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Prime spectrum

Let A be a noetherian C-algebra. SpecA is a topological space, consisting of all prime ideals
P with the Zariski topology (means P ∈ SpecA if every two ideals I, J , I.J ⊂ P implies
I ⊂ P or J ⊂ P ). The closed sets are V (I) = {P ∈ SpecA | I ⊂ P} for all ideals I of A.
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I ⊂ P or J ⊂ P ). The closed sets are V (I) = {P ∈ SpecA | I ⊂ P} for all ideals I of A.

SpecA is difficult to describe, the most general examples known are universal enveloping
algebras of solvable Lie algebras. But knowing SpecA can be used in classifying Aut A.
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Prime spectrum

Let A be a noetherian C-algebra. SpecA is a topological space, consisting of all prime ideals
P with the Zariski topology (means P ∈ SpecA if every two ideals I, J , I.J ⊂ P implies
I ⊂ P or J ⊂ P ). The closed sets are V (I) = {P ∈ SpecA | I ⊂ P} for all ideals I of A.

SpecA is difficult to describe, the most general examples known are universal enveloping
algebras of solvable Lie algebras. But knowing SpecA can be used in classifying Aut A.

Goodearl-Letzter machinery: Assume that a complex torus H acts by algebra
automorphisms. Denote by H − SpecA the set of H invariant prime ideals of A. If
J ∈ SpecA then

(

∩h∈H h.J
)

∈ H − SpecA.

For I ∈ H − SpecA denote SpecIA = {J ∈ SpecA | ∩h∈Hh.J = I}. Then:
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Prime spectrum

Let A be a noetherian C-algebra. SpecA is a topological space, consisting of all prime ideals
P with the Zariski topology (means P ∈ SpecA if every two ideals I, J , I.J ⊂ P implies
I ⊂ P or J ⊂ P ). The closed sets are V (I) = {P ∈ SpecA | I ⊂ P} for all ideals I of A.

SpecA is difficult to describe, the most general examples known are universal enveloping
algebras of solvable Lie algebras. But knowing SpecA can be used in classifying Aut A.

Goodearl-Letzter machinery: Assume that a complex torus H acts by algebra
automorphisms. Denote by H − SpecA the set of H invariant prime ideals of A. If
J ∈ SpecA then

(

∩h∈H h.J
)

∈ H − SpecA.

For I ∈ H − SpecA denote SpecIA = {J ∈ SpecA | ∩h∈Hh.J = I}. Then:

SpecA =
⊔

I∈H−SpecA

SpecIA.

Denote by AI the localization of A/I by all nonzero homogeneous elements. Then Z(AI)

is a (commutative) Laurent polynomial ring and

SpecIA ∼= SpecZ(AI).
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Relations to Poisson geometry

Let A be a an associative algebra over C with a Z≥0 filtration:

A0 ⊂ A1 ⊂ . . . ⊂ A, A = ∪kAk, Ak.Al ⊂ Ak+l.

If the associated graded grA is commutative, then it inherits a canonical structure of a
Poisson algebra:

{ak + Ak−1, al + Al−1} = akal − alak + Ak+l−2, ak ∈ Ak, al ∈ Al,

note that akal − alak ∈ Ak+l−1. If in addition grA has no nilpotent elements, then one
obtains a canonical Poisson structure π on the affine variety Spec(grA).
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note that akal − alak ∈ Ak+l−1. If in addition grA has no nilpotent elements, then one
obtains a canonical Poisson structure π on the affine variety Spec(grA).

Example. U(g), grU(g) ∼= S(g), linear Poisson str. on g∗, symplectic foliation given by
coadjoint orbits.
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Let A be a an associative algebra over C with a Z≥0 filtration:

A0 ⊂ A1 ⊂ . . . ⊂ A, A = ∪kAk, Ak.Al ⊂ Ak+l.

If the associated graded grA is commutative, then it inherits a canonical structure of a
Poisson algebra:

{ak + Ak−1, al + Al−1} = akal − alak + Ak+l−2, ak ∈ Ak, al ∈ Al,

note that akal − alak ∈ Ak+l−1. If in addition grA has no nilpotent elements, then one
obtains a canonical Poisson structure π on the affine variety Spec(grA).

Example. U(g), grU(g) ∼= S(g), linear Poisson str. on g∗, symplectic foliation given by
coadjoint orbits.

Orbit method. Prove that PrimA and the quotient space of the symplectic foliation of the
Poisson structure on Spec(grA) are homeomorphic.
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Relations to Poisson geometry

Let A be a an associative algebra over C with a Z≥0 filtration:

A0 ⊂ A1 ⊂ . . . ⊂ A, A = ∪kAk, Ak.Al ⊂ Ak+l.

If the associated graded grA is commutative, then it inherits a canonical structure of a
Poisson algebra:

{ak + Ak−1, al + Al−1} = akal − alak + Ak+l−2, ak ∈ Ak, al ∈ Al,

note that akal − alak ∈ Ak+l−1. If in addition grA has no nilpotent elements, then one
obtains a canonical Poisson structure π on the affine variety Spec(grA).

Example. U(g), grU(g) ∼= S(g), linear Poisson str. on g∗, symplectic foliation given by
coadjoint orbits.

Orbit method. Prove that PrimA and the quotient space of the symplectic foliation of the
Poisson structure on Spec(grA) are homeomorphic.

If A is equpped with a torus action H (preseving the filtration), then π is H-invariant. One
wants to match H − SpecA with the H-orbits of symplectic leaves of (Spec(grA), π).
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Quantum groups

The quantized universal enveloping algebra Uq(g) is the C-algebra with generators

X±
i , K±1

i , i = 1, . . . , r,

subject to the relations

K−1
i Ki = KiK

−1
i = 1, KiKj = KjKi, KiX

±
j K−1

i = q±cij X±
j ,

X+
i X−

j − X−
j X+

i = δi,j
Ki − K−1

i

qi − q−1
i

,

1−cij
∑

k=0





1 − cij

k





q

(X±
i )kX±

j (X±
i )1−cij−k = 0, i 6= j.

