Bessel Models for General Admissible Induced Representations: The Compact Stabilizer Case

Raul Gomez (UC San Diego)

February 24th, 2011

Outline

Introduction

Outline

Introduction
Classification of Simple Lie Groups of Tube Type

Outline

Introduction
Classification of Simple Lie Groups of Tube Type
Some Bruhat Theory

Outline

Introduction
Classification of Simple Lie Groups of Tube Type
Some Bruhat Theory
The Theory of the Transverse Symbol of Kolk-Varadarajan

Outline

Introduction

Classification of Simple Lie Groups of Tube Type
Some Bruhat Theory
The Theory of the Transverse Symbol of Kolk-Varadarajan
The Vanishing of Certain Invariant Distributions

Outline

Introduction
Classification of Simple Lie Groups of Tube Type
Some Bruhat Theory
The Theory of the Transverse Symbol of Kolk-Varadarajan
The Vanishing of Certain Invariant Distributions
Tensoring with Finite Dimensional Representations

Outline

Introduction
Classification of Simple Lie Groups of Tube Type
Some Bruhat Theory
The Theory of the Transverse Symbol of Kolk-Varadarajan
The Vanishing of Certain Invariant Distributions
Tensoring with Finite Dimensional Representations
The Holomorphic Continuation of Certain Jacquet Integrals

Outline

Introduction
Classification of Simple Lie Groups of Tube Type
Some Bruhat Theory
The Theory of the Transverse Symbol of Kolk-Varadarajan
The Vanishing of Certain Invariant Distributions
Tensoring with Finite Dimensional Representations
The Holomorphic Continuation of Certain Jacquet Integrals
Further research

Definition

Let G be a Lie group, and let K be a maximal compact subgroup.

Definition

Let G be a Lie group, and let K be a maximal compact subgroup. We say that G is a Lie group of tube type if G / K is a hermitian symmetric space of tube type.

Definition

Let G be a Lie group, and let K be a maximal compact subgroup. We say that G is a Lie group of tube type if G / K is a hermitian symmetric space of tube type.

Proposition
If G is a Lie group of tube type, then

Definition

Let G be a Lie group, and let K be a maximal compact subgroup. We say that G is a Lie group of tube type if G / K is a hermitian symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup $P=M A N$, such that N is abelian.

Definition

Let G be a Lie group, and let K be a maximal compact subgroup. We say that G is a Lie group of tube type if G / K is a hermitian symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup $P=M A N$, such that N is abelian.
2. There exists a generic, unitary character χ on N, such that its stabilizer in M,

$$
M_{\chi}=\left\{m \in M \mid \chi\left(m^{-1} n m\right)=\chi(n) \quad \forall n \in N\right\}
$$

is compact.

Definition

Let G be a Lie group, and let K be a maximal compact subgroup. We say that G is a Lie group of tube type if G / K is a hermitian symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup $P=M A N$, such that N is abelian.
2. There exists a generic, unitary character χ on N, such that its stabilizer in M,

$$
M_{\chi}=\left\{m \in M \mid \chi\left(m^{-1} n m\right)=\chi(n) \quad \forall n \in N\right\}
$$

is compact.
If $P \subset G$ is a parabolic subgroup satisfying 1 . and 2 ., then we say that P is a Siegel parabolic subgroup.

Let G be a Lie group of tube type, and let (π, V) be an admissible, smooth, Fréchet representation of G.

Let G be a Lie group of tube type, and let (π, V) be an admissible, smooth, Fréchet representation of G.

Given a Siegel parabolic subgroup, $P=M A N$, of G, and a generic character, χ, of N, with compact stabilizer, set

$$
W h_{\chi}(V)=\{\lambda: V \longrightarrow \mathbb{C} \mid \lambda(\pi(n) v)=\chi(n) \lambda(v)\}
$$

Let G be a Lie group of tube type, and let (π, V) be an admissible, smooth, Fréchet representation of G.

Given a Siegel parabolic subgroup, $P=M A N$, of G, and a generic character, χ, of N, with compact stabilizer, set

$$
W h_{\chi}(V)=\{\lambda: V \longrightarrow \mathbb{C} \mid \lambda(\pi(n) v)=\chi(n) \lambda(v)\}
$$

This is the so called space of Bessel functionals (or Bessel models) of V.

Let G and $P=M A N$ be as before. Let $\left(\sigma, V_{\sigma}\right)$ be an admissible, smooth, Fréchet representation of M, and let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$.

Let G and $P=M A N$ be as before. Let $\left(\sigma, V_{\sigma}\right)$ be an admissible, smooth, Fréchet representation of M, and let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$.

Set

$$
\sigma_{\nu}(\operatorname{man})=a^{\nu+\rho} \sigma(m)
$$

and let $I_{P, \sigma_{\nu}}^{\infty}$ be the corresponding smooth induced representation.

Let G and $P=M A N$ be as before. Let $\left(\sigma, V_{\sigma}\right)$ be an admissible, smooth, Fréchet representation of M, and let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$.

Set

$$
\sigma_{\nu}(m a n)=a^{\nu+\rho} \sigma(m)
$$

and let $I_{P, \sigma_{\nu}}^{\infty}$ be the corresponding smooth induced representation.

Set $K_{M}=K \cap M$, and let $I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ be the representation induced by $\left.\sigma\right|_{K_{M}}$ from K_{M} to K.

Let G and $P=M A N$ be as before. Let $\left(\sigma, V_{\sigma}\right)$ be an admissible, smooth, Fréchet representation of M, and let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$.

Set

$$
\sigma_{\nu}(\operatorname{man})=a^{\nu+\rho} \sigma(m)
$$

and let $I_{P, \sigma_{\nu}}^{\infty}$ be the corresponding smooth induced representation.

Set $K_{M}=K \cap M$, and let $I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ be the representation induced by $\left.\sigma\right|_{K_{M}}$ from K_{M} to K.

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ set

$$
f_{P, \sigma_{\nu}}(n a m k)=a^{\nu+\rho} \sigma(m) f(k)
$$

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ set

$$
f_{P, \sigma_{\nu}}(n a m k)=a^{\nu+\rho} \sigma(m) f(k)
$$

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ set

$$
f_{P, \sigma_{\nu}}(n a m k)=a^{\nu+\rho} \sigma(m) f(k)
$$

Let w^{M} be an element in $N_{K}(A)$ that conjugates \bar{P} to P.

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ set

$$
f_{P, \sigma_{\nu}}(n a m k)=a^{\nu+\rho} \sigma(m) f(k)
$$

Let w^{M} be an element in $N_{K}(A)$ that conjugates \bar{P} to P.

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ we will consider the integrals

$$
J_{P, \sigma_{\nu}}^{\chi}(f)=\int_{N} \chi(n)^{-1} f_{P, \sigma_{\nu}}\left(w^{M} n\right) d n
$$

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ set

$$
f_{P, \sigma_{\nu}}(n a m k)=a^{\nu+\rho} \sigma(m) f(k)
$$

Let w^{M} be an element in $N_{K}(A)$ that conjugates \bar{P} to P.

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ we will consider the integrals

$$
J_{P, \sigma_{\nu}}^{\chi}(f)=\int_{N} \chi(n)^{-1} f_{P, \sigma_{\nu}}\left(w^{M} n\right) d n
$$

This integrals converge absolutely and uniformly if ν is in a translate of the positive Weyl chamber.

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ we will consider the integrals

$$
J_{P, \sigma_{\nu}}^{\chi}(f)=\int_{N} \chi(n)^{-1} f_{P, \sigma_{\nu}}\left(w^{M} n\right) d n
$$

This integrals converge absolutely and uniformly if ν is in a translate of the positive Weyl chamber.

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ we will consider the integrals

$$
J_{P, \sigma_{\nu}}^{\chi}(f)=\int_{N} \chi(n)^{-1} f_{P, \sigma_{\nu}}\left(w^{M} n\right) d n
$$

This integrals converge absolutely and uniformly if ν is in a translate of the positive Weyl chamber.
Given $\mu \in V_{\sigma}^{\prime}$ set $\gamma_{\mu}(\nu)=\mu \circ J_{P, \sigma_{\nu}}^{\chi}$. Then, for ν as above, γ_{μ} defines a weakly holomorphic map into $\left(I_{M \cap K,\left.\sigma\right|_{M \cap K}}^{\infty}\right)^{\prime}$.

Given $f \in I_{K_{M},\left.\sigma\right|_{K_{M}}}^{\infty}$ we will consider the integrals

$$
J_{P, \sigma_{\nu}}^{\chi}(f)=\int_{N} \chi(n)^{-1} f_{P, \sigma_{\nu}}\left(w^{M} n\right) d n
$$

This integrals converge absolutely and uniformly if ν is in a translate of the positive Weyl chamber.
Given $\mu \in V_{\sigma}^{\prime}$ set $\gamma_{\mu}(\nu)=\mu \circ J_{P, \sigma_{\nu}}^{\chi}$. Then, for ν as above, γ_{μ} defines a weakly holomorphic map into $\left(I_{M \cap K,\left.\sigma\right|_{M \cap K}}^{\infty}\right)^{\prime}$.

Theorem

1. γ_{μ} has a weakly holomorphic continuation to all of $\operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$
2. Given $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$ define

$$
\lambda_{\mu}\left(f_{P, \sigma_{\nu}}\right)=\gamma_{\mu}(\nu)(f), \quad f \in I_{M \cap K,\left.\sigma\right|_{M \cap K}}^{\infty}
$$

Then $\lambda_{\mu} \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right)$ and the map $\mu \mapsto \lambda_{\mu}$ defines an M_{χ}-equivariant isomorphism between V_{σ}^{\prime} and $W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right)$.

Classification of Simple Lie Groups of Tube Type

Classification of Simple Lie Groups of Tube Type

We will now give a list describing all the simple Lie groups of tube type, up to covering.

Classification of Simple Lie Groups of Tube Type

We will now give a list describing all the simple Lie groups of tube type, up to covering.

For each element in the list we will describe a Siegel Parabolic subgroup $P=M A N$, and a character χ of N with compact stabilizer.

Classification of Simple Lie Groups of Tube Type

We will now give a list describing all the simple Lie groups of tube type, up to covering.

For each element in the list we will describe a Siegel Parabolic subgroup $P=M A N$, and a character χ of N with compact stabilizer.

Fix a non-degenerate unitary character, χ_{\circ}, of \mathbb{R}.

1. $G=S p(n, \mathbb{R})$ realized as $2 n \times 2 n$ matrices g, such that $g J_{n} g^{T}=J_{n}$, with

$$
J_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] .
$$

1. $G=S p(n, \mathbb{R})$ realized as $2 n \times 2 n$ matrices g, such that $g J_{n} g^{T}=J_{n}$, with

$$
J_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] .
$$

Thus, identifying $\mathbb{R}^{2 n}$ with \mathbb{C}, using J_{n} for the complex structure, $K=G \cap O(2 n, \mathbb{R}) \cong U(n)$.

