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Let G be a Lie group, and let K be a maximal compact subgroup.
We say that G is a Lie group of tube type if G/K is a hermitian
symmetric space of tube type.

Proposition
If G is a Lie group of tube type, then

1. There exists a parabolic subgroup P = M AN, such that N is
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stabilizer in M,

M, = {m € M|x(m 'nm)=x(n) Vnée N},

is compact.
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Definition

Let G be a Lie group, and let K be a maximal compact subgroup.
We say that G is a Lie group of tube type if G/K is a hermitian
symmetric space of tube type.

Proposition
If G is a Lie group of tube type, then

1. There exists a parabolic subgroup P = M AN, such that N is
abelian.

2. There exists a generic, unitary character x on N, such that its
stabilizer in M,

M, = {m € M|x(m 'nm)=x(n) Vnée N},
is compact.

If P C G is a parabolic subgroup satisfying 1. and 2., then we say
that P is a Siegel parabolic subgroup.



Let G be a Lie group of tube type, and let (7, V') be an admissible,
smooth, Fréchet representation of G.
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smooth, Fréchet representation of G.

Given a Siegel parabolic subgroup, P = M AN, of GG, and a
generic character, x, of N, with compact stabilizer, set

Why(V)={A:V — C|X(m(n)v) = x(n)A(v)}.
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Let G be a Lie group of tube type, and let (7, V') be an admissible,
smooth, Fréchet representation of G.

Given a Siegel parabolic subgroup, P = M AN, of GG, and a
generic character, x, of N, with compact stabilizer, set

Why(V)={A:V — C|X(m(n)v) = x(n)A(v)}.

This is the so called space of Bessel functionals (or Bessel models)
of V.



Let G and P = M AN be as before. Let (0,V,) be an admissible,
smooth, Fréchet representation of M, and let v € Lie(A).
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Let G and P = M AN be as before. Let (0,V,) be an admissible,
smooth, Fréchet representation of M, and let v € Lie(A).

Set
o,(man) = a”Po(m),

and let Iz, be the corresponding smooth induced representation.

Set Ky = KN M, and let I}’(OM7U|KM be the representation

induced by o|g,, from Kjs to K.

H o0
Given f € IKM,UIKM set

fpo,(namk) = a” o (m) f (k).
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Given f € Ig we will consider the integrals

U|KM

TS, (f) = /N ()" fr, (wMn) .

This integrals converge absolutely and uniformly if v is in a
translate of the positive Weyl chamber.
Given p € V) set v, (v) = po i, . Then, for v as above, v,

defines a weakly holomorphic map into (IEQKU‘MHK)’.
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Given f € I®

we will consider the integrals
MOk,

TS () = /N () f o, (wMn) din.

This integrals converge absolutely and uniformly if v is in a
translate of the positive Weyl chamber.

Given p € V) set v, (v) = po i, . Then, for v as above, v,
defines a weakly holomorphic map into (IJO\;mKU‘MmK)/'
Theorem

1. v, has a weakly holomorphic continuation to all of Lie(A)x
2. Given v € Lie(A)¢ define

)\,u(fP,al,) = ’VH(V)(f)v IS I]O\;ﬁK,U‘MﬂK'

Then A\, € Why(I%, ) and the map j1+— ), defines an
M,-equivariant isomorphism between V; and Why (1%, ).
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We will now give a list describing all the simple Lie groups of tube
type, up to covering.

For each element in the list we will describe a Siegel Parabolic
subgroup P = M AN, and a character x of N with compact
stabilizer.

Fix a non-degenerate unitary character, x,, of R.



1. G = Sp(n,R) realized as 2n x 2n matrices g, such that
gJng” = J,, with
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1. G = Sp(n,R) realized as 2n x 2n matrices g, such that
gJng” = J,, with
0 I,
g = [ oo ] .

Thus, identifying R?" with C, using .J,, for the complex
structure, K = GNO(2n,R) = U(n).
Set

MA = {[ 0 (g—ol)T ] lg € GL(n,R)},

and

N:{[é )I(]lXeM(n,R),XT:X}.

We define a character, x, on N by

([ 7 ) =rroo.

Then M, = O(n,R).
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2. G = SU(n,n) realized as the 2n x 2n complex matrices g, such
that gL,g* = Ly, with
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Then K =U(2n) NG = S(U(n) x U(n)).
In this case we set
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and
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(|5 7 ]) =

then M, = U(n).
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3. G = SO*(4n) realized as the group of all g € SO(4n, C) such
that ngng* = Jop,.

Here K = G N S0(4n,R) = Sp(2n,R) N S0(4n,R) = U(2n).

We can describe g = Lie(G) as the Lie subalgebra of Ms,, (H)
of matrices of the form

A X

Y _A* Y

with A, X, Y € M,(H), X* =X and Y* = Y.