Here r=rank of g, Cartan matrix (cij), q ∈ C is transcendental, qi = qdi .

Quantum Schubert Cells and Quantum Flag Variaties – p. 4/22



Quantum groups

The quantized universal enveloping algebra Uq(g) is the C-algebra with generators

X±
i , K±1

i , i = 1, . . . , r,

subject to the relations

K−1
i Ki = KiK

−1
i = 1, KiKj = KjKi, KiX

±
j K−1

i = q±cij X±
j ,

X+
i X−

j − X−
j X+

i = δi,j
Ki − K−1

i

qi − q−1
i

,
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∑
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1 − cij

k





q

(X±
i )kX±

j (X±
i )1−cij−k = 0, i 6= j.

Here r=rank of g, Cartan matrix (cij), q ∈ C is transcendental, qi = qdi .

It is a Hopf algebra. Its finite dimensional weight irreps are parametrized by the set of
dominant integral weights P+, λ ∈ P+ 7→ V (λ).

There is a natural action of the related Braid group on Uq(g) and V (λ), w ∈ W 7→ Tw .
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∑

k=0
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q

(X±
i )kX±

j (X±
i )1−cij−k = 0, i 6= j.

Here r=rank of g, Cartan matrix (cij), q ∈ C is transcendental, qi = qdi .

It is a Hopf algebra. Its finite dimensional weight irreps are parametrized by the set of
dominant integral weights P+, λ ∈ P+ 7→ V (λ).

There is a natural action of the related Braid group on Uq(g) and V (λ), w ∈ W 7→ Tw .

U± the subalg. generated by X±
i , H = 〈K1, . . . , Kr〉 the group of group-like elements.
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DKP algebras

Fix w ∈ W . De Concini, Kac and Procesi defined a family of subalgebras Uw
± ⊂ U± which

are deformations of U(n+ ∩ Adw(n−)).

For a reduced expression w = si1 . . . sik
define the roots

β1 = αi1 , β2 = si1 (αi2), . . . , βk = si1 . . . sik−1
(αik

).

Let Uw
± be the subalgebras of Uq(g), generated by the root vectors

X±
β1

= X±
i1

, X±
β2

= Tsi1
(X±

i2
), . . . , X±

βk
= Tsi1

...sik−1
(X±

ik
).
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± ⊂ U± which

are deformations of U(n+ ∩ Adw(n−)).

For a reduced expression w = si1 . . . sik
define the roots

β1 = αi1 , β2 = si1 (αi2), . . . , βk = si1 . . . sik−1
(αik

).

Let Uw
± be the subalgebras of Uq(g), generated by the root vectors

X±
β1

= X±
i1

, X±
β2

= Tsi1
(X±

i2
), . . . , X±

βk
= Tsi1

...sik−1
(X±

ik
).

Theorem [De Concini-Kac-Procesi]. The definition of the algebras Uw
± does not depend on

the choice of a reduced decomposition of w. The algebras Uw
± have the PBW bases

(X±
βk

)nk . . . (X±
β1

)n1 , n1, . . . , nk ∈ N.
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± ⊂ U± which

are deformations of U(n+ ∩ Adw(n−)).

For a reduced expression w = si1 . . . sik
define the roots

β1 = αi1 , β2 = si1 (αi2), . . . , βk = si1 . . . sik−1
(αik

).

Let Uw
± be the subalgebras of Uq(g), generated by the root vectors

X±
β1

= X±
i1

, X±
β2

= Tsi1
(X±

i2
), . . . , X±

βk
= Tsi1

...sik−1
(X±

ik
).

Theorem [De Concini-Kac-Procesi]. The definition of the algebras Uw
± does not depend on

the choice of a reduced decomposition of w. The algebras Uw
± have the PBW bases

(X±
βk

)nk . . . (X±
β1

)n1 , n1, . . . , nk ∈ N.

Theorem [Heckenberger–Schneider]. All right coideal subalgebras of Uq(b+) containing H

are of the form Uw
+ C[H].
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An Example

Let g = slm+n and w = cm where c is the Coxeter element (12 . . . m + n). Think of
(

0 ∗
0 0

)

.

Then Uw
− (g) is isomorphic to the algebra of quantum matrices Rq [Mm,n]. The latter is the

C-algebra generated by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with relations

xijxlj = qxljxij , for i < l,

xijxik = qxikxij , for j < k,

xijxlk = xlkxij , for i < l, j > k,

xijxlk − xlkxij = (q − q−1)xikxlj , for i < l, j < k,
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An Example

Let g = slm+n and w = cm where c is the Coxeter element (12 . . . m + n). Think of
(

0 ∗
0 0

)

.

Then Uw
− (g) is isomorphic to the algebra of quantum matrices Rq [Mm,n]. The latter is the

C-algebra generated by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with relations

xijxlj = qxljxij , for i < l,

xijxik = qxikxij , for j < k,

xijxlk = xlkxij , for i < l, j > k,

xijxlk − xlkxij = (q − q−1)xikxlj , for i < l, j < k,

Plan. 1. Construct another realization of Uw
− . Describe explicitly all H invariant prime ideals

of Uw
− . 2. Resolve a conjecture of Goodearl and Lenagan on existence of polynormal

generating sequences, prove that SpecUw
− is normally separated and all algebras Uw are

catenary. 3. Classify H − Spec of all quantum partial flag varieties.