1. $G=S p(n, \mathbb{R})$ realized as $2 n \times 2 n$ matrices g, such that $g J_{n} g^{T}=J_{n}$, with

$$
J_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] .
$$

Thus, identifying $\mathbb{R}^{2 n}$ with \mathbb{C}, using J_{n} for the complex structure, $K=G \cap O(2 n, \mathbb{R}) \cong U(n)$. Set

$$
M A=\left\{\left.\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{-1}\right)^{T}
\end{array}\right] \right\rvert\, g \in G L(n, \mathbb{R})\right\}
$$

1. $G=S p(n, \mathbb{R})$ realized as $2 n \times 2 n$ matrices g, such that $g J_{n} g^{T}=J_{n}$, with

$$
J_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] .
$$

Thus, identifying $\mathbb{R}^{2 n}$ with \mathbb{C}, using J_{n} for the complex structure, $K=G \cap O(2 n, \mathbb{R}) \cong U(n)$. Set

$$
M A=\left\{\left.\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{-1}\right)^{T}
\end{array}\right] \right\rvert\, g \in G L(n, \mathbb{R})\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right] \right\rvert\, X \in M(n, \mathbb{R}), X^{T}=X\right\}
$$

1. $G=S p(n, \mathbb{R})$ realized as $2 n \times 2 n$ matrices g, such that $g J_{n} g^{T}=J_{n}$, with

$$
J_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] .
$$

Thus, identifying $\mathbb{R}^{2 n}$ with \mathbb{C}, using J_{n} for the complex structure, $K=G \cap O(2 n, \mathbb{R}) \cong U(n)$.
Set

$$
M A=\left\{\left.\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{-1}\right)^{T}
\end{array}\right] \right\rvert\, g \in G L(n, \mathbb{R})\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right] \right\rvert\, X \in M(n, \mathbb{R}), X^{T}=X\right\}
$$

We define a character, χ, on N by

$$
\chi\left(\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]\right)=\chi_{\circ}(\operatorname{Tr}(X))
$$

1. $G=S p(n, \mathbb{R})$ realized as $2 n \times 2 n$ matrices g, such that $g J_{n} g^{T}=J_{n}$, with

$$
J_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] .
$$

Thus, identifying $\mathbb{R}^{2 n}$ with \mathbb{C}, using J_{n} for the complex structure, $K=G \cap O(2 n, \mathbb{R}) \cong U(n)$.
Set

$$
M A=\left\{\left.\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{-1}\right)^{T}
\end{array}\right] \right\rvert\, g \in G L(n, \mathbb{R})\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right] \right\rvert\, X \in M(n, \mathbb{R}), X^{T}=X\right\}
$$

We define a character, χ, on N by

$$
\chi\left(\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]\right)=\chi_{\circ}(\operatorname{Tr}(X))
$$

Then $M_{\chi} \cong O(n, \mathbb{R})$.
2. $G=S U(n, n)$ realized as the $2 n \times 2 n$ complex matrices g, such that $g L_{n} g^{*}=L_{n}$, with

$$
L_{n}=\left[\begin{array}{cc}
0 & i I_{n} \\
-i I_{n} & 0
\end{array}\right]
$$

2. $G=S U(n, n)$ realized as the $2 n \times 2 n$ complex matrices g, such that $g L_{n} g^{*}=L_{n}$, with

$$
L_{n}=\left[\begin{array}{cc}
0 & i I_{n} \\
-i I_{n} & 0
\end{array}\right]
$$

Then $K=U(2 n) \cap G=S(U(n) \times U(n))$.
2. $G=S U(n, n)$ realized as the $2 n \times 2 n$ complex matrices g, such that $g L_{n} g^{*}=L_{n}$, with

$$
L_{n}=\left[\begin{array}{cc}
0 & i I_{n} \\
-i I_{n} & 0
\end{array}\right]
$$

Then $K=U(2 n) \cap G=S(U(n) \times U(n))$.
In this case we set

$$
M A=\left\{\left.\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{-1}\right)^{*}
\end{array}\right] \right\rvert\, g \in G L(n, \mathbb{C})\right\}
$$

2. $G=S U(n, n)$ realized as the $2 n \times 2 n$ complex matrices g, such that $g L_{n} g^{*}=L_{n}$, with

$$
L_{n}=\left[\begin{array}{cc}
0 & i I_{n} \\
-i I_{n} & 0
\end{array}\right]
$$

Then $K=U(2 n) \cap G=S(U(n) \times U(n))$.
In this case we set

$$
M A=\left\{\left.\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{-1}\right)^{*}
\end{array}\right] \right\rvert\, g \in G L(n, \mathbb{C})\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right] \right\rvert\, X \in M(n, \mathbb{C}), X^{*}=X\right\}
$$

2. $G=S U(n, n)$ realized as the $2 n \times 2 n$ complex matrices g, such that $g L_{n} g^{*}=L_{n}$, with

$$
L_{n}=\left[\begin{array}{cc}
0 & i I_{n} \\
-i I_{n} & 0
\end{array}\right]
$$

Then $K=U(2 n) \cap G=S(U(n) \times U(n))$.
In this case we set

$$
M A=\left\{\left.\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{-1}\right)^{*}
\end{array}\right] \right\rvert\, g \in G L(n, \mathbb{C})\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right] \right\rvert\, X \in M(n, \mathbb{C}), X^{*}=X\right\}
$$

If we now define a character, χ, on N by

$$
\chi\left(\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]\right)=\chi_{\circ}(\operatorname{Tr}(X))
$$

2. $G=S U(n, n)$ realized as the $2 n \times 2 n$ complex matrices g, such that $g L_{n} g^{*}=L_{n}$, with

$$
L_{n}=\left[\begin{array}{cc}
0 & i I_{n} \\
-i I_{n} & 0
\end{array}\right]
$$

Then $K=U(2 n) \cap G=S(U(n) \times U(n))$.
In this case we set

$$
M A=\left\{\left.\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{-1}\right)^{*}
\end{array}\right] \right\rvert\, g \in G L(n, \mathbb{C})\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right] \right\rvert\, X \in M(n, \mathbb{C}), X^{*}=X\right\}
$$

If we now define a character, χ, on N by

$$
\chi\left(\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]\right)=\chi_{\circ}(\operatorname{Tr}(X))
$$

then $M_{\chi} \cong U(n)$.
3. $G=S O^{*}(4 n)$ realized as the group of all $g \in S O(4 n, \mathbb{C})$ such that $g J_{2 n} g^{*}=J_{2 n}$.
3. $G=S O^{*}(4 n)$ realized as the group of all $g \in S O(4 n, \mathbb{C})$ such that $g J_{2 n} g^{*}=J_{2 n}$.

Here $K=G \cap S 0(4 n, \mathbb{R})=S p(2 n, \mathbb{R}) \cap S 0(4 n, \mathbb{R}) \cong U(2 n)$.
3. $G=S O^{*}(4 n)$ realized as the group of all $g \in S O(4 n, \mathbb{C})$ such that $g J_{2 n} g^{*}=J_{2 n}$.

Here $K=G \cap S 0(4 n, \mathbb{R})=S p(2 n, \mathbb{R}) \cap S 0(4 n, \mathbb{R}) \cong U(2 n)$.

We can describe $\mathfrak{g}=\operatorname{Lie}(G)$ as the Lie subalgebra of $M_{2 n}(\mathbb{H})$ of matrices of the form

$$
\left[\begin{array}{cc}
A & X \\
Y & -A^{*}
\end{array}\right]
$$

with $A, X, Y \in M_{n}(\mathbb{H}), X^{*}=X$ and $Y^{*}=Y$.
3. $G=S O^{*}(4 n)$ realized as the group of all $g \in S O(4 n, \mathbb{C})$ such that $g J_{2 n} g^{*}=J_{2 n}$.

Here $K=G \cap S 0(4 n, \mathbb{R})=S p(2 n, \mathbb{R}) \cap S 0(4 n, \mathbb{R}) \cong U(2 n)$.
We can describe $\mathfrak{g}=\operatorname{Lie}(G)$ as the Lie subalgebra of $M_{2 n}(\mathbb{H})$ of matrices of the form

$$
\left[\begin{array}{cc}
A & X \\
Y & -A^{*}
\end{array}\right]
$$

with $A, X, Y \in M_{n}(\mathbb{H}), X^{*}=X$ and $Y^{*}=Y$.

If we define M, A, N and χ in a similar way as before, $M A \cong G L(n, \mathbb{H})$ and $M_{\chi} \cong S p(n)$, the quaternionic unitary group.
4. G the Hermitian symmetric real form of E_{7}.
4. G the Hermitian symmetric real form of E_{7}.

We will give a description of $\operatorname{Lie}(G)$ that makes it look like the Lie algebras in examples 1,2 , and 3.
4. G the Hermitian symmetric real form of E_{7}.

We will give a description of $\operatorname{Lie}(G)$ that makes it look like the Lie algebras in examples 1,2 , and 3.
In each of those cases we have

$$
\operatorname{Lie}(G)=\left[\begin{array}{cc}
A & X \\
Y & -A^{*}
\end{array}\right]
$$

with $A, X, Y \in M_{n}(F), X=X^{*}$ and $Y=Y^{*}$, for $F=\mathbb{R}, \mathbb{C}$ and \mathbb{H} respectively.
4. G the Hermitian symmetric real form of E_{7}.

We will give a description of $\operatorname{Lie}(G)$ that makes it look like the Lie algebras in examples 1,2 , and 3.
In each of those cases we have

$$
\operatorname{Lie}(G)=\left[\begin{array}{cc}
A & X \\
Y & -A^{*}
\end{array}\right]
$$

with $A, X, Y \in M_{n}(F), X=X^{*}$ and $Y=Y^{*}$, for $F=\mathbb{R}, \mathbb{C}$ and \mathbb{H} respectively.

Example 4 corresponds to the octonions, \mathbb{O}. Here we replace $M_{3}(\mathbb{O})$ by $\mathfrak{m} \oplus \mathfrak{a}=E_{6,2} \oplus \mathbb{R}$, and take for X, Y elements of the exceptional Euclidean Jordan algebra (the 3×3 conjugate adjoint matrices over (\mathbb{O}).
4. G the Hermitian symmetric real form of E_{7}.

We will give a description of $\operatorname{Lie}(G)$ that makes it look like the Lie algebras in examples 1,2 , and 3.
In each of those cases we have

$$
\operatorname{Lie}(G)=\left[\begin{array}{cc}
A & X \\
Y & -A^{*}
\end{array}\right]
$$

with $A, X, Y \in M_{n}(F), X=X^{*}$ and $Y=Y^{*}$, for $F=\mathbb{R}, \mathbb{C}$ and \mathbb{H} respectively.

Example 4 corresponds to the octonions, \mathbb{O}. Here we replace $M_{3}(\mathbb{O})$ by $\mathfrak{m} \oplus \mathfrak{a}=E_{6,2} \oplus \mathbb{R}$, and take for X, Y elements of the exceptional Euclidean Jordan algebra (the 3×3 conjugate adjoint matrices over (\mathbb{O}).

If we now define χ as in the above examples, then M_{χ} is isomorphic to compact F_{4}.
5. $G=S O(n, 2)$ realized as the group of $n+2$ by $n+2$ matrices of determinant 1 that leave invariant the form

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & I_{n-1,1} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

5. $G=S O(n, 2)$ realized as the group of $n+2$ by $n+2$ matrices of determinant 1 that leave invariant the form

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & I_{n-1,1} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Here $K \cong S(O(n, \mathbb{R}) \times O(2, \mathbb{R}))$.
5. $G=S O(n, 2)$ realized as the group of $n+2$ by $n+2$ matrices of determinant 1 that leave invariant the form

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & I_{n-1,1} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Here $K \cong S(O(n, \mathbb{R}) \times O(2, \mathbb{R}))$.
Set

$$
M A=\left\{\left.\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & m & 0 \\
0 & 0 & a^{-1}
\end{array}\right] \right\rvert\, a \in \mathbb{R}^{*}, m \in S O(n-1,1)\right\}
$$

5. $G=S O(n, 2)$ realized as the group of $n+2$ by $n+2$ matrices of determinant 1 that leave invariant the form

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & I_{n-1,1} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Here $K \cong S(O(n, \mathbb{R}) \times O(2, \mathbb{R}))$.
Set

$$
M A=\left\{\left.\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & m & 0 \\
0 & 0 & a^{-1}
\end{array}\right] \right\rvert\, a \in \mathbb{R}^{*}, m \in S O(n-1,1)\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{ccc}
1 & -v^{t} & -\frac{\langle v, v\rangle}{2} \\
0 & I & v \\
0 & 0 & 1
\end{array}\right] \right\rvert\, v \in \mathbb{R}^{n-1,1}\right\}
$$

Set

$$
M A=\left\{\left.\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & m & 0 \\
0 & 0 & a^{-1}
\end{array}\right] \right\rvert\, a \in \mathbb{R}^{*}, m \in S O(n-1,1)\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{ccc}
1 & -v^{t} & -\frac{\langle v, v\rangle}{2} \\
0 & I & v \\
0 & 0 & 1
\end{array}\right] \right\rvert\, v \in \mathbb{R}^{n-1,1}\right\}
$$

Set

$$
M A=\left\{\left.\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & m & 0 \\
0 & 0 & a^{-1}
\end{array}\right] \right\rvert\, a \in \mathbb{R}^{*}, m \in S O(n-1,1)\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{ccc}
1 & -v^{t} & -\frac{\langle v, v\rangle}{2} \\
0 & I & v \\
0 & 0 & 1
\end{array}\right] \right\rvert\, v \in \mathbb{R}^{n-1,1}\right\}
$$

Let

$$
\chi\left(\left[\begin{array}{ccc}
1 & -v^{t} & \frac{\langle v, v\rangle}{2} \\
0 & I & v \\
0 & 0 & 1
\end{array}\right]\right)=\chi_{\circ}\left(v_{n}\right)
$$

where v_{n} is the n-th component of v.