If we define M, A, N and x in a similar way as before,
MA = GL(n,H) and M, = Sp(n), the quaternionic unitary
group.



4. G the Hermitian symmetric real form of Ey.
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M5(0) by m@® a = Eg 2 @ R, and take for X, Y elements of the
exceptional Euclidean Jordan algebra (the 3 x 3 conjugate
adjoint matrices over Q).
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4. G the Hermitian symmetric real form of Ey.

We will give a description of Lie(G) that makes it look like the
Lie algebras in examples 1, 2, and 3.

In each of those cases we have

Lie(G) = [ 4 X ]

Yy -—-A*

with A, X, Y e M,(F), X =X*"and Y =Y*, for F=R, C
and H respectively.

Example 4 corresponds to the octonions, . Here we replace
M5(0) by m@® a = Eg 2 @ R, and take for X, Y elements of the
exceptional Euclidean Jordan algebra (the 3 x 3 conjugate
adjoint matrices over Q).

If we now define x as in the above examples, then M, is
isomorphic to compact Fjy.



5. G = S50(n,2) realized as the group of n + 2 by n + 2 matrices
of determinant 1 that leave invariant the form

0 0 1
0 In—11 O
1 0 0
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5. G = S50(n,2) realized as the group of n + 2 by n + 2 matrices
of determinant 1 that leave invariant the form

0 0 1
0 In-1a O
1 0 0

Here K = S(O(n,R) x O(2,R)).
Set

MA =

a—l
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m 0 la € R*, m e SO(n—1,1)
0
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5. G = S50(n,2) realized as the group of n + 2 by n + 2 matrices
of determinant 1 that leave invariant the form

0 0 1
0 In-1a O
1 0 0

Here K = S(O(n,R) x O(2,R)).

Set
a 0 0
MA = 0 m O la € R*, m e SO(n—1,1)
0 0 at
and




1 _,Ut _<vév>
N{[o I v | |vervUtY.
0 0 1
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Set
a 0 0
MA = 0 m O la e R*, m e SO(n—1,1)
0 0 at
and o)
1 —ot — 5
N = 0 I v |v e Rr—L1
0 0 1
Let o)
1 —ot 5
X 0 I v = Xo(vn),
0O O 1

where v,, is the n-th component of v.
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Set
a 0 0
MA = 0 m O la e R*, m e SO(n—1,1)
0 0 a!
and o)
1 —t — 5
N = 0 I v |v e Rr—11
0 0 1
Let o)
1 —ot 5
X 0 I v = Xo(Un),
0 O 1
where v,, is the n-th component of v.
Then

M, = S0O(n —1,R).
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Let G be one of the simple Lie groups of tube type we just
described, and set P = M AN, x and M, as before.
Let P, = M,A.N, be a minimal parabolic sugroup such that

P, C P, N C N, A C Ao, M, C M.
Let ®* be the system of positive roots of G relative to P,, and let
@L be the system of positive roots of M A induced by ®+.
Let W =W(G, Ao), Wy = W(MA, As) and set

WM = {weW|wd}, C ).

Then W = W, WM,



Lemma (Bruhat decomposition)



Lemma (Bruhat decomposition)

1. Given w € W, fix w* € Nk (As) such that Mow* = w. Then

G = U Pw*P

weWM
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Lemma (Bruhat decomposition)

1. Given w € W, fix w* € Nk (As) such that Mow* = w. Then

G = U P.w*P.

weWM

2. Let wg be the longest element of W, wys the longest element
of Wy, and set wM = wgwys. Then

P,(wMy*P = P(wM)*N
and if w # wM™ then

dim Pyw*P < dim P(w™)*N.
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Corollary

G = U P.w*KyN.
weWM

Furthermore, if w # w™, then dim P,w* KN < dim P(w™)*N.
Lemma

If we WM js not wM, then the restriction of x to
(w*) "L Now* N N is non-trivial.

proof
The tube type assumption implies that @ is a root system of type
C,, with n = dim A,.
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Proof.

Hence, there exist linear functionals &1, ..., &, on Lie(As) such that
Ot ={e; £e;]1 <i<j<n}uU{2e,..,2,}

and
of ={ei—¢gjll <i<j<n}
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Hence, there exist linear functionals €1, ..., &, on Lie(A,) such that
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Let X € Lie(N) be such that [H, X| = 2¢;(H)X, for all
H € Lie(A,). For such an X it can be checked that dx(X) # 0.
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Proof.

Hence, there exist linear functionals €1, ..., &, on Lie(A,) such that
Pt ={g; &1 <i<j<n}U{2e,..,2,}
and
Ol ={e; — gl <i<j<n}

Let X € Lie(N) be such that [H, X| = 2¢;(H)X, for all

H € Lie(A,). For such an X it can be checked that dx(X) # 0.
Hence, if w € W and y restricted to (w*) "' Now* N N is trivial,
we must have

wl - (2g) € —@T, i=1,..,n.