All approaches so far were based on treating Uw
− as an iterated skew polynomial ring.
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Group Poisson structures

For w ∈ W we will put a quadratic Poisson structure πw on the Schubert cell Xw ⊂ G/B+,
such that (C(Xw), πw) is the associated graded of Uw

− .
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Group Poisson structures

For w ∈ W we will put a quadratic Poisson structure πw on the Schubert cell Xw ⊂ G/B+,
such that (C(Xw), πw) is the associated graded of Uw

− .

Fix a pair of opposite Borel subgroups B± of G, H = B+ ∩ B−– a maximal torus of G.

Let ∆+ be the set of all positive roots of g = Lie G,

Fix two dual sets of root vectors, {eα}α∈∆+
, {fα}α∈∆+

, normalized by 〈eα, fα〉 = 1,
where 〈., .〉 is the Killing form on g.

Define

πG =
∑

α∈∆+

Leα ∧ Lfα
−

∑

α∈∆+

Reα ∧ Rfα

called the standard Poisson structure on G. (Here L and R denote left and right invariant
vector fields on G.)
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Group Poisson structures

For w ∈ W we will put a quadratic Poisson structure πw on the Schubert cell Xw ⊂ G/B+,
such that (C(Xw), πw) is the associated graded of Uw

− .

Fix a pair of opposite Borel subgroups B± of G, H = B+ ∩ B−– a maximal torus of G.

Let ∆+ be the set of all positive roots of g = Lie G,

Fix two dual sets of root vectors, {eα}α∈∆+
, {fα}α∈∆+

, normalized by 〈eα, fα〉 = 1,
where 〈., .〉 is the Killing form on g.

Define

πG =
∑

α∈∆+

Leα ∧ Lfα
−

∑

α∈∆+

Reα ∧ Rfα

called the standard Poisson structure on G. (Here L and R denote left and right invariant
vector fields on G.)

Example. (SLn(C), πSLn
) embeds in Mn×n with

n
∑

i,k=1

n
∑

j,l=1

(sign(k − i) + sign(l − j))xilxkj
∂

∂xij
∧

∂

∂xkl
.

Quantum Schubert Cells and Quantum Flag Variaties – p. 7/22



Poisson structures on flag varieties

Fix a parabolic subgroup P ⊃ B+ of G. Under the map p : G → G/P the Poisson structures
πG can be pushed forward to a well defined Poisson structure πG/P = p∗(πG) on G/P .
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Poisson structures on flag varieties

Fix a parabolic subgroup P ⊃ B+ of G. Under the map p : G → G/P the Poisson structures
πG can be pushed forward to a well defined Poisson structure πG/P = p∗(πG) on G/P .

Special case: P = B+. The H-orbits of symplectic leaves of (G/B+, πG/B) are the open
Richardson varieties

Ry−,y+
= B−y− · B+ ∩ B+y+ · B+ ⊂ G/B+, y± ∈ W, y− ≤ y+.
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Poisson structures on flag varieties

Fix a parabolic subgroup P ⊃ B+ of G. Under the map p : G → G/P the Poisson structures
πG can be pushed forward to a well defined Poisson structure πG/P = p∗(πG) on G/P .

Special case: P = B+. The H-orbits of symplectic leaves of (G/B+, πG/B) are the open
Richardson varieties

Ry−,y+
= B−y− · B+ ∩ B+y+ · B+ ⊂ G/B+, y± ∈ W, y− ≤ y+.

Theorem. [Brown, Goodearl, Y.] The H–orbits of symplectic leaves of (G/P, πG/P ) are
precisely the sets

SP (y−, y+) = q(B−y− · B+ ∩ B+y+ · B+), y− ∈ W, y+ ∈ WWP , y− ≤ y+

where WWP is the set of min length repr. of the cosets W/WP and q : G/B+ → G/P is the
canonical projection. (This is the Lusztig stratification of G/P .)

Note that q : B+y+ ·B+ → B+y+ · P is an isom. of (Poisson) affine spaces for y+ ∈ WWP .

Total positivity: Rietsch, algebraic geometry (Frobenius splitting): Knutson, Lam, and Speyer.
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Poisson side I

The codimension of a symplectic leaf in the open Richardson variety Ry−,y+
is

dim ker(1 + y−1
+ y−) = dim E−1(y−1

+ y−).

The trancendence degree of the center of the Poisson field of rational functions on Ry−,y+

is given by the same number.
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The codimension of a symplectic leaf in the open Richardson variety Ry−,y+
is

dim ker(1 + y−1
+ y−) = dim E−1(y−1

+ y−).

The trancendence degree of the center of the Poisson field of rational functions on Ry−,y+

is given by the same number.

We will interpret DKP algebras as quantized algebras of functions on Schubert cells
(B+w · B+, π|B+w·B+

), where π := πG/B+
. First restrict the Poisson structure π to the

translated open Schubert cell wB− · B+. Note that B+w · B+ ⊂ wB− · B+.
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We will interpret DKP algebras as quantized algebras of functions on Schubert cells
(B+w · B+, π|B+w·B+

), where π := πG/B+
. First restrict the Poisson structure π to the

translated open Schubert cell wB− · B+. Note that B+w · B+ ⊂ wB− · B+.

Theorem. The T -orbits of symplectic leaves of the translated open Schubert cell
(wB− · B+, π) are

S(y−, y+) = wB− · B+ ∩ Ry−,y+
= wB− · B+ ∩ B−y− · B+ ∩ B+y+ · B+

parametrized by pairs (y−, y+) ∈ W × W such that y− ≤ w ≤ y+.
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Poisson side I

The codimension of a symplectic leaf in the open Richardson variety Ry−,y+
is

dim ker(1 + y−1
+ y−) = dim E−1(y−1

+ y−).
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We will interpret DKP algebras as quantized algebras of functions on Schubert cells
(B+w · B+, π|B+w·B+

), where π := πG/B+
. First restrict the Poisson structure π to the

translated open Schubert cell wB− · B+. Note that B+w · B+ ⊂ wB− · B+.