Set

$$
M A=\left\{\left.\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & m & 0 \\
0 & 0 & a^{-1}
\end{array}\right] \right\rvert\, a \in \mathbb{R}^{*}, m \in S O(n-1,1)\right\}
$$

and

$$
N=\left\{\left.\left[\begin{array}{ccc}
1 & -v^{t} & -\frac{\langle v, v\rangle}{2} \\
0 & I & v \\
0 & 0 & 1
\end{array}\right] \right\rvert\, v \in \mathbb{R}^{n-1,1}\right\}
$$

Let

$$
\chi\left(\left[\begin{array}{ccc}
1 & -v^{t} & \frac{\langle v, v\rangle}{2} \\
0 & I & v \\
0 & 0 & 1
\end{array}\right]\right)=\chi_{\circ}\left(v_{n}\right)
$$

where v_{n} is the n-th component of v.
Then

$$
M_{\chi} \cong S O(n-1, \mathbb{R})
$$

Some Bruhat Theory

Some Bruhat Theory

Let G be one of the simple Lie groups of tube type we just described, and set $P=M A N, \chi$ and M_{χ} as before.

Some Bruhat Theory

Let G be one of the simple Lie groups of tube type we just described, and set $P=M A N, \chi$ and M_{χ} as before.

Let $P_{\circ}=M_{\circ} A_{\circ} N_{\circ}$ be a minimal parabolic sugroup such that

$$
P_{\circ} \subset P, \quad N \subset N_{\circ}, \quad A \subset A_{\circ}, \quad M_{\circ} \subset M
$$

Some Bruhat Theory

Let G be one of the simple Lie groups of tube type we just described, and set $P=M A N, \chi$ and M_{χ} as before.

Let $P_{\circ}=M_{\circ} A_{\circ} N_{\circ}$ be a minimal parabolic sugroup such that

$$
P_{\circ} \subset P, \quad N \subset N_{\circ}, \quad A \subset A_{\circ}, \quad M_{\circ} \subset M
$$

Let Φ^{+}be the system of positive roots of G relative to P_{\circ}, and let Φ_{M}^{+}be the system of positive roots of $M A$ induced by Φ^{+}.

Some Bruhat Theory

Let G be one of the simple Lie groups of tube type we just described, and set $P=M A N, \chi$ and M_{χ} as before.

Let $P_{\circ}=M_{\circ} A_{\circ} N_{\circ}$ be a minimal parabolic sugroup such that

$$
P_{\circ} \subset P, \quad N \subset N_{\circ}, \quad A \subset A_{\circ}, \quad M_{\circ} \subset M
$$

Let Φ^{+}be the system of positive roots of G relative to P_{\circ}, and let Φ_{M}^{+}be the system of positive roots of $M A$ induced by Φ^{+}.

Let $W=W\left(G, A_{\circ}\right), W_{M}=W\left(M A, A_{\circ}\right)$ and set

$$
W^{M}=\left\{w \in W \mid w \Phi_{M}^{+} \subset \Phi_{M}^{+}\right\}
$$

Some Bruhat Theory

Let G be one of the simple Lie groups of tube type we just described, and set $P=M A N, \chi$ and M_{χ} as before.

Let $P_{\circ}=M_{\circ} A_{\circ} N_{\circ}$ be a minimal parabolic sugroup such that

$$
P_{\circ} \subset P, \quad N \subset N_{\circ}, \quad A \subset A_{\circ}, \quad M_{\circ} \subset M
$$

Let Φ^{+}be the system of positive roots of G relative to P_{\circ}, and let Φ_{M}^{+}be the system of positive roots of $M A$ induced by Φ^{+}.

Let $W=W\left(G, A_{\circ}\right), W_{M}=W\left(M A, A_{\circ}\right)$ and set

$$
W^{M}=\left\{w \in W \mid w \Phi_{M}^{+} \subset \Phi_{M}^{+}\right\}
$$

Then $W=W_{M} W^{M}$.

Lemma (Bruhat decomposition)

Lemma (Bruhat decomposition)

1. Given $w \in W$, fix $w^{*} \in N_{K}\left(A_{\circ}\right)$ such that $M_{\circ} w^{*}=w$. Then

$$
G=\bigcup_{w \in W^{M}} P_{\circ} w^{*} P .
$$

Lemma (Bruhat decomposition)

1. Given $w \in W$, fix $w^{*} \in N_{K}\left(A_{\circ}\right)$ such that $M_{\circ} w^{*}=w$. Then

$$
G=\bigcup_{w \in W^{M}} P_{\circ} w^{*} P
$$

2. Let w_{G} be the longest element of W, w_{M} the longest element of W_{M}, and set $w^{M}=w_{G} w_{M}$. Then

$$
P_{\circ}\left(w^{M}\right)^{*} P=P\left(w^{M}\right)^{*} N
$$

and if $w \neq w^{M}$ then

$$
\operatorname{dim} P_{\circ} w^{*} P<\operatorname{dim} P\left(w^{M}\right)^{*} N
$$

Corollary

$$
G=\bigcup_{w \in W^{M}} P_{\circ} w^{*} K_{M} N
$$

Corollary

$$
G=\bigcup_{w \in W^{M}} P_{\circ} w^{*} K_{M} N
$$

Furthermore, if $w \neq w^{M}$, then $\operatorname{dim} P_{\circ} w^{*} K_{M} N<\operatorname{dim} P\left(w^{M}\right)^{*} N$.

Corollary

$$
G=\bigcup_{w \in W^{M}} P_{\circ} w^{*} K_{M} N
$$

Furthermore, if $w \neq w^{M}$, then $\operatorname{dim} P_{\circ} w^{*} K_{M} N<\operatorname{dim} P\left(w^{M}\right)^{*} N$.
Lemma
If $w \in W^{M}$ is not w^{M}, then the restriction of χ to $\left(w^{*}\right)^{-1} N_{\circ} w^{*} \cap N$ is non-trivial.

Corollary

$$
G=\bigcup_{w \in W^{M}} P_{\circ} w^{*} K_{M} N
$$

Furthermore, if $w \neq w^{M}$, then $\operatorname{dim} P_{\circ} w^{*} K_{M} N<\operatorname{dim} P\left(w^{M}\right)^{*} N$.
Lemma
If $w \in W^{M}$ is not w^{M}, then the restriction of χ to $\left(w^{*}\right)^{-1} N_{\circ} w^{*} \cap N$ is non-trivial.
proof

The tube type assumption implies that Φ is a root system of type C_{n} with $n=\operatorname{dim} A_{o}$.

Corollary

$$
G=\bigcup_{w \in W^{M}} P_{\circ} w^{*} K_{M} N
$$

Furthermore, if $w \neq w^{M}$, then $\operatorname{dim} P_{\circ} w^{*} K_{M} N<\operatorname{dim} P\left(w^{M}\right)^{*} N$.
Lemma
If $w \in W^{M}$ is not w^{M}, then the restriction of χ to $\left(w^{*}\right)^{-1} N_{\circ} w^{*} \cap N$ is non-trivial.
proof

The tube type assumption implies that Φ is a root system of type C_{n} with $n=\operatorname{dim} A_{o}$.
Hence, there exist linear functionals $\varepsilon_{1}, \ldots, \varepsilon_{n}$ on $\mathfrak{a}_{o}=\operatorname{Lie}\left(A_{o}\right)$ such that

$$
\Phi^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{2 \varepsilon_{1}, \ldots, 2 \varepsilon_{n}\right\}
$$

Proof.

Hence, there exist linear functionals $\varepsilon_{1}, \ldots, \varepsilon_{n}$ on $\operatorname{Lie}\left(A_{\circ}\right)$ such that

$$
\Phi^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{2 \varepsilon_{1}, \ldots, 2 \varepsilon_{n}\right\}
$$

Proof.

Hence, there exist linear functionals $\varepsilon_{1}, \ldots, \varepsilon_{n}$ on $\operatorname{Lie}\left(A_{\circ}\right)$ such that

$$
\Phi^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{2 \varepsilon_{1}, \ldots, 2 \varepsilon_{n}\right\}
$$

and

$$
\Phi_{M}^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\} .
$$

Proof.

Hence, there exist linear functionals $\varepsilon_{1}, \ldots, \varepsilon_{n}$ on $\operatorname{Lie}\left(A_{\circ}\right)$ such that

$$
\Phi^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{2 \varepsilon_{1}, \ldots, 2 \varepsilon_{n}\right\}
$$

and

$$
\Phi_{M}^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\}
$$

Let $X \in \operatorname{Lie}(N)$ be such that $[H, X]=2 \varepsilon_{i}(H) X$, for all $H \in \operatorname{Lie}\left(A_{\circ}\right)$. For such an X it can be checked that $d \chi(X) \neq 0$.

Proof.

Hence, there exist linear functionals $\varepsilon_{1}, \ldots, \varepsilon_{n}$ on $\operatorname{Lie}\left(A_{\circ}\right)$ such that

$$
\Phi^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{2 \varepsilon_{1}, \ldots, 2 \varepsilon_{n}\right\}
$$

and

$$
\Phi_{M}^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\} .
$$

Let $X \in \operatorname{Lie}(N)$ be such that $[H, X]=2 \varepsilon_{i}(H) X$, for all $H \in \operatorname{Lie}\left(A_{\circ}\right)$. For such an X it can be checked that $d \chi(X) \neq 0$. Hence, if $w \in W^{M}$ and χ restricted to $\left(w^{*}\right)^{-1} N_{\circ} w^{*} \cap N$ is trivial, we must have

$$
w^{-1} \cdot\left(2 \varepsilon_{i}\right) \in-\Phi^{+}, \quad i=1, \ldots, n
$$

Proof.

Hence, there exist linear functionals $\varepsilon_{1}, \ldots, \varepsilon_{n}$ on $\operatorname{Lie}\left(A_{\circ}\right)$ such that

$$
\Phi^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{2 \varepsilon_{1}, \ldots, 2 \varepsilon_{n}\right\}
$$

and

$$
\Phi_{M}^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\} .
$$

Let $X \in \operatorname{Lie}(N)$ be such that $[H, X]=2 \varepsilon_{i}(H) X$, for all $H \in \operatorname{Lie}\left(A_{\circ}\right)$. For such an X it can be checked that $d \chi(X) \neq 0$. Hence, if $w \in W^{M}$ and χ restricted to $\left(w^{*}\right)^{-1} N_{\circ} w^{*} \cap N$ is trivial, we must have

$$
w^{-1} \cdot\left(2 \varepsilon_{i}\right) \in-\Phi^{+}, \quad i=1, \ldots, n
$$

Therefore $w^{-1} \cdot\left(\varepsilon_{i}+\varepsilon_{j}\right) \in-\Phi^{+}$for all $i \leq j$, which implies that $w=w^{M}$.