Therefore w™! - (¢; +¢&;) € —®* for all i < 4, which implies that
w=w". []
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Let H be a Lie group, and let X be a C"*° manifold with a left H
action.

Given a Fréchet space E, let C°(X : E) be the space of smooth
compactly supported functions on X with values in E.

We will denote by
D'(X:E):=(C*X:E))
to its dual space, and we will make the identification

D'(X : E) «— Hom(C®(X), E').
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The Theory of the Transverse Symbol of Kolk-Varadarajan

Let H be a Lie group, and let X be a C"*° manifold with a left H
action.

Given a Fréchet space E, let C°(X : E) be the space of smooth
compactly supported functions on X with values in E.

We will denote by
D'(X:E):=(C*X:E))
to its dual space, and we will make the identification

D'(X : E) «— Hom(C¥(X), E').

We will call any element in this space an E-distribution on X.



Fix an H-orbit O C X.
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germs of r-tuples vy - - - v, of vector fields around = for which at
least one of the v; is tangent to O.



_ The Theory of the Transverse Symbol of Kolk-Varadarajan
Fix an H-orbit O C X.

Let Diff(") be the sheaf of differential operators of order < r on X.

For any z € X let Vm(r) be the subspace of Diffg) generated by
germs of r-tuples vy - - - v, of vector fields around = for which at
least one of the v; is tangent to O.

Let
I = Diffr=Y 4y (1),

)

Choosing local coordinates at x it can be seen that Ig(f actually is

the stalk at o of a subsheaf I(") ¢ Diff(").



Let

I = Diff = 4y (1),
Choosing local coordinates at x it can be seen that Ig(f) actually is
the stalk at & of a subsheaf I(") ¢ Diff(").
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Let
I = Diff =1 4y (),

)

Choosing local coordinates at x it can be seen that Ig(f actually is

the stalk at x of a subsheaf I") ¢ Diff(").

Hence we have a well-defined quotient sheaf
M") = Diff™) /1),

with stalk at 2 equal to M) = Difft” /1",
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Let
I = Diff =1 4y (),

Choosing local coordinates at x it can be seen that Ig(f)

the stalk at x of a subsheaf I") ¢ Diff(").

actually is

Hence we have a well-defined quotient sheaf
M") = Diff™) /1),

with stalk at 2 equal to M) = Difft” /1",

It can be checked that M (") is a vector bundle over O of finite
rank.
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rank.
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Observe that M (") is the r-th symmetric power of M (1)
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It can be checked that M (") is a vector bundle over O of finite
rank.

This is the r-th graded part of the transverse jet bundle on O.
Observe that M (") is the r-th symmetric power of M (1.

We say that 7' € D'(X : E) has transverse order < r at x € O, if
there exists an open neighborhood U of = in X, such that for all
f € CX(U : E), with the property that D f|ony = 0 for all

D e Diff")(U), T(f) = 0.
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It can be checked that M (") is a vector bundle over O of finite
rank.

This is the r-th graded part of the transverse jet bundle on O.
Observe that M (") is the r-th symmetric power of M (1.

We say that 7' € D'(X : E) has transverse order < r at x € O, if
there exists an open neighborhood U of = in X, such that for all
f € CX(U : E), with the property that D f|ony = 0 for all

D e Diff")(U), T(f) = 0.

Let Dgr) (X : E) be the linear subspace of elements in D'(X : F)
which have transverse order < r at all points of O.
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Theorem (Kolk-Varadarajan)

Let X be a C* manifold with a left action of H, let (7, E) be a
smooth Fréchet representation of a normal subgroup H' of H, and
let O C X be an H-orbit of X.
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Theorem (Kolk-Varadarajan)

Let X be a C* manifold with a left action of H, let (7, E) be a
smooth Fréchet representation of a normal subgroup H' of H, and
let O C X be an H-orbit of X.

1. Assume that the action of H' can be extended to an action of
H. If there exists y € O, such that

(M @ E' @ C,)H = (0),
for all r € Z>q, then

D(X : E)* = (0).
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Theorem (Kolk-Varadarajan)

Let X be a C* manifold with a left action of H, let (7, E) be a
smooth Fréchet representation of a normal subgroup H' of H, and
let O C X be an H-orbit of X.

1. Assume that the action of H' can be extended to an action of
H. If there exists y € O, such that

(M @ E' @ C,)H = (0),
for all r € Z>q, then

D(X : E)* = (0).

(C, is just C, with an H'-action given by the character x, = gg; ).
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Theorem (Kolk-Varadarajan)

Let X be a C* manifold with a left action of H, let (7, E) be a
smooth Fréchet representation of a normal subgroup H' of H, and
let O C X be an H-orbit of X.

2. Assume that H = H'. Then for any
-1
Te D\ (X : E)/DY V(X : B),

there exists i, € (M @ E' @ C;)Hv such that
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Theorem (Kolk