Theorem. The T -orbits of symplectic leaves of the translated open Schubert cell
(wB− · B+, π) are

S(y−, y+) = wB− · B+ ∩ Ry−,y+
= wB− · B+ ∩ B−y− · B+ ∩ B+y+ · B+

parametrized by pairs (y−, y+) ∈ W × W such that y− ≤ w ≤ y+.

Identify

C[wB− · B+] ∼= C[wB−B+]B+ = {cλ
ξ,vλ

/cλ
w | λ ∈ P+, ξ ∈ V (λ)∗},

cλ
ξ,v denotes the matrix coefficient of v ∈ V (λ) and ξ ∈ V (λ)∗: for g ∈ G, cλ

ξ,v(g) = 〈ξ, gv〉.

Moreover vλ is a h.w.v. of V (λ), ξλ is a dual vector and cλ
w = cλ

wξλ,vλ
.
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Poisson side II

Denote n± = Lie U±. For y ∈ W , define the ideals

Q(y)±w = {cλ
ξ,vλ

/cλ
w | λ ∈ P+, ξ ∈ (U(n±)yvλ)⊥ ⊂ V (λ)∗} = V(wB− · B+ ∩ B±y · B+)

of C[wB− · B+]. Scheme theoretic intersections of dual Schubert varieties are reduced
(Ramanathan):
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Denote n± = Lie U±. For y ∈ W , define the ideals

Q(y)±w = {cλ
ξ,vλ

/cλ
w | λ ∈ P+, ξ ∈ (U(n±)yvλ)⊥ ⊂ V (λ)∗} = V(wB− · B+ ∩ B±y · B+)

of C[wB− · B+]. Scheme theoretic intersections of dual Schubert varieties are reduced
(Ramanathan):

Proposition. The vanishing ideal of the Zariski closure of Sw(y−, y+) in wB− · B+ is

V(Sw(y−, y+)) = Q(y−)−w + Q(y+)+w

= {cλ
ξ,vλ

/cλ
w | λ ∈ P+, ξ ∈ (U(n−)y−vλ ∩ U(n+)y+vλ)⊥ ⊂ V (λ)∗}.
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Poisson side II

Denote n± = Lie U±. For y ∈ W , define the ideals

Q(y)±w = {cλ
ξ,vλ

/cλ
w | λ ∈ P+, ξ ∈ (U(n±)yvλ)⊥ ⊂ V (λ)∗} = V(wB− · B+ ∩ B±y · B+)

of C[wB− · B+]. Scheme theoretic intersections of dual Schubert varieties are reduced
(Ramanathan):

Proposition. The vanishing ideal of the Zariski closure of Sw(y−, y+) in wB− · B+ is

V(Sw(y−, y+)) = Q(y−)−w + Q(y+)+w

= {cλ
ξ,vλ

/cλ
w | λ ∈ P+, ξ ∈ (U(n−)y−vλ ∩ U(n+)y+vλ)⊥ ⊂ V (λ)∗}.

Schubert varieties are linearly defined (Kempf-Ramanathan):

⊕λ∈P+
H0(G/B+,Lλ) → ⊕λ∈P+

H0(Xy ,Lλ)

is surjective and its kernel is generated by elements in deg 1. So the ideal of Sw(y−, y+)

⊂ wB− · B+ is generated by
⋃

j

{c
ωj

ξ,vωj
/c

ωj
w | ξ ∈ (U(n−)y−vωj

∩ U(n+)y+vωj
)⊥}
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Poisson str. on Schubert cells

Denote Uw
+ = U+ ∩ wU−w−1, identify jw : Uw

+
∼= B+w · B+.

Demazure modules Vw(λ) = U(b+)wvλ = U(nw
+)wvλ. Then η ∈ Vw(λ)∗ 7→ dw,λ

η ∈ C[Uw
+ ],

dw,λ
η (u) = 〈η, uẇvλ〉, u ∈ Uw

+ . One has

C[Uw
+ ] = {dw,λ

η | λ ∈ P+, η ∈ Vw(λ)∗}.
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+ = U+ ∩ wU−w−1, identify jw : Uw

+
∼= B+w · B+.

Demazure modules Vw(λ) = U(b+)wvλ = U(nw
+)wvλ. Then η ∈ Vw(λ)∗ 7→ dw,λ

η ∈ C[Uw
+ ],

dw,λ
η (u) = 〈η, uẇvλ〉, u ∈ Uw

+ . One has

C[Uw
+ ] = {dw,λ

η | λ ∈ P+, η ∈ Vw(λ)∗}.

Theorem. (1) The T -orbits of symplectic leaves of the Schubert cells (Uw
+ , π) are

Sw(y) = j−1
w (Ry,w) = Uw

+ ∩ B−yB+w−1,

parametrized by y ∈ W≤w .

(2) The vanishing ideal of Sw(y) is:

V(Sw(y)) = {dw,λ
η | η ∈ (U(n+)wvλ ∩ U(n−)yvλ)⊥ ⊂ Vw(λ)∗}.

(3) Sw(y) is generated by the above sets for λ = ω1, . . . , ωr .
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Quantum Schubert cells

Define the quantized coordinate ring Rq[Uw
+ ] of the Schubert cell B+w · B+ as the subset of

(U+)∗ consisting of all matrix coefficients dw,λ
η (x) := 〈η, xTwvλ〉 for η ∈ Vw(λ)∗.

Multiplication:

dw,λ1
η1

dw,λ2
η2

= q〈λ2,λ1−w−1µ1〉dw,λ1+λ2
η ,

where η = η1 ⊗ η2|U+(Twvλ1
⊗Twvλ2

) ∈ Vw(λ1 + λ2)∗

for η1 ∈ Vw(λ1)∗ of weight µ1 and η2 ∈ Vw(λ2)∗.
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+ ] of the Schubert cell B+w · B+ as the subset of

(U+)∗ consisting of all matrix coefficients dw,λ
η (x) := 〈η, xTwvλ〉 for η ∈ Vw(λ)∗.