The Theory of the Transverse Symbol of Kolk-Varadarajan

The Theory of the Transverse Symbol of Kolk-Varadarajan

Let H be a Lie group, and let X be a C^{∞} manifold with a left H action.

The Theory of the Transverse Symbol of Kolk-Varadarajan

Let H be a Lie group, and let X be a C^{∞} manifold with a left H action.

Given a Fréchet space E, let $C_{c}^{\infty}(X: E)$ be the space of smooth compactly supported functions on X with values in E.

The Theory of the Transverse Symbol of Kolk-Varadarajan

Let H be a Lie group, and let X be a C^{∞} manifold with a left H action.

Given a Fréchet space E, let $C_{c}^{\infty}(X: E)$ be the space of smooth compactly supported functions on X with values in E.

We will denote by

$$
D^{\prime}(X: E):=\left(C_{c}^{\infty}(X: E)\right)^{\prime}
$$

to its dual space, and we will make the identification

$$
D^{\prime}(X: E) \longleftrightarrow \operatorname{Hom}\left(C_{c}^{\infty}(X), E^{\prime}\right)
$$

The Theory of the Transverse Symbol of Kolk-Varadarajan

Let H be a Lie group, and let X be a C^{∞} manifold with a left H action.

Given a Fréchet space E, let $C_{c}^{\infty}(X: E)$ be the space of smooth compactly supported functions on X with values in E.

We will denote by

$$
D^{\prime}(X: E):=\left(C_{c}^{\infty}(X: E)\right)^{\prime}
$$

to its dual space, and we will make the identification

$$
D^{\prime}(X: E) \longleftrightarrow \operatorname{Hom}\left(C_{c}^{\infty}(X), E^{\prime}\right)
$$

We will call any element in this space an E-distribution on X.

Fix an H-orbit $O \subset X$.

Fix an H-orbit $O \subset X$.

Let Diff ${ }^{(r)}$ be the sheaf of differential operators of order $\leq r$ on X.

Fix an H-orbit $O \subset X$.

Let Diff ${ }^{(r)}$ be the sheaf of differential operators of order $\leq r$ on X.

For any $x \in X$ let $V_{x}^{(r)}$ be the subspace of $\operatorname{Diff}_{x}^{(r)}$ generated by germs of r-tuples $v_{1} \cdots v_{r}$ of vector fields around x for which at least one of the v_{i} is tangent to O.

Fix an H-orbit $O \subset X$.

Let Diff ${ }^{(r)}$ be the sheaf of differential operators of order $\leq r$ on X.

For any $x \in X$ let $V_{x}^{(r)}$ be the subspace of $\operatorname{Diff}_{x}^{(r)}$ generated by germs of r-tuples $v_{1} \cdots v_{r}$ of vector fields around x for which at least one of the v_{i} is tangent to O.

Let

$$
I_{x}^{(r)}=\operatorname{Diff}_{x}^{(r-1)}+V_{x}^{(r)}
$$

Choosing local coordinates at x it can be seen that $I_{x}^{(r)}$ actually is the stalk at x of a subsheaf $I^{(r)} \subset \operatorname{Diff}^{(r)}$.

Let

$$
I_{x}^{(r)}=\operatorname{Diff}_{x}^{(r-1)}+V_{x}^{(r)}
$$

Choosing local coordinates at x it can be seen that $I_{x}^{(r)}$ actually is the stalk at x of a subsheaf $I^{(r)} \subset \operatorname{Diff}^{(r)}$.

Let

$$
I_{x}^{(r)}=\operatorname{Diff}_{x}^{(r-1)}+V_{x}^{(r)} .
$$

Choosing local coordinates at x it can be seen that $I_{x}^{(r)}$ actually is the stalk at x of a subsheaf $I^{(r)} \subset \operatorname{Diff}^{(r)}$.

Hence we have a well-defined quotient sheaf

$$
M^{(r)}=\operatorname{Diff}^{(r)} / I^{(r)}
$$

with stalk at x equal to $M_{x}^{(r)}=\operatorname{Diff}{ }_{x}^{(r)} / I_{x}^{(r)}$.

Let

$$
I_{x}^{(r)}=\operatorname{Diff}_{x}^{(r-1)}+V_{x}^{(r)} .
$$

Choosing local coordinates at x it can be seen that $I_{x}^{(r)}$ actually is the stalk at x of a subsheaf $I^{(r)} \subset \operatorname{Diff}^{(r)}$.

Hence we have a well-defined quotient sheaf

$$
M^{(r)}=\operatorname{Diff}^{(r)} / I^{(r)}
$$

with stalk at x equal to $M_{x}^{(r)}=\operatorname{Diff}_{x}^{(r)} / I_{x}^{(r)}$.

It can be checked that $M^{(r)}$ is a vector bundle over O of finite rank.

It can be checked that $M^{(r)}$ is a vector bundle over O of finite rank.

It can be checked that $M^{(r)}$ is a vector bundle over O of finite rank.

This is the r-th graded part of the transverse jet bundle on O. Observe that $M^{(r)}$ is the r-th symmetric power of $M^{(1)}$.

It can be checked that $M^{(r)}$ is a vector bundle over O of finite rank.

This is the r-th graded part of the transverse jet bundle on O. Observe that $M^{(r)}$ is the r-th symmetric power of $M^{(1)}$.

We say that $T \in D^{\prime}(X: E)$ has transverse order $\leq r$ at $x \in O$, if there exists an open neighborhood U of x in X, such that for all $f \in C_{c}^{\infty}(U: E)$, with the property that $\left.D f\right|_{O \cap U}=0$ for all $D \in \operatorname{Diff}^{(r)}(U), T(f)=0$.

It can be checked that $M^{(r)}$ is a vector bundle over O of finite rank.

This is the r-th graded part of the transverse jet bundle on O. Observe that $M^{(r)}$ is the r-th symmetric power of $M^{(1)}$.

We say that $T \in D^{\prime}(X: E)$ has transverse order $\leq r$ at $x \in O$, if there exists an open neighborhood U of x in X, such that for all $f \in C_{c}^{\infty}(U: E)$, with the property that $\left.D f\right|_{O \cap U}=0$ for all $D \in \operatorname{Diff}^{(r)}(U), T(f)=0$.

Let $D_{O}^{\prime(r)}(X: E)$ be the linear subspace of elements in $D^{\prime}(X: E)$ which have transverse order $\leq r$ at all points of O.

Theorem (Kolk-Varadarajan)
Let X be a C^{∞} manifold with a left action of H, let (π, E) be a smooth Fréchet representation of a normal subgroup H^{\prime} of H, and let $O \subset X$ be an H-orbit of X.

Theorem (Kolk-Varadarajan)

Let X be a C^{∞} manifold with a left action of H, let (π, E) be a smooth Fréchet representation of a normal subgroup H^{\prime} of H, and let $O \subset X$ be an H-orbit of X.

1. Assume that the action of H^{\prime} can be extended to an action of H. If there exists $y \in O$, such that

$$
\left(M_{y}^{(r)} \otimes E^{\prime} \otimes \mathbb{C}_{y}^{\prime}\right)^{H_{y}^{\prime}}=(0)
$$

for all $r \in \mathbb{Z}_{\geq 0}$, then

$$
D_{O}^{\prime}(X: E)^{H^{\prime}}=(0)
$$

Theorem (Kolk-Varadarajan)

Let X be a C^{∞} manifold with a left action of H, let (π, E) be a smooth Fréchet representation of a normal subgroup H^{\prime} of H, and let $O \subset X$ be an H-orbit of X.

1. Assume that the action of H^{\prime} can be extended to an action of H. If there exists $y \in O$, such that

$$
\left(M_{y}^{(r)} \otimes E^{\prime} \otimes \mathbb{C}_{y}^{\prime}\right)^{H_{y}^{\prime}}=(0)
$$

for all $r \in \mathbb{Z}_{\geq 0}$, then

$$
D_{O}^{\prime}(X: E)^{H^{\prime}}=(0)
$$

$\left(\mathbb{C}_{y}\right.$ is just \mathbb{C}, with an H^{\prime}-action given by the character $\left.\chi_{y}=\frac{\delta_{H^{\prime}}}{\delta_{H_{y}^{\prime}}}\right)$.

Theorem (Kolk-Varadarajan)
Let X be a C^{∞} manifold with a left action of H, let (π, E) be a smooth Fréchet representation of a normal subgroup H^{\prime} of H, and let $O \subset X$ be an H-orbit of X.
2. Assume that $H=H^{\prime}$. Then for any

$$
T \in D_{O}^{\prime(r)}(X: E) / D_{O}^{\prime(r-1)}(X: E)
$$

there exists $\mu_{y} \in\left(M_{y}^{(r)} \otimes E^{\prime} \otimes \mathbb{C}_{y}^{\prime}\right)^{H_{y}}$ such that

$$
T(f)=\int_{H / H_{y}}\left(h \cdot \mu_{y}\right)(f) d h
$$

Theorem (Kolk-Varadarajan)

Let X be a C^{∞} manifold with a left action of H, let (π, E) be a smooth Fréchet representation of a normal subgroup H^{\prime} of H, and let $O \subset X$ be an H-orbit of X.
3. Assume that E is finite dimensional, and assume that for all $y \in O$

$$
\left(M_{y}^{(r)} \otimes E^{\prime} \otimes \mathbb{C}_{y}^{\prime}\right)^{H_{y}^{\prime}}=(0)
$$

for all $r \in \mathbb{Z}_{\geq 0}$, then

$$
D_{O}^{\prime}(X: E)^{H^{\prime}}=(0)
$$

The Vanishing of Certain Invariant Distributions

The Vanishing of Certain Invariant Distributions

Let $G, P=M A N, \chi$ and M_{χ} be as before.

The Vanishing of Certain Invariant Distributions

Let $G, P=M A N, \chi$ and M_{χ} be as before.
Let $\left(\sigma, V_{\sigma}\right)$ be an admissible, smooth, Fréchet representation of M, and let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$.

The Vanishing of Certain Invariant Distributions

Let $G, P=M A N, \chi$ and M_{χ} be as before.
Let $\left(\sigma, V_{\sigma}\right)$ be an admissible, smooth, Fréchet representation of M, and let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$.
Set

$$
\sigma_{\nu}(\operatorname{man})=a^{\nu+\rho} \sigma(m)
$$

and let $I_{P, \sigma_{\nu}}^{\infty}$ be the corresponding smooth induced representation.

The Vanishing of Certain Invariant Distributions

Let $G, P=M A N, \chi$ and M_{χ} be as before.
Let $\left(\sigma, V_{\sigma}\right)$ be an admissible, smooth, Fréchet representation of M, and let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$.
Set

$$
\sigma_{\nu}(\operatorname{man})=a^{\nu+\rho} \sigma(m)
$$

and let $I_{P, \sigma_{\nu}}^{\infty}$ be the corresponding smooth induced representation.
Given $f \in C_{c}^{\infty}(G)$, and $v \in V_{\sigma}$, set

$$
f_{P, \sigma, \nu, v}(g)=\int_{P} f(p g) \sigma_{\nu}(p)^{-1} v d_{r} p
$$

The Vanishing of Certain Invariant Distributions

Let $G, P=M A N, \chi$ and M_{χ} be as before.
Let $\left(\sigma, V_{\sigma}\right)$ be an admissible, smooth, Fréchet representation of M, and let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$.
Set

$$
\sigma_{\nu}(\operatorname{man})=a^{\nu+\rho} \sigma(m)
$$

and let $I_{P, \sigma_{\nu}}^{\infty}$ be the corresponding smooth induced representation.
Given $f \in C_{c}^{\infty}(G)$, and $v \in V_{\sigma}$, set

$$
f_{P, \sigma, \nu, v}(g)=\int_{P} f(p g) \sigma_{\nu}(p)^{-1} v d_{r} p
$$

Then

$$
f_{P, \sigma, \nu, v}(p g)=\sigma_{\nu}(p) f(g), \quad \text { i.e } \quad f_{P, \sigma, \nu, v} \in I_{P, \sigma_{\nu}}^{\infty} .
$$

Let

$$
U_{P, \sigma_{\nu}}=\left\{f \in I_{P, \sigma_{\nu}}^{\infty} \mid \operatorname{supp} f \subset P\left(w^{M}\right)^{*} N\right\} .
$$

Let

$$
U_{P, \sigma_{\nu}}=\left\{f \in I_{P, \sigma_{\nu}}^{\infty} \mid \operatorname{supp} f \subset P\left(w^{M}\right)^{*} N\right\} .
$$

Then, given $f \in C_{c}^{\infty}(G)$ such that $\operatorname{supp} f \subset P\left(w^{M}\right)^{*} N$, $f_{P, \sigma, \nu, v} \in U_{P, \sigma_{\nu}}$.

