\chi} \otimes \wedge^{m} \overline{\mathfrak{u}}\right) \rightarrow C^{\infty}\left(G / L, \mathbf{C}_{\chi} \otimes \wedge^{m+1} \overline{\mathfrak{u}}\right)
$$

and the formal adjoint of $\bar{\partial}$

$$
\bar{\partial}^{*}: C^{\infty}\left(G / L, \mathbf{C}_{\chi} \otimes \wedge^{m+1} \overline{\mathfrak{u}}\right) \rightarrow C^{\infty}\left(G / L, \mathbf{C}_{\chi} \otimes \wedge^{m} \overline{\mathfrak{u}}\right)
$$

(This is the formal adjoint with respect to the natural invariant hermitian form on $\mathbf{C}_{\chi} \otimes \wedge^{\bullet} \overline{\mathfrak{u}}$.)
Well-known basic (but nontrivial) facts:
(a) $H^{m}\left(G / L, \mathcal{L}_{\chi}\right)$ is an admissible representation of G, and is a maximal globalization.
(b) If $\langle\chi+\rho, \beta\rangle>0, \beta \in \Delta(\mathfrak{g})$, then

- vanishing in degrees $m \neq s:=\operatorname{dim}_{\mathbf{C}}(K / K \cap L)$
- $H^{s}\left(G / L, \mathcal{L}_{\chi}\right)$ is irreducible with Harish-Chandra module equal to a unitarizable ' $A_{\mathfrak{q}}(\lambda)$ ' (cohomologically induced (\mathfrak{g}, K)-module).

Rawnsley, Schmid and Wolf suggested a way to construct the irreducible UNITARY representations of G :
Define an L^{2} space of strongly harmonic forms:
$\bar{\partial} \omega=0, \bar{\partial}^{*} \omega=0$ and L^{2} as described earlier.
Then attempt to prove:
(A) each (K-finite) cohomology class contains an L^{2} strongly harmonic form.
(B) the invariant hermitian form (as discussed earlier) is positive semi-definite, with null space $i m(\bar{\partial})$.
Then $\langle,\rangle_{\text {inv }}$ will be positive definite on cohomology, completion will be a unitary representation.
The success of this method has is limited to cases where G / L is semisimple symmetric or there is a chain $L=L_{1} \subset L_{2} \subset \cdots \subset L_{k}=G$ with each L_{i+1} / L_{i} symmetric with invariant complex structure. (RSW, Barchini-Z.)

Now consider the Dirac operator \mathcal{D} associated to a bundle on G / L (elliptic orbit as above).
$\mathfrak{g}=\mathfrak{l}+\mathfrak{q}, \quad \mathfrak{q}_{\mathbf{C}}=\mathfrak{u}+\overline{\mathfrak{u}}$.
Facts:
$-S_{\mathfrak{q}} \simeq \wedge^{\bullet} \overline{\mathfrak{u}} \otimes \mathbf{C}_{\rho(\mathfrak{u})}=\sum_{m} \wedge^{m} \overline{\mathfrak{u}} \otimes \mathbf{C}_{\rho(\mathfrak{u})}$.
$-\mathcal{D}=\bar{\partial}+\bar{\partial}^{*}$.
So, if $F \in C^{\infty}\left(G / L, \mathbf{C}_{\chi+\rho(\mathfrak{u})} \otimes \wedge^{m} \overline{\mathfrak{u}}\right)$ and $\mathcal{D} F=0$, then F is strongly harmonic.

For the remainder of the lecture we look at an example where we can use the Dirac operator to obtain L^{2} strongly harmonic forms representing Dolbeault cohomology classes (G / L not symmetric).

V. An Example.

Consider the following example.

$$
\begin{aligned}
& G=S p(n, \mathbf{R}) \\
& H=S p(p, \mathbf{R}) \times S p(q, \mathbf{R}), \quad n=p+q \\
& L=U(p) \times S p(q, \mathbf{R})
\end{aligned}
$$

Then $L \subset H \subset G$, each symmetric in the next, BUT G / H has no invariant complex structure.
(Note that $\mathfrak{l}_{\mathbf{C}}+\mathfrak{u}$ is a max parabolic subalg. of $\mathfrak{g}_{\mathbf{C}}$.)
Write $\mathfrak{g}=\mathfrak{l}+\mathfrak{q}=\mathfrak{h}+\mathfrak{q}_{1}$.
Look for a G-intertwining operator

$$
\mathcal{P}: C^{\infty}(G / P, \mathcal{W}) \rightarrow C^{\infty}\left(G / L, \mathbf{C}_{\chi} \otimes S_{\mathfrak{q}}\right) .
$$

Since

$$
C^{\infty}\left(G / H, \mathcal{H}_{2}\left(H / L, \mathbf{C}_{\chi} \otimes S_{\mathfrak{h} \cap \mathfrak{q}}\right) \otimes S_{\mathfrak{q}_{1}}\right) \subset C^{\infty}\left(G / L, \mathbf{C}_{\chi} \otimes S_{\mathfrak{q}}\right)
$$

it is enough to look for

$$
\mathcal{P}: C^{\infty}(G / P, \mathcal{W}) \rightarrow C^{\infty}\left(G / H, \mathcal{H}_{2}\left(H / L, \mathbf{C}_{\chi} \otimes S_{\mathfrak{h} \cap \mathfrak{q}}\right) \otimes S_{\mathfrak{q}_{1}}\right)
$$

$P=M A N$,
$\mathfrak{a}=\operatorname{diagonal}\left(0, \ldots, 0, a_{p+1}, \ldots, a_{n} \mid 0, \ldots, 0,-a_{p+1}, \ldots,-a_{n}\right)$,
The same principal as before applies: we look for

$$
T \in \operatorname{hom}_{P \cap H}\left(W \otimes \mathbf{C}_{-2 \rho_{\mathfrak{h}}}, \mathcal{H}_{2}\left(H / L, \mathbf{C}_{\chi}\right) \otimes S_{\mathfrak{q}_{1}}\right)
$$

But this is fairly easy, since

$$
M \cap H / M \cap K \simeq H / L \quad(\simeq S p(p, \mathbf{R}) / U(p))
$$

Proposition 11 For χ dominant

$$
\begin{aligned}
i m(\mathcal{P}) & \subset \mathcal{H}_{2}\left(G / H, \mathcal{H}_{2}\left(H / L, \mathbf{C}_{\chi}\right)\right) \\
& \subset \mathcal{H}_{2}\left(G / L, \mathbf{C}_{\chi}\right)
\end{aligned}
$$

In fact the image of \mathcal{P} is contained in L^{2} harmonic forms of type $(0, s)$, and the invariant form is positive semidefinite on the image of \mathcal{P}.