Multiplication:

dw,λ1
η1

dw,λ2
η2

= q〈λ2,λ1−w−1µ1〉dw,λ1+λ2
η ,

where η = η1 ⊗ η2|U+(Twvλ1
⊗Twvλ2

) ∈ Vw(λ1 + λ2)∗

for η1 ∈ Vw(λ1)∗ of weight µ1 and η2 ∈ Vw(λ2)∗.

Motivation: the q-term comes from Rq [G] via a Joseph’s "quantum translated Bruhat cell"
algebra.
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Define the quantized coordinate ring Rq[Uw
+ ] of the Schubert cell B+w · B+ as the subset of

(U+)∗ consisting of all matrix coefficients dw,λ
η (x) := 〈η, xTwvλ〉 for η ∈ Vw(λ)∗.

Multiplication:

dw,λ1
η1

dw,λ2
η2

= q〈λ2,λ1−w−1µ1〉dw,λ1+λ2
η ,

where η = η1 ⊗ η2|U+(Twvλ1
⊗Twvλ2

) ∈ Vw(λ1 + λ2)∗

for η1 ∈ Vw(λ1)∗ of weight µ1 and η2 ∈ Vw(λ2)∗.

Motivation: the q-term comes from Rq [G] via a Joseph’s "quantum translated Bruhat cell"
algebra.

The universal R-matrix associated to w is given by

Rw =
∏

j=k,...,1

expqij

(

(1 − qij
)−2X+

βj
⊗ X−

βj

)

, expqi
(y) =

∞
∑

n=0

q
n(n+1)/2
i

yn

[n]qi
!
.

Quantum Schubert Cells and Quantum Flag Variaties – p. 12/22



Quantum Schubert cells

Define the quantized coordinate ring Rq[Uw
+ ] of the Schubert cell B+w · B+ as the subset of

(U+)∗ consisting of all matrix coefficients dw,λ
η (x) := 〈η, xTwvλ〉 for η ∈ Vw(λ)∗.

Multiplication:

dw,λ1
η1

dw,λ2
η2

= q〈λ2,λ1−w−1µ1〉dw,λ1+λ2
η ,

where η = η1 ⊗ η2|U+(Twvλ1
⊗Twvλ2

) ∈ Vw(λ1 + λ2)∗

for η1 ∈ Vw(λ1)∗ of weight µ1 and η2 ∈ Vw(λ2)∗.

Motivation: the q-term comes from Rq [G] via a Joseph’s "quantum translated Bruhat cell"
algebra.

The universal R-matrix associated to w is given by

Rw =
∏

j=k,...,1

expqij

(

(1 − qij
)−2X+

βj
⊗ X−

βj

)

, expqi
(y) =

∞
∑

n=0

q
n(n+1)/2
i

yn

[n]qi
!
.

Theorem. Rq [Uw
+ ] ∼= Uw

− under

dw,λ
η 7→ (dw,λ

η ⊗ id)Rw.
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DKP algebras

Theorem. [Y.] Fix w ∈ W . For each y ∈ W≤w define

Iw(y) = {(dw,λ
η ⊗ id)(Rw) | λ ∈ P+, η ∈ (U+Twvλ ∩ U−Tyvλ)⊥}.

Then:

(a) Iw(y) is an H-invariant prime ideal of Uw
− and all H-invariant prime ideals of Uw

− are of
this form.

(b) The correspondence y ∈ W≤w 7→ Iw(y) is an isomorphism from the poset W≤w to the
poset of H invariant prime ideals of Uw

− ordered under inclusion; that is Iw(y) ⊆ Iw(y′) for
y, y′ ∈ W≤w if and only if y ≤ y′.

(c) Iw(y) is generated as a right ideal by

(dw,ωi
η ⊗ id)(Rw) for η ∈ (U+Twvωi

∩ U−Tyvωi
)⊥, i = 1, . . . , r,

where ω1, . . . , ωr are the fundamental weights of g.

The proof uses theorems of Gorelik and Joseph (ring theoretic results along the lines of the
results of Ramanathan and Kempf–Ramanathan).
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Algebras of quantum matrices

Rq[Mm,n] is the C-algebra generated by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with relations

xijxlj = qxljxij , for i < l,

xijxik = qxikxij , for j < k,

xijxlk = xlkxij , for i < l, j > k,

xijxlk − xlkxij = (q − q−1)xikxlj , for i < l, j < k,

Zm+n acts on Rq[Mm,n], by (a1, . . . , am, b1, . . . , bn) · xij = qai−bj xij .
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Algebras of quantum matrices

Rq[Mm,n] is the C-algebra generated by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with relations

xijxlj = qxljxij , for i < l,

xijxik = qxikxij , for j < k,

xijxlk = xlkxij , for i < l, j > k,

xijxlk − xlkxij = (q − q−1)xikxlj , for i < l, j < k,

Zm+n acts on Rq[Mm,n], by (a1, . . . , am, b1, . . . , bn) · xij = qai−bj xij .

Corollary. [Y.] The Zm+n-invariant prime ideals of Rq[Mm,n] are parametrized by

y ∈ S
≤wm,n

m+n . The ideal corresponding to y is generated by the sets of quantum minors

∆q

w◦
m(p1(I)),(m+1,m+k\p2(I))−m

for k ∈ 1, n, I ⊂ 1, m + n, |I| = k, I ≤ cm(1, k), I � y(1, k) and

∆q

w◦
m(p1(I)\1,k−n),(m+1,m+n\p2(I))−m

for k ∈ n + 1, m + n − 1, I ⊂ 1, m + n, |I| = k, I ≤ cm(1, k), I � y(1, k).
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The Goodearl–Lenagan conjecture I

An ideal I of R has a polynormal generating sequence y1, . . . , yk if the set generates I and
for all i = 1, . . . , k the image of yi in R/〈y1, . . . , yi−1〉 is normal.