Let

$$
U_{P, \sigma_{\nu}}=\left\{f \in I_{P, \sigma_{\nu}}^{\infty} \mid \operatorname{supp} f \subset P\left(w^{M}\right)^{*} N\right\} .
$$

Then, given $f \in C_{c}^{\infty}(G)$ such that $\operatorname{supp} f \subset P\left(w^{M}\right)^{*} N$, $f_{P, \sigma, \nu, v} \in U_{P, \sigma_{\nu}}$.

Furthermore the map $f \otimes v \mapsto f_{P, \sigma, \nu, v}$ from $C_{c}^{\infty}(G) \bar{\otimes} V_{\sigma}$ to $U_{P, \sigma_{\nu}}$ is surjective.

Let

$$
U_{P, \sigma_{\nu}}=\left\{f \in I_{P, \sigma_{\nu}}^{\infty} \mid \operatorname{supp} f \subset P\left(w^{M}\right)^{*} N\right\} .
$$

Then, given $f \in C_{c}^{\infty}(G)$ such that $\operatorname{supp} f \subset P\left(w^{M}\right)^{*} N$, $f_{P, \sigma, \nu, v} \in U_{P, \sigma_{\nu}}$.

Furthermore the map $f \otimes v \mapsto f_{P, \sigma, \nu, v}$ from $C_{c}^{\infty}(G) \bar{\otimes} V_{\sigma}$ to $U_{P, \sigma_{\nu}}$ is surjective.

Let

$$
D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma}\right)=\left\{T: C_{c}^{\infty}\left(P\left(w^{M}\right)^{*} N\right) \longrightarrow V_{\sigma}^{\prime}\right\}
$$

be the space of V_{σ} distributions on $P\left(w^{M}\right)^{*} N$.

Let

$$
D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma}\right)=\left\{T: C_{c}^{\infty}\left(P\left(w^{M}\right)^{*} N\right) \longrightarrow V_{\sigma}^{\prime}\right\}
$$

be the space of V_{σ} distributions on $P\left(w^{M}\right)^{*} N$.

Let

$$
D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma}\right)=\left\{T: C_{c}^{\infty}\left(P\left(w^{M}\right)^{*} N\right) \longrightarrow V_{\sigma}^{\prime}\right\}
$$

be the space of V_{σ} distributions on $P\left(w^{M}\right)^{*} N$.

Given $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}\right)$, define $\bar{\lambda} \in D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma}\right)$ by

$$
\bar{\lambda}(f)(v)=\lambda\left(f_{P, \sigma, \nu, v}\right)
$$

Let

$$
D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma}\right)=\left\{T: C_{c}^{\infty}\left(P\left(w^{M}\right)^{*} N\right) \longrightarrow V_{\sigma}^{\prime}\right\}
$$

be the space of V_{σ} distributions on $P\left(w^{M}\right)^{*} N$.

Given $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}\right)$, define $\bar{\lambda} \in D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma}\right)$ by

$$
\bar{\lambda}(f)(v)=\lambda\left(f_{P, \sigma, \nu, v}\right)
$$

It's easy to check that actually

$$
\bar{\lambda} \in D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma_{\nu-2 \rho}} \otimes \mathbb{C}_{\chi}\right)^{P \times N}
$$

It's easy to check that actually

$$
\bar{\lambda} \in D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma_{\nu-2 \rho}} \otimes \mathbb{C}_{\chi}\right)^{P \times N} .
$$

It's easy to check that actually

$$
\bar{\lambda} \in D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma_{\nu-2 \rho}} \otimes \mathbb{C}_{\chi}\right)^{P \times N}
$$

Hence, according to part ii) of Kolk-Varadarajan theorem, there exist $\mu_{\lambda} \in V_{\sigma}^{\prime}$ such that

$$
\begin{aligned}
\bar{\lambda}(f)(v) & =\mu_{\lambda}\left(\int_{N} \int_{P} \chi(n)^{-1} f\left(p w^{M} n\right) \sigma_{\nu}(p)^{-1} v d_{r} p d n\right) \\
\lambda\left(f_{P, \sigma, \nu, v}\right) & =\mu_{\lambda}\left(\int_{N} \chi(n)^{-1} f_{P, \sigma, \nu, v}\left(w^{M} n\right) d n\right) \\
& =\mu_{\lambda} \circ J_{P, \sigma_{\nu}}^{\chi}\left(\left.f_{P, \sigma, \nu, v}\right|_{K}\right) .
\end{aligned}
$$

It's easy to check that actually

$$
\bar{\lambda} \in D^{\prime}\left(P\left(w^{M}\right)^{*} N: V_{\sigma_{\nu-2 \rho}} \otimes \mathbb{C}_{\chi}\right)^{P \times N} .
$$

Hence, according to part ii) of Kolk-Varadarajan theorem, there exist $\mu_{\lambda} \in V_{\sigma}^{\prime}$ such that

$$
\begin{aligned}
\bar{\lambda}(f)(v) & =\mu_{\lambda}\left(\int_{N} \int_{P} \chi(n)^{-1} f\left(p w^{M} n\right) \sigma_{\nu}(p)^{-1} v d_{r} p d n\right) \\
\lambda\left(f_{P, \sigma, \nu, v}\right) & =\mu_{\lambda}\left(\int_{N} \chi(n)^{-1} f_{P, \sigma, \nu, v}\left(w^{M} n\right) d n\right) \\
& =\mu_{\lambda} \circ J_{P, \sigma_{\nu}}^{\chi}\left(\left.f_{P, \sigma, \nu, v}\right|_{K}\right) .
\end{aligned}
$$

We will denote the map $\lambda \mapsto \mu_{\lambda}$ by $\Phi_{P, \sigma_{\nu}}$.

$$
\lambda\left(f_{P, \sigma, \nu, v}\right)=\mu_{\lambda} \circ J_{P, \sigma_{\nu}}^{\chi}\left(\left.f_{P, \sigma, \nu, v}\right|_{K}\right) .
$$

$$
\lambda\left(f_{P, \sigma, \nu, v}\right)=\mu_{\lambda} \circ J_{P, \sigma_{\nu}}^{\chi}\left(\left.f_{P, \sigma, \nu, v}\right|_{K}\right) .
$$

We will denote the map $\lambda \mapsto \mu_{\lambda}$ by $\Phi_{P, \sigma_{\nu}}$.

$$
\lambda\left(f_{P, \sigma, \nu, v}\right)=\mu_{\lambda} \circ J_{P, \sigma_{\nu}}^{\chi}\left(\left.f_{P, \sigma, \nu, v}\right|_{K}\right) .
$$

We will denote the map $\lambda \mapsto \mu_{\lambda}$ by $\Phi_{P, \sigma_{\nu}}$.

Proposition

If $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right)$ and $\lambda_{\mid U_{P, \sigma_{\nu}}}=0$ then $\lambda=0$.

$$
\lambda\left(f_{P, \sigma, \nu, v}\right)=\mu_{\lambda} \circ J_{P, \sigma_{\nu}}^{\chi}\left(\left.f_{P, \sigma, \nu, v}\right|_{K}\right) .
$$

We will denote the map $\lambda \mapsto \mu_{\lambda}$ by $\Phi_{P, \sigma_{\nu}}$.

Proposition

If $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right)$ and $\lambda_{\mid U_{P, \sigma_{\nu}}}=0$ then $\lambda=0$.
Corollary
The map

$$
\Phi_{P, \sigma_{\nu}}: W h_{\chi}\left(I_{P, \sigma_{\nu}}\right) \longrightarrow V_{\sigma}^{\prime}
$$

is injective.

$$
\lambda\left(f_{P, \sigma, \nu, v}\right)=\mu_{\lambda} \circ J_{P, \sigma_{\nu}}^{\chi}\left(\left.f_{P, \sigma, \nu, v}\right|_{K}\right)
$$

We will denote the map $\lambda \mapsto \mu_{\lambda}$ by $\Phi_{P, \sigma_{\nu}}$.
Proposition
If $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right)$ and $\lambda_{\mid U_{P, \sigma_{\nu}}}=0$ then $\lambda=0$.
Corollary
The map

$$
\Phi_{P, \sigma_{\nu}}: W h_{\chi}\left(I_{P, \sigma_{\nu}}\right) \longrightarrow V_{\sigma}^{\prime}
$$

is injective.
proof
Using Casselman subrepresentation theorem, we can reduce the proof to the case where σ is an induced representation.

proof

Let (η, F) be a finite dimensional representation of P_{\circ}, and let $I_{P_{0}, \eta}^{\infty}$ be the corresponding smooth induced representation.

proof

Let (η, F) be a finite dimensional representation of P_{\circ}, and let $I_{P_{0}, \eta}^{\infty}$ be the corresponding smooth induced representation.

Set $U_{P_{\circ}, \eta}=\left\{\phi \in I_{P_{\circ}, \eta}^{\infty} \mid \operatorname{supp} \phi \subset P\left(w^{M}\right)^{*} N\right\}$.

proof

Let (η, F) be a finite dimensional representation of P_{\circ}, and let $I_{P_{0}, \eta}^{\infty}$ be the corresponding smooth induced representation.

Set $U_{P_{\circ}, \eta}=\left\{\phi \in I_{P_{o}, \eta}^{\infty} \mid \operatorname{supp} \phi \subset P\left(w^{M}\right)^{*} N\right\}$. Let $\lambda \in W h_{\chi}\left(I_{P_{\circ}, \eta}^{\infty}\right)$ be such that $\left.\lambda\right|_{U_{P_{\circ}, \eta}}=0$.

proof

Let (η, F) be a finite dimensional representation of P_{\circ}, and let $I_{P_{0}, \eta}^{\infty}$ be the corresponding smooth induced representation.

Set $U_{P_{\circ}, \eta}=\left\{\phi \in I_{P_{o}, \eta}^{\infty} \mid \operatorname{supp} \phi \subset P\left(w^{M}\right)^{*} N\right\}$.
Let $\lambda \in W h_{\chi}\left(I_{P_{\circ}, \eta}^{\infty}\right)$ be such that $\left.\lambda\right|_{U_{P_{\circ}, \eta}}=0$.
Proceeding as before, we can define a distribution

$$
\bar{\lambda} \in D^{\prime}\left(G: F \otimes \mathbb{C}_{\chi}\right)^{N_{\circ} \times N}
$$

that vanishes on the big Bruhat cell.

proof

Let (η, F) be a finite dimensional representation of P_{\circ}, and let $I_{P_{o}, \eta}^{\infty}$ be the corresponding smooth induced representation.

Set $U_{P_{o}, \eta}=\left\{\phi \in I_{P_{o}, \eta}^{\infty} \mid \operatorname{supp} \phi \subset P\left(w^{M}\right)^{*} N\right\}$.
Let $\lambda \in W h_{\chi}\left(I_{P_{\circ}, \eta}^{\infty}\right)$ be such that $\left.\lambda\right|_{U_{P_{\circ}, \eta}}=0$.
Proceeding as before, we can define a distribution

$$
\bar{\lambda} \in D^{\prime}\left(G: F \otimes \mathbb{C}_{\chi}\right)^{N_{\circ} \times N}
$$

that vanishes on the big Bruhat cell.
Now, if we can prove that

$$
D_{P_{\circ} w^{*} K_{M} N}^{\prime}\left(G: F \otimes \mathbb{C}_{\chi}\right)^{N_{\circ} \times N}=(0) \quad \forall w \in W^{M}, \quad w \neq w^{M}
$$

then, the standard Bruhat theoretic argument shows that $\bar{\lambda}$, and hence λ, is equal to 0 .

proof

Now if we can prove that

$$
D_{P_{\circ} w^{*} K_{M} N}^{\prime}\left(G: F \otimes \mathbb{C}_{\chi}\right)^{N_{\circ} \times N}=(0) \quad \forall w \in W^{M}, \quad w \neq w^{M}
$$

then the standard Bruhat theoretic argument shows that $\bar{\lambda}$, and hence λ is equal to 0 .

proof

Now if we can prove that

$$
D_{P_{\circ} w^{*} K_{M} N}^{\prime}\left(G: F \otimes \mathbb{C}_{\chi}\right)^{N_{\circ} \times N}=(0) \quad \forall w \in W^{M}, \quad w \neq w^{M}
$$

then the standard Bruhat theoretic argument shows that $\bar{\lambda}$, and hence λ is equal to 0 .

Now observe that $K_{M}=M_{\chi}$. Hence we can extend the action of $N_{\circ} \times N$ on $F \otimes \mathbb{C}_{\chi}$ to an action of $P_{\circ} \times K_{M} N$.

proof

Now if we can prove that

$$
D_{P_{\circ} w^{*} K_{M} N}^{\prime}\left(G: F \otimes \mathbb{C}_{\chi}\right)^{N_{\circ} \times N}=(0) \quad \forall w \in W^{M}, \quad w \neq w^{M}
$$

then the standard Bruhat theoretic argument shows that $\bar{\lambda}$, and hence λ is equal to 0 .

Now observe that $K_{M}=M_{\chi}$. Hence we can extend the action of $N_{\circ} \times N$ on $F \otimes \mathbb{C}_{\chi}$ to an action of $P_{\circ} \times K_{M} N$.

Therefore, from part 1. of Kolk-Varadarajan theorem, we just need to show that

$$
\left(M_{w^{*}}^{(r)} \otimes\left(F \otimes \mathbb{C}_{\chi}\right)^{\prime}\right)^{\left(N_{\circ} \times N\right)_{w^{*}}}=(0), \quad \forall r \geq 0
$$

proof

Now if we can prove that

$$
D_{P_{\circ} w^{*} K_{M} N}^{\prime}\left(G: F \otimes \mathbb{C}_{\chi}\right)^{N_{\circ} \times N}=(0) \quad \forall w \in W^{M}, \quad w \neq w^{M}
$$

then the standard Bruhat theoretic argument shows that $\bar{\lambda}$, and hence λ is equal to 0 .

Now observe that $K_{M}=M_{\chi}$. Hence we can extend the action of $N_{\circ} \times N$ on $F \otimes \mathbb{C}_{\chi}$ to an action of $P_{\circ} \times K_{M} N$.

Therefore, from part 1. of Kolk-Varadarajan theorem, we just need to show that

$$
\left(M_{w^{*}}^{(r)} \otimes\left(F \otimes \mathbb{C}_{\chi}\right)^{\prime}\right)^{\left(N_{\circ} \times N\right)_{w^{*}}}=(0), \quad \forall r \geq 0
$$

But this follows from the fact N_{\circ} acts unipotently on F^{\prime} and that the restriction of χ to $\left(w^{*}\right)^{-1} N_{\circ} w^{*} \cap N$ is non-trivial.

Tensoring with Finite Dimensional Representations

Tensoring with Finite Dimensional Representations

Theorem

1. The map

$$
\Phi_{P, \sigma_{\nu}}: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \longrightarrow V_{\sigma}^{\prime}
$$

defines a K_{M}-equivariant isomorphism for all $\nu \in \mathfrak{a}_{\mathbb{C}}^{\prime}$.
2. For all $\mu \in V_{\sigma}^{\prime}$ the map $\nu \mapsto \mu \circ J_{P, \sigma_{\nu}}^{\chi}$ extends to a weakly holomorphic map of $\mathfrak{a}_{\mathbb{C}}^{\prime}$ into $\left(I_{K \cap M,\left.\sigma\right|_{K \cap M}}^{\infty}\right)^{\prime}$.

Tensoring with Finite Dimensional Representations

Theorem

1. The map

$$
\Phi_{P, \sigma_{\nu}}: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \longrightarrow V_{\sigma}^{\prime}
$$

defines a K_{M}-equivariant isomorphism for all $\nu \in \mathfrak{a}_{\mathbb{C}}^{\prime}$.
2. For all $\mu \in V_{\sigma}^{\prime}$ the map $\nu \mapsto \mu \circ J_{P, \sigma_{\nu}}^{\chi}$ extends to a weakly holomorphic map of $\mathfrak{a}_{\mathbb{C}}^{\prime}$ into $\left(I_{K \cap M,\left.\sigma\right|_{K \cap M}}^{\infty}\right)^{\prime}$.

Corollary

Let (τ, F) be an irreducible representation of M_{χ}, and let $W h_{\chi, \tau}\left(I_{P, \sigma_{\nu}}^{\infty}\right)$ be the set of maps $T: I_{P, \sigma_{\nu}}^{\infty} \rightarrow F$ such that $T\left(\pi_{P, \sigma_{\nu}}(n m) \phi\right)=\chi(n) \tau(m) T(\phi)$ for all $n \in N, m \in M_{\chi}$. Then

$$
\operatorname{dim} W h_{\chi, \tau}\left(I_{P, \sigma_{\nu}}^{\infty}\right)=\operatorname{dim} \operatorname{Hom}_{M_{\chi}}\left(V_{\sigma}, F\right)
$$

Let (η, F) be a finite dimensional representation of G, and let $P=M A N$ be a Siegel parabolic.

Let (η, F) be a finite dimensional representation of G, and let $P=M A N$ be a Siegel parabolic.

Observe that $\operatorname{dim} A=1$ and, furthermore, there exists $H \in \operatorname{Lie}(A)$ such that, if we set

$$
F_{j}=\{v \in F \mid H \cdot v=j v\}
$$

then

$$
F=\oplus_{j=0}^{r} F_{2 j-r}
$$

Let (η, F) be a finite dimensional representation of G, and let $P=M A N$ be a Siegel parabolic.

Observe that $\operatorname{dim} A=1$ and, furthermore, there exists $H \in \operatorname{Lie}(A)$ such that, if we set

$$
F_{j}=\{v \in F \mid H \cdot v=j v\}
$$

then

$$
F=\oplus_{j=0}^{r} F_{2 j-r}
$$

Set $X_{j}=\oplus_{k=j}^{r} F_{2 k-r}$,

Let (η, F) be a finite dimensional representation of G, and let $P=M A N$ be a Siegel parabolic.

Observe that $\operatorname{dim} A=1$ and, furthermore, there exists $H \in \operatorname{Lie}(A)$ such that, if we set

$$
F_{j}=\{v \in F \mid H \cdot v=j v\},
$$

then

$$
F=\oplus_{j=0}^{r} F_{2 j-r}
$$

Set $X_{j}=\oplus_{k=j}^{r} F_{2 k-r}$, then

$$
F=X_{0} \supset X_{1} \supset \cdots \supset X_{r} \supset X_{r+1}=(0)
$$

is a P-invariant filtration, called the weight filtration.

Set $X_{j}=\oplus_{k=j}^{r} F_{2 k-r}$, then

$$
F=X_{0} \supset X_{1} \supset \cdots \supset X_{r} \supset X_{r+1}=(0)
$$

is a P-invariant filtration, called the weight filtration.

Set $X_{j}=\oplus_{k=j}^{r} F_{2 k-r}$, then

$$
F=X_{0} \supset X_{1} \supset \cdots \supset X_{r} \supset X_{r+1}=(0)
$$

is a P-invariant filtration, called the weight filtration.
On the other hand, if we set $Y^{j}=\left\{\phi \in F^{\prime}|\phi|_{X_{j}}=0\right\}$,

Set $X_{j}=\oplus_{k=j}^{r} F_{2 k-r}$, then

$$
F=X_{0} \supset X_{1} \supset \cdots \supset X_{r} \supset X_{r+1}=(0)
$$

is a P-invariant filtration, called the weight filtration.
On the other hand, if we set $Y^{j}=\left\{\phi \in F^{\prime}|\phi|_{X_{j}}=0\right\}$, then we obtain a filtration

$$
F^{\prime}=Y^{r+1} \supset Y^{r} \supset \cdots \supset Y^{0}=(0)
$$

that is dual to the weight filtration.

Set $X_{j}=\oplus_{k=j}^{r} F_{2 k-r}$, then

$$
F=X_{0} \supset X_{1} \supset \cdots \supset X_{r} \supset X_{r+1}=(0)
$$

is a P-invariant filtration, called the weight filtration.
On the other hand, if we set $Y^{j}=\left\{\phi \in F^{\prime}|\phi|_{X_{j}}=0\right\}$, then we obtain a filtration

$$
F^{\prime}=Y^{r+1} \supset Y^{r} \supset \cdots \supset Y^{0}=(0)
$$

that is dual to the weight filtration.
Observe that there is natural isomorphism of G-modules,

$$
\begin{aligned}
I_{P, \sigma_{\nu}}^{\infty} \otimes F & \cong I_{P, \sigma_{\nu} \otimes \eta}^{\infty} \\
\phi & \rightarrow \hat{\phi} \\
\check{\phi} & \leftarrow \phi,
\end{aligned}
$$

Lemma (Wallach)

Let $\mathfrak{g}=\operatorname{Lie}(G)$. There exists an element $\Gamma \in U(\mathfrak{g})^{M_{\chi}}$ such that

1. The map

$$
\Gamma: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes F^{\prime} \longrightarrow W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty} \otimes F\right)
$$

is an isomorphism.
2. If $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes Y^{j}$, then $\Gamma(\lambda)=\lambda+\tilde{\lambda}$ with $\tilde{\lambda} \in\left(I_{P, \sigma_{\nu}}^{\infty}\right)^{\prime} \otimes Y^{j-1}$.

Lemma (Wallach)

Let $\mathfrak{g}=\operatorname{Lie}(G)$. There exists an element $\Gamma \in U(\mathfrak{g})^{M_{\chi}}$ such that

1. The map

$$
\Gamma: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes F^{\prime} \longrightarrow W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty} \otimes F\right)
$$

is an isomorphism.
2. If $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes Y^{j}$, then $\Gamma(\lambda)=\lambda+\tilde{\lambda}$ with $\tilde{\lambda} \in\left(I_{P, \sigma_{\nu}}^{\infty}\right)^{\prime} \otimes Y^{j-1}$.

Define

$$
\check{\Gamma}: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes F^{\prime} \longrightarrow W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right)
$$

Lemma (Wallach)

Let $\mathfrak{g}=\operatorname{Lie}(G)$. There exists an element $\Gamma \in U(\mathfrak{g})^{M_{\chi}}$ such that

1. The map

$$
\Gamma: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes F^{\prime} \longrightarrow W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty} \otimes F\right)
$$

is an isomorphism.
2. If $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes Y^{j}$, then $\Gamma(\lambda)=\lambda+\tilde{\lambda}$ with $\tilde{\lambda} \in\left(I_{P, \sigma_{\nu}}^{\infty}\right)^{\prime} \otimes Y^{j-1}$.