Quantum Schubert Cells and Quantum Flag Variaties – p. 15/22
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An ideal I of R has a polynormal generating sequence y1, . . . , yk if the set generates I and
for all i = 1, . . . , k the image of yi in R/〈y1, . . . , yi−1〉 is normal.

Goodearl–Lenagan Conjecture. All H-primes of Rq [Mm,n] have polynormal generating
sequences consisting of quantum minors.
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The Goodearl–Lenagan conjecture I

An ideal I of R has a polynormal generating sequence y1, . . . , yk if the set generates I and
for all i = 1, . . . , k the image of yi in R/〈y1, . . . , yi−1〉 is normal.

Goodearl–Lenagan Conjecture. All H-primes of Rq [Mm,n] have polynormal generating
sequences consisting of quantum minors.

The standard R-matrix identities in Rq[G] imply

dw,λ1
η1

dw,λ2
η2

= q〈η1−wλ1,η2+wλ2〉dw,λ2
η2

dw,λ1
η1

+
∑

α∈Q+,α6=0

dw,λ2
uαη2

dw,λ1
u−αη1

, ηi ∈ (V (λi)w)∗

where u±α ∈ (U±)±α.

If η ∈ (Vw(λi))
∗
µ set ht(η) = 〈µ, ω∨

1 + . . . + ω∨
r 〉.
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The Goodearl–Lenagan conjecture I

An ideal I of R has a polynormal generating sequence y1, . . . , yk if the set generates I and
for all i = 1, . . . , k the image of yi in R/〈y1, . . . , yi−1〉 is normal.

Goodearl–Lenagan Conjecture. All H-primes of Rq [Mm,n] have polynormal generating
sequences consisting of quantum minors.

The standard R-matrix identities in Rq[G] imply

dw,λ1
η1

dw,λ2
η2

= q〈η1−wλ1,η2+wλ2〉dw,λ2
η2

dw,λ1
η1

+
∑

α∈Q+,α6=0

dw,λ2
uαη2

dw,λ1
u−αη1

, ηi ∈ (V (λi)w)∗

where u±α ∈ (U±)±α.

If η ∈ (Vw(λi))
∗
µ set ht(η) = 〈µ, ω∨

1 + . . . + ω∨
r 〉.

Theorem. [Y.] Fix an H-prime Iy(w) of Uw
− , y ∈ W≤w . Consider any linear ordering of the

generating set from the previous theorem with the property that, if η1, η2 ∈ (V (ωk)w)∗ and
ht(η1) ≤ ht(η2), then (d

w,ωk
η1

⊗ id)(Rw) comes before (d
w,ωk
η2

⊗ id)(Rw). Any such
sequence is a polynormal generating set of Iy(w).
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The Goodearl–Lenagan conjecture II

We obtain the following constructive proof of the Goodearl–Lenagan conjecture:

Corollary. Consider the Zm+n-invariant prime ideals of Rq[Mm,n] corresponding to

y ∈ S
≤wm,n

m+n and a linear order on the generating set from the previous theorem with the
property that, if I = {i1, . . . , ik} and J = {j1, . . . , jk} satify i1 + . . . + ik ≤ j1 + . . . + jk,
then ∆I comes before ∆J . Any such sequence is a polynormal generating set of the prime
ideal.
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The Goodearl–Lenagan conjecture II

We obtain the following constructive proof of the Goodearl–Lenagan conjecture:

Corollary. Consider the Zm+n-invariant prime ideals of Rq[Mm,n] corresponding to

y ∈ S
≤wm,n

m+n and a linear order on the generating set from the previous theorem with the
property that, if I = {i1, . . . , ik} and J = {j1, . . . , jk} satify i1 + . . . + ik ≤ j1 + . . . + jk,
then ∆I comes before ∆J . Any such sequence is a polynormal generating set of the prime
ideal.

One says that SpecA is normally separated if for all P ⊂ Q, P, Q ∈ SpecA there exists a
nonzero normal element on Q/P .

One says that H − SpecA is graded normally separated if for all P ⊂ Q, P, Q ∈ H − SpecA

there exists a nonzero homogeneous normal element on Q/P .

Corollary. The H-primes of Uw
− are graded normally separated.
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SpecUw

− is normally separated

Theorem [Goodearl]. Assume that R is right noetherian. If H − SpecR is graded normally
separated then SpecR is normally separated.
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SpecUw

− is normally separated

Theorem [Goodearl]. Assume that R is right noetherian. If H − SpecR is graded normally
separated then SpecR is normally separated.

Theorem [Y.]. SpecUw
− is normally separated.

Previously known cases: w = w0 Caldero, quantum matrices Cauchon.
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SpecUw

− is normally separated

Theorem [Goodearl]. Assume that R is right noetherian. If H − SpecR is graded normally
separated then SpecR is normally separated.

Theorem [Y.]. SpecUw
− is normally separated.

Previously known cases: w = w0 Caldero, quantum matrices Cauchon.

An algebra A is called catenary if for all P ⊂ Q, P, Q ∈ SpecA, all saturated chains of prime
ideals from P to Q have the same length.

Theorem [Gabber]. All universal enveloping algebras of solvable Lie algebras are catenary.
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SpecUw

− is normally separated

Theorem [Goodearl]. Assume that R is right noetherian. If H − SpecR is graded normally
separated then SpecR is normally separated.

Theorem [Y.]. SpecUw
− is normally separated.

Previously known cases: w = w0 Caldero, quantum matrices Cauchon.