Define

$$
\check{\Gamma}: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes F^{\prime} \longrightarrow W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right)
$$

by $\check{\Gamma}(\lambda)(\phi)=\Gamma(\lambda)(\check{\phi})$.

Lemma (Wallach)

Let $\mathfrak{g}=\operatorname{Lie}(G)$. There exists an element $\Gamma \in U(\mathfrak{g})^{M_{\chi}}$ such that

1. The map

$$
\Gamma: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes F^{\prime} \longrightarrow W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty} \otimes F\right)
$$

is an isomorphism.
2. If $\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes Y^{j}$, then $\Gamma(\lambda)=\lambda+\tilde{\lambda}$ with $\tilde{\lambda} \in\left(I_{P, \sigma_{\nu}}^{\infty}\right)^{\prime} \otimes Y^{j-1}$.

Define

$$
\check{\Gamma}: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \otimes F^{\prime} \longrightarrow W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right)
$$

by $\check{\Gamma}(\lambda)(\phi)=\Gamma(\lambda)(\check{\phi})$.
Then it's clear, from the above lemma, that $\check{\Gamma}$ defines an M_{χ}-equivariant isomorphism.

Let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$ be such that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism. Let $\tilde{\Gamma}$ be the map that makes the following diagram commute

Let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$ be such that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism. Let $\tilde{\Gamma}$ be the map that makes the following diagram commute

Proposition

$\tilde{\Gamma}$ is an isomorphism.

Let $\left(\eta_{j}, X_{j}\right)$ be the restriction of η to P acting on X_{j}, and let ($\bar{\eta}_{j}, X_{j} / X_{j+1}$) be the representation induced on the quotient.

Let $\left(\eta_{j}, X_{j}\right)$ be the restriction of η to P acting on X_{j}, and let ($\bar{\eta}_{j}, X_{j} / X_{j+1}$) be the representation induced on the quotient.
Tensoring $V_{\sigma_{\nu}}$ with F, and using the weight filtration, we obtain the following G-invariant filtration

$$
I_{P, \sigma_{\nu} \otimes \eta}^{\infty}=I_{P, \sigma_{\nu} \otimes \eta_{0}}^{\infty} \supset \ldots \supset I_{P, \sigma_{\nu} \otimes \eta_{r+1}}^{\infty}=(0)
$$

Let $\left(\eta_{j}, X_{j}\right)$ be the restriction of η to P acting on X_{j}, and let ($\bar{\eta}_{j}, X_{j} / X_{j+1}$) be the representation induced on the quotient.
Tensoring $V_{\sigma_{\nu}}$ with F, and using the weight filtration, we obtain the following G-invariant filtration

$$
I_{P, \sigma_{\nu} \otimes \eta}^{\infty}=I_{P, \sigma_{\nu} \otimes \eta_{0}}^{\infty} \supset \ldots \supset I_{P, \sigma_{\nu} \otimes \eta_{r+1}}^{\infty}=(0)
$$

Moreover, it can be checked that

$$
I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty} / I_{P, \sigma_{\nu} \otimes \eta_{j+1}}^{\infty} \cong I_{P, \sigma_{\nu} \otimes \bar{\eta}_{j}}^{\infty}
$$

Let $\left(\eta_{j}, X_{j}\right)$ be the restriction of η to P acting on X_{j}, and let ($\bar{\eta}_{j}, X_{j} / X_{j+1}$) be the representation induced on the quotient.
Tensoring $V_{\sigma_{\nu}}$ with F, and using the weight filtration, we obtain the following G-invariant filtration

$$
I_{P, \sigma_{\nu} \otimes \eta}^{\infty}=I_{P, \sigma_{\nu} \otimes \eta_{0}}^{\infty} \supset \ldots \supset I_{P, \sigma_{\nu} \otimes \eta_{r+1}}^{\infty}=(0)
$$

Moreover, it can be checked that

$$
I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty} / I_{P, \sigma_{\nu} \otimes \eta_{j+1}}^{\infty} \cong I_{P, \sigma_{\nu} \otimes \bar{\eta}_{j}}^{\infty}
$$

In particular, if we choose a representation (η, F), such that the action of M on F_{r} is trivial, then $\sigma_{\nu} \otimes \bar{\eta}_{0} \cong \sigma_{\nu-r}$, and hence

$$
I_{P, \sigma_{\nu} \otimes \bar{\eta}_{0}}^{\infty} \cong I_{P, \sigma_{\nu-r}}^{\infty}
$$

In particular, if we choose a representation (η, F), such that the action of M on F_{r} is trivial, then $\sigma_{\nu} \otimes \bar{\eta}_{0} \cong \sigma_{\nu-r}$, and hence

$$
I_{P, \sigma_{\nu} \otimes \bar{\eta}_{0}}^{\infty} \cong I_{P, \sigma_{\nu-r}}^{\infty} .
$$

In particular, if we choose a representation (η, F), such that the action of M on F_{r} is trivial, then $\sigma_{\nu} \otimes \bar{\eta}_{0} \cong \sigma_{\nu-r}$, and hence

$$
I_{P, \sigma_{\nu} \otimes \bar{\eta}_{0}}^{\infty} \cong I_{P, \sigma_{\nu-r}}^{\infty} .
$$

Let

$$
W^{j}=\left\{\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right)|\lambda|_{I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty}}=0\right\} .
$$

In particular, if we choose a representation (η, F), such that the action of M on F_{r} is trivial, then $\sigma_{\nu} \otimes \bar{\eta}_{0} \cong \sigma_{\nu-r}$, and hence

$$
I_{P, \sigma_{\nu} \otimes \bar{\eta}_{0}}^{\infty} \cong I_{P, \sigma_{\nu-r}}^{\infty} .
$$

Let

$$
W^{j}=\left\{\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right)|\lambda|_{I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty}}=0\right\} .
$$

Observe that if $\lambda \in W^{j+1}$,

In particular, if we choose a representation (η, F), such that the action of M on F_{r} is trivial, then $\sigma_{\nu} \otimes \bar{\eta}_{0} \cong \sigma_{\nu-r}$, and hence

$$
I_{P, \sigma_{\nu} \otimes \bar{\eta}_{0}}^{\infty} \cong I_{P, \sigma_{\nu-r}}^{\infty}
$$

Let

$$
W^{j}=\left\{\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right)|\lambda|_{I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty}}=0\right\} .
$$

Observe that if $\lambda \in W^{j+1}$, then $\left.\lambda\right|_{I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty}}$ defines an element in $W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \bar{\eta}_{j}}^{\infty}\right)$.

In particular, if we choose a representation (η, F), such that the action of M on F_{r} is trivial, then $\sigma_{\nu} \otimes \bar{\eta}_{0} \cong \sigma_{\nu-r}$, and hence

$$
I_{P, \sigma_{\nu} \otimes \bar{\eta}_{0}}^{\infty} \cong I_{P, \sigma_{\nu-r}}^{\infty} .
$$

Let

$$
W^{j}=\left\{\lambda \in W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right)|\lambda|_{I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty}}=0\right\} .
$$

Observe that if $\lambda \in W^{j+1}$, then $\left.\lambda\right|_{I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty}}$ defines an element in $W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \bar{\eta}_{j}}^{\infty}\right)$.

Proposition

There exists and isomorphism

$$
\phi:\left.W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right) \longrightarrow \bigoplus_{j=0}^{r} W^{j+1}\right|_{I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty}}
$$

such that the following diagram is commutative:

Proof (of theorem)

$$
\left.W h_{\chi}\left(I_{P, \sigma_{\nu} \otimes \eta}^{\infty}\right) \xrightarrow{\phi} \oplus_{j=0}^{r} W^{j+1}\right|_{I_{P, \sigma_{\nu} \otimes \eta_{j}}^{\infty}}
$$

Let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$ be such that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism.

Let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$ be such that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism.

Then we know that $\Phi_{P, \sigma_{\nu} \otimes \eta}$ is an isomorphism, and from the above diagram $\Phi_{P, \sigma_{\nu} \otimes \bar{\eta}_{j}}$ is an isomorphism for all j.

Let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$ be such that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism.

Then we know that $\Phi_{P, \sigma_{\nu} \otimes \eta}$ is an isomorphism, and from the above diagram $\Phi_{P, \sigma_{\nu} \otimes \bar{\eta}_{j}}$ is an isomorphism for all j.

In particular, if (η, F) is as before, then $\Phi_{P, \sigma_{\nu-r}}$ is an isomorphism.

Let $\nu \in \operatorname{Lie}(A)_{\mathbb{C}}^{\prime}$ be such that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism.

Then we know that $\Phi_{P, \sigma_{\nu} \otimes \eta}$ is an isomorphism, and from the above diagram $\Phi_{P, \sigma_{\nu} \otimes \bar{\eta}_{j}}$ is an isomorphism for all j.

In particular, if (η, F) is as before, then $\Phi_{P, \sigma_{\nu-r}}$ is an isomorphism.

Proceeding by induction, it can now be shown that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism for all $\nu \in \operatorname{Lie}\left(A_{\circ}\right)_{\mathbb{C}}^{\prime}$.

The Holomorphic Continuation of Certain Jacquet Integrals

The Holomorphic Continuation of Certain Jacquet Integrals

Theorem

1. The map

$$
\Phi_{P, \sigma_{\nu}}: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \longrightarrow V_{\sigma}^{\prime}
$$

defines a K_{M}-equivariant isomorphism for all $\nu \in \mathfrak{a}_{\mathbb{C}}^{\prime}$.
2. For all $\mu \in V_{\sigma}^{\prime}$ the map $\nu \mapsto \mu \circ J_{P, \sigma_{\nu}}^{\chi}$ extends to a weakly holomorphic map of $\mathfrak{a}_{\mathbb{C}}^{\prime}$ into $\left(I_{K \cap M,\left.\sigma\right|_{K \cap M}}^{\infty}\right)^{\prime}$.

The Holomorphic Continuation of Certain Jacquet Integrals

Theorem

1. The map

$$
\Phi_{P, \sigma_{\nu}}: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \longrightarrow V_{\sigma}^{\prime}
$$

defines a K_{M}-equivariant isomorphism for all $\nu \in \mathfrak{a}_{\mathbb{C}}^{\prime}$.
2. For all $\mu \in V_{\sigma}^{\prime}$ the map $\nu \mapsto \mu \circ J_{P, \sigma_{\nu}}^{\chi}$ extends to a weakly holomorphic map of $\mathfrak{a}_{\mathbb{C}}^{\prime}$ into $\left(I_{K \cap M,\left.\sigma\right|_{K \cap M}}^{\infty}\right)^{\prime}$.

We have already seen that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism for all $\nu \in \mathfrak{a}_{\mathbb{C}}^{\prime}$.

The Holomorphic Continuation of Certain Jacquet Integrals

Theorem

1. The map

$$
\Phi_{P, \sigma_{\nu}}: W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right) \longrightarrow V_{\sigma}^{\prime}
$$

defines a K_{M}-equivariant isomorphism for all $\nu \in \mathfrak{a}_{\mathbb{C}}^{\prime}$.
2. For all $\mu \in V_{\sigma}^{\prime}$ the map $\nu \mapsto \mu \circ J_{P, \sigma_{\nu}}^{\chi}$ extends to a weakly holomorphic map of $\mathfrak{a}_{\mathbb{C}}^{\prime}$ into $\left(I_{K \cap M,\left.\sigma\right|_{K \cap M}}^{\infty}\right)^{\prime}$.

We have already seen that $\Phi_{P, \sigma_{\nu}}$ is an isomorphism for all $\nu \in \mathfrak{a}_{\mathbb{C}}^{\prime}$.
We will now show that the map $\nu \mapsto \mu \circ J_{P, \sigma_{n u}}^{\chi}$ is weakly holomorphic for all $\nu \in \operatorname{Lie}\left(A_{\circ}\right)_{\mathbb{C}}^{\prime}$.