An algebra A is called catenary if for all P ⊂ Q, P, Q ∈ SpecA, all saturated chains of prime
ideals from P to Q have the same length.

Theorem [Gabber]. All universal enveloping algebras of solvable Lie algebras are catenary.

Theorem [Goodearl-Lenagan]. Assume that A is an affine, noetherian,
Auslander–Gorenstein, Cohen–Macauley algebra of finite Gelfand–Kirrilov dimension. If
SpecA is normally separated, then A is catenary.
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SpecUw

− is normally separated

Theorem [Goodearl]. Assume that R is right noetherian. If H − SpecR is graded normally
separated then SpecR is normally separated.

Theorem [Y.]. SpecUw
− is normally separated.

Previously known cases: w = w0 Caldero, quantum matrices Cauchon.

An algebra A is called catenary if for all P ⊂ Q, P, Q ∈ SpecA, all saturated chains of prime
ideals from P to Q have the same length.

Theorem [Gabber]. All universal enveloping algebras of solvable Lie algebras are catenary.

Theorem [Goodearl-Lenagan]. Assume that A is an affine, noetherian,
Auslander–Gorenstein, Cohen–Macauley algebra of finite Gelfand–Kirrilov dimension. If
SpecA is normally separated, then A is catenary.

Theorem [Levasseur–Stafford]. All iterated skew polynomial rings are Auslander–Gorenstein
and Cohen–Macauley.

Theorem [Y.]. All algebras Uw
− are catenary.
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Dimensions of strata of primes I

Recall that the stratum of SpecUw
− over each H-prime Iy(w) in the Goodearl–Letzter

stratification is homeomorphic to the spectrum of a Laurent polynomial ring. The latter is the
center of the localization of Uw

−/Iy(w) by all nonzero homogeneous elements.
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Dimensions of strata of primes I

Recall that the stratum of SpecUw
− over each H-prime Iy(w) in the Goodearl–Letzter

stratification is homeomorphic to the spectrum of a Laurent polynomial ring. The latter is the
center of the localization of Uw

−/Iy(w) by all nonzero homogeneous elements.

Theorem [Bell–Casteels–Launois, Y.]. The dimension of the the Goodearl–Letzter stratum of
SpecUw

− over the H-prime Iy(w) is equal to

dimker(1 + y−1w) = dim E−1(y−1w).
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Dimensions of strata of primes I

Recall that the stratum of SpecUw
− over each H-prime Iy(w) in the Goodearl–Letzter

stratification is homeomorphic to the spectrum of a Laurent polynomial ring. The latter is the
center of the localization of Uw

−/Iy(w) by all nonzero homogeneous elements.

Theorem [Bell–Casteels–Launois, Y.]. The dimension of the the Goodearl–Letzter stratum of
SpecUw

− over the H-prime Iy(w) is equal to

dimker(1 + y−1w) = dim E−1(y−1w).

Denote the dual vector to the h.w.v. vλ of Vw(λ) by ξλ.

Fix y ∈ W≤w . For λ ∈ P+ denote aλ = dw,λ
Tyξλ

. For λ ∈ P , λ = λ+ − λ−, λ± ∈ P+

(non-intersecting support) set

aλ = (aλ+
)−1aλ−

.
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Dimensions of strata of primes I

Recall that the stratum of SpecUw
− over each H-prime Iy(w) in the Goodearl–Letzter

stratification is homeomorphic to the spectrum of a Laurent polynomial ring. The latter is the
center of the localization of Uw

−/Iy(w) by all nonzero homogeneous elements.

Theorem [Bell–Casteels–Launois, Y.]. The dimension of the the Goodearl–Letzter stratum of
SpecUw

− over the H-prime Iy(w) is equal to

dimker(1 + y−1w) = dim E−1(y−1w).

Denote the dual vector to the h.w.v. vλ of Vw(λ) by ξλ.

Fix y ∈ W≤w . For λ ∈ P+ denote aλ = dw,λ
Tyξλ

. For λ ∈ P , λ = λ+ − λ−, λ± ∈ P+

(non-intersecting support) set

aλ = (aλ+
)−1aλ−

.

Then

aλdw,µ
ξ = q−〈(y+w)λ,ν−wµ〉dw,µ

ξ aλ, ∀ξ(∈ Vw(µ))∗ν

in (Uw
−/Iy(w))[a−1

λ , λ ∈ P+].
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Dimensions of strata of primes II

Therefore the center of the localization of Uw
−/Iy(w) by all nonzero homogeneous elements

contains the Laurent polynomial ring spanned by

aλ, λ ∈ P+, (y + w)λ = 0.

Thus the stratum of SpecUw
− over Iy(w) has dimension at least

dimker(1 + y−1w) = dim E−1(y−1w).
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Dimensions of strata of primes II

Therefore the center of the localization of Uw
−/Iy(w) by all nonzero homogeneous elements

contains the Laurent polynomial ring spanned by

aλ, λ ∈ P+, (y + w)λ = 0.

Thus the stratum of SpecUw
− over Iy(w) has dimension at least

dimker(1 + y−1w) = dim E−1(y−1w).

If its dimension is greater, then we pass to an integral form of the algebra over Z[q, q−1] and
specialize at q = 1. That would imply that the center of the Poisson field of rational functions
on the open Richardson variety Ry,w has trascendence degree strictly greater than

dim ker(1 + y−1w) = dim E−1(y−1w)

which is a contradiction.
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Quantum partial flag varieties I

Choose a set of simple roots I ⊂ 1, r and consider the standard parabolic subgroup
PI ⊃ B+. Consider the multicone:

Spec
(

⊕

ni∈Z≥0

H0(G/PI ,⊗i/∈IL
ni
ωi

)
)

over G/PI . Its coordinate ring is quantized to the subalgebra Rq [G/PI ] of the restricted dual
of Uq(g) spanned by the matrix coefficients

cλ
ξ,vλ

, λ =
∑

i/∈I

niωi, ni ∈ Z≥0, ξ ∈ V (λ)∗, vλ − h.w.v. of V (λ).