Let $\nu \in \mathfrak{a}^{\prime}$ and $\phi \in I_{K \cap M,\left.\sigma\right|_{K \cap M} ^{\infty}}^{\infty}$ be arbitrary.

Let $\nu \in \mathfrak{a}^{\prime}$ and $\phi \in I_{K \cap M,\left.\sigma\right|_{K \cap M} ^{\infty}}^{\infty}$ be arbitrary.

By definition

$$
\gamma_{\mu}(\nu-r)(\phi)=\Phi_{P, \sigma, \nu-r}^{-1}(\mu)\left(\phi_{P, \sigma, \nu-r}\right)=\lambda\left(\phi_{P, \sigma, \nu-r}\right)
$$

Let $\nu \in \mathfrak{a}^{\prime}$ and $\phi \in I_{K \cap M,\left.\sigma\right|_{K \cap M} ^{\infty}}^{\infty}$ be arbitrary.
By definition

$$
\gamma_{\mu}(\nu-r)(\phi)=\Phi_{P, \sigma, \nu-r}^{-1}(\mu)\left(\phi_{P, \sigma, \nu-r}\right)=\lambda\left(\phi_{P, \sigma, \nu-r}\right)
$$

for some $\lambda \in W h_{\chi}\left(I_{P, \sigma, \nu-r}^{\infty}\right)$.

Let $\nu \in \mathfrak{a}^{\prime}$ and $\phi \in I_{K \cap M,\left.\sigma\right|_{K \cap M} ^{\infty}}^{\infty}$ be arbitrary.
By definition

$$
\gamma_{\mu}(\nu-r)(\phi)=\Phi_{P, \sigma, \nu-r}^{-1}(\mu)\left(\phi_{P, \sigma, \nu-r}\right)=\lambda\left(\phi_{P, \sigma, \nu-r}\right)
$$

for some $\lambda \in W h_{\chi}\left(I_{P, \sigma, \nu-r}^{\infty}\right)$.
Let $\left\{v_{j}\right\}_{j=1}^{m}$ be a basis of F, and let $\left\{l_{j}\right\}_{j=1}^{m}$ be its dual basis.

Let $\nu \in \mathfrak{a}^{\prime}$ and $\phi \in I_{K \cap M,\left.\sigma\right|_{K \cap M} ^{\infty}}^{\infty}$ be arbitrary.
By definition

$$
\gamma_{\mu}(\nu-r)(\phi)=\Phi_{P, \sigma, \nu-r}^{-1}(\mu)\left(\phi_{P, \sigma, \nu-r}\right)=\lambda\left(\phi_{P, \sigma, \nu-r}\right)
$$

for some $\lambda \in W h_{\chi}\left(I_{P, \sigma, \nu-r}^{\infty}\right)$.
Let $\left\{v_{j}\right\}_{j=1}^{m}$ be a basis of F, and let $\left\{l_{j}\right\}_{j=1}^{m}$ be its dual basis.
Then we can find $\eta_{j} \in W h_{\chi}\left(I_{P, \sigma_{\nu}}^{\infty}\right), j=1, \ldots, m$, and $\psi \in I_{P, \sigma_{\nu} \otimes \eta}$ such that

$$
\begin{aligned}
\gamma_{\mu}(\nu-r)(\phi) & =\lambda\left(\phi_{P, \sigma, \nu-r}\right)=\check{\Gamma}\left(\sum \eta_{j} \otimes l_{j}\right)(\psi) \\
& =\Gamma\left(\sum \eta_{j} \otimes l_{j}\right)(\check{\psi}) \\
& =\left(\sum \eta_{j} \otimes l_{j}\right)\left(\Gamma^{T} \check{\psi}\right)
\end{aligned}
$$

Proof (of theorem)

$$
\gamma_{\mu}(\nu-r)(\phi)=\left(\sum \eta_{j} \otimes l_{j}\right)\left(\Gamma^{T} \check{\psi}\right)
$$

Now since $\Gamma^{T} \check{\psi} \in I_{P, \sigma_{\nu}}^{\infty} \otimes F$,

Proof (of theorem)

$$
\gamma_{\mu}(\nu-r)(\phi)=\left(\sum \eta_{j} \otimes l_{j}\right)\left(\Gamma^{T} \check{\psi}\right)
$$

Now since $\Gamma^{T} \check{\psi} \in I_{P, \sigma_{\nu}}^{\infty} \otimes F$, we can find $\phi_{j} \in I_{K \cap M,\left.\sigma\right|_{K \cap M}}^{\infty}$, $j=1, \ldots, m$, such that

$$
\Gamma^{T} \check{\psi}=\sum\left(\phi_{j}\right)_{P, \sigma_{\nu}} \otimes v_{j}
$$

Proof (of theorem)

$$
\gamma_{\mu}(\nu-r)(\phi)=\left(\sum \eta_{j} \otimes l_{j}\right)\left(\Gamma^{T} \check{\psi}\right)
$$

Now since $\Gamma^{T} \check{\psi} \in I_{P, \sigma_{\nu}}^{\infty} \otimes F$, we can find $\phi_{j} \in I_{K \cap M,\left.\sigma\right|_{K \cap M} ^{\infty}}^{\infty}$, $j=1, \ldots, m$, such that

$$
\Gamma^{T} \check{\psi}=\sum\left(\phi_{j}\right)_{P, \sigma_{\nu}} \otimes v_{j} .
$$

Hence

$$
\gamma_{\mu}(\nu-r)(\phi)=\sum \eta_{j}\left(\left(\phi_{j}\right)_{P, \sigma_{\nu}}\right)=\sum \gamma_{\eta_{j}}(\nu)\left(\phi_{j}\right) .
$$

Proof (of theorem)

$$
\gamma_{\mu}(\nu-r)(\phi)=\left(\sum \eta_{j} \otimes l_{j}\right)\left(\Gamma^{T} \check{\psi}\right)
$$

Now since $\Gamma^{T} \check{\psi} \in I_{P, \sigma_{\nu}}^{\infty} \otimes F$, we can find $\phi_{j} \in I_{K \cap M,\left.\sigma\right|_{K \cap M}}^{\infty}$, $j=1, \ldots, m$, such that

$$
\Gamma^{T} \check{\psi}=\sum\left(\phi_{j}\right)_{P, \sigma_{\nu}} \otimes v_{j}
$$

Hence

$$
\gamma_{\mu}(\nu-r)(\phi)=\sum \eta_{j}\left(\left(\phi_{j}\right)_{P, \sigma_{\nu}}\right)=\sum \gamma_{\eta_{j}}(\nu)\left(\phi_{j}\right) .
$$

This is the desired shift equation which shows that γ_{μ} is weakly holomorphic everywhere.

Further Research

Bessel-Plancherel Measure for M_{χ} compact
Theorem
Let $G, P=M A N, \chi$ and M_{χ} be as before.

Further Research

Bessel-Plancherel Measure for M_{χ} compact
Theorem
Let $G, P=M A N, \chi$ and M_{χ} be as before. Then the spectral decomposition of $L^{2}(N \backslash G ; \chi)$ with respect to the action of $M_{\chi} \times G$ is given by

$$
L^{2}(N \backslash G ; \chi) \cong \int_{G^{\wedge}} \bigoplus_{\tau \in M_{\hat{\chi}}} W h_{\chi, \tau}(\pi) \otimes \tau^{*} \otimes \pi d \mu(\pi)
$$

Further Research

Bessel-Plancherel Measure for M_{χ} compact
Theorem
Let $G, P=M A N, \chi$ and M_{χ} be as before. Then the spectral decomposition of $L^{2}(N \backslash G ; \chi)$ with respect to the action of $M_{\chi} \times G$ is given by

$$
L^{2}(N \backslash G ; \chi) \cong \int_{G^{\wedge}} \bigoplus_{\tau \in M_{\chi}^{\wedge}} W h_{\chi, \tau}(\pi) \otimes \tau^{*} \otimes \pi d \mu(\pi)
$$

where μ is the usual Plancherel measure of G.

Further Research

Bessel Models for M_{χ} non-compact Let G and $P=M A N$ be as before, and let χ be a generic character of N.

Further Research

Bessel Models for M_{χ} non-compact Let G and $P=M A N$ be as before, and let χ be a generic character of N.

Let $\sigma^{w_{M}}$ be the twisting of σ by w_{M} and let V_{τ} be a tempered representation of M_{χ}.

Further Research

Bessel Models for M_{χ} non-compact Let G and $P=M A N$ be as before, and let χ be a generic character of N.

Let $\sigma^{w_{M}}$ be the twisting of σ by w_{M} and let V_{τ} be a tempered representation of M_{χ}.

Given $\mu \in \operatorname{Hom}_{M_{\chi}}\left(H_{\sigma^{w_{M}}}, V_{\tau}\right)$ define $\gamma_{\mu}(\nu)=\mu \circ J_{P, \sigma, \nu}^{\chi}$.

Further Research

Bessel Models for M_{χ} non-compact
Theorem

1. γ_{μ} extends to a weakly holomorphic map from $\mathfrak{a}_{\mathbb{C}}^{\prime}$ to $\operatorname{Hom}\left(I_{M \cap K,\left.\sigma\right|_{M \cap K} ^{\infty}}^{\infty}, V_{\tau}\right)$.
2. Given $\nu \in \mathfrak{a}_{\mathbb{C}}^{\prime}$ define

$$
\lambda_{\mu}\left(f_{P, \sigma, \nu}\right)=\gamma_{\mu}(\nu)(f), \quad f \in I_{M \cap K,\left.\sigma\right|_{M \cap K}}^{\infty}
$$

Then $\lambda_{\mu} \in W h_{\chi, \tau}\left(I_{P, \sigma, \nu}^{\infty}\right)$ and the map $\mu \mapsto \lambda_{\mu}$ defines an isomorphism between $\operatorname{Hom}_{M_{\chi}}\left(H_{\sigma^{w_{M}}}, V_{\tau}\right)$ and $W h_{\chi, \tau}\left(I_{P, \sigma, \nu}^{\infty}\right)$.

Further Research

Bessel-Plancherel Measure for M_{χ} non-compact

Further Research

Bessel-Plancherel Measure for M_{χ} non-compact

Conjecture
Let $G, P=M A N$ be as usual, and let χ be a generic unitary character of N.

Further Research

Bessel-Plancherel Measure for M_{χ} non-compact

Conjecture
Let $G, P=M A N$ be as usual, and let χ be a generic unitary character of N.
Then the spectral decomposition of $L^{2}(N \backslash G ; \chi)$ with respect to the action of $M_{\chi} \times G$ is given by

Further Research

Bessel-Plancherel Measure for M_{χ} non-compact

Conjecture

Let $G, P=M A N$ be as usual, and let χ be a generic unitary character of N.
Then the spectral decomposition of $L^{2}(N \backslash G ; \chi)$ with respect to the action of $M_{\chi} \times G$ is given by

$$
L^{2}(N \backslash G ; \chi) \cong \int_{G^{\wedge}} \int_{M_{\hat{\chi}}} W h_{\chi, \tau}(\pi) \otimes \tau^{*} \otimes \pi d \nu(\tau) d \mu(\pi)
$$

Further Research

Bessel-Plancherel Measure for M_{χ} non-compact

Conjecture

Let $G, P=M A N$ be as usual, and let χ be a generic unitary character of N.
Then the spectral decomposition of $L^{2}(N \backslash G ; \chi)$ with respect to the action of $M_{\chi} \times G$ is given by

$$
L^{2}(N \backslash G ; \chi) \cong \int_{G^{\wedge}} \int_{M_{\hat{\chi}}} W h_{\chi, \tau}(\pi) \otimes \tau^{*} \otimes \pi d \nu(\tau) d \mu(\pi)
$$

where ν and μ are the usual Plancherel measures of M_{χ} and G, respectively.