The construction is due to Lakshmibai–Reshetikhin and Soibelman.
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Quantum partial flag varieties I

Choose a set of simple roots I ⊂ 1, r and consider the standard parabolic subgroup
PI ⊃ B+. Consider the multicone:

Spec
(

⊕

ni∈Z≥0

H0(G/PI ,⊗i/∈IL
ni
ωi

)
)

over G/PI . Its coordinate ring is quantized to the subalgebra Rq [G/PI ] of the restricted dual
of Uq(g) spanned by the matrix coefficients

cλ
ξ,vλ

, λ =
∑

i/∈I

niωi, ni ∈ Z≥0, ξ ∈ V (λ)∗, vλ − h.w.v. of V (λ).

The construction is due to Lakshmibai–Reshetikhin and Soibelman.
Problem. Classify the H-invariant prime ideals of Rq[G/PI ] not containing the augmentation
ideal.

Only two cases were previously known: full flag varieties Gorelik and Grassmannians
Launois–Lenagan–Rigal 2008.
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Quantum partial flag varieties II

Denote by H − Spec+(Rq [G/PI ]) the set of H-invariant prime ideals of Rq [G/PI ] not
containing the augmentation ideal. Denote the quantum Schubert cell ideals:

Q(w)+I = Span{cλ
ξ,vλ

| λ =
∑

i/∈I

niωi, ξ ∈ V (λ)∗, ξ ⊥ U+Twvλ}, w ∈ WWI .

They are Uq(b+) invariant prime ideals of Rq [G/PI ].
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Quantum partial flag varieties II

Denote by H − Spec+(Rq [G/PI ]) the set of H-invariant prime ideals of Rq [G/PI ] not
containing the augmentation ideal. Denote the quantum Schubert cell ideals:

Q(w)+I = Span{cλ
ξ,vλ

| λ =
∑

i/∈I

niωi, ξ ∈ V (λ)∗, ξ ⊥ U+Twvλ}, w ∈ WWI .

They are Uq(b+) invariant prime ideals of Rq [G/PI ].

We have the decomposition:

H − Spec+(Rq[G/PI ]) = t
w∈W WI

Xw
I

according to the largest quantum Schubert cell ideal contained in
I ∈ H − Spec+(Rq[G/PI ]).
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Quantum partial flag varieties II

Denote by H − Spec+(Rq [G/PI ]) the set of H-invariant prime ideals of Rq [G/PI ] not
containing the augmentation ideal. Denote the quantum Schubert cell ideals:

Q(w)+I = Span{cλ
ξ,vλ

| λ =
∑

i/∈I

niωi, ξ ∈ V (λ)∗, ξ ⊥ U+Twvλ}, w ∈ WWI .

They are Uq(b+) invariant prime ideals of Rq [G/PI ].

We have the decomposition:

H − Spec+(Rq[G/PI ]) = t
w∈W WI

Xw
I

according to the largest quantum Schubert cell ideal contained in
I ∈ H − Spec+(Rq[G/PI ]).

Denote cλ
w = cλ

Twξλ,vλ
, cI

w = {cλ
w | λ =

∑

i/∈I niωi}.

Proposition. For all w ∈ WWI the algebras

((

Rq[G/PI ]/Q(w)+I
)

[(cI
w)−1]

)H and Uw
−

are isomorphic and for each I ∈ Xw
I , I ∩ cI

w = ∅. (Similar strategy to the one for the
isomorphism between the 2 realizations of DKP algebras.)
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Quantum partial flag varieties III

Theorem. [Y.] For an arbitrary partial flag variety G/PI the H-invariant prime ideals of
Rq[G/PI ] (not containing the augmentation ideal) are parametrized by

{(y−, y+) ∈ W × WWI | y− ≤ y+}.

Denote by II
y−,y+

the ideal corresponding to (y−, y+).
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Quantum partial flag varieties III

Theorem. [Y.] For an arbitrary partial flag variety G/PI the H-invariant prime ideals of
Rq[G/PI ] (not containing the augmentation ideal) are parametrized by

{(y−, y+) ∈ W × WWI | y− ≤ y+}.

Denote by II
y−,y+

the ideal corresponding to (y−, y+).

For the Lusztig’s stratification of G/PI one has (Goodearl-Y, Rietsch):

SP (y−, y+) = t{SP (y′
−, y′

+) |y′
− ∈ W, y′

+ ∈ WWP , y′
− ≤ y′

+,

∃z ∈ WP , y− ≤ y′
−z, y+ ≥ y′

+z}
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Quantum partial flag varieties III

Theorem. [Y.] For an arbitrary partial flag variety G/PI the H-invariant prime ideals of
Rq[G/PI ] (not containing the augmentation ideal) are parametrized by

{(y−, y+) ∈ W × WWI | y− ≤ y+}.

Denote by II
y−,y+

the ideal corresponding to (y−, y+).

For the Lusztig’s stratification of G/PI one has (Goodearl-Y, Rietsch):

SP (y−, y+) = t{SP (y′
−, y′

+) |y′
− ∈ W, y′

+ ∈ WWP , y′
− ≤ y′

+,

∃z ∈ WP , y− ≤ y′
−z, y+ ≥ y′

+z}

Conjecture. Let y−, y′
− ∈ W , y+, y′

+ ∈ WWI , y− ≤ y+, y′
− ≤ y′

+. Then II
y−,y+

⊆ II
y′
−

,y′
+

if and only if there exits z ∈ WI such that

y− ≥ y′
−z and y+ ≤ y′

+z.

The conjecture is open even for Grassmannians.
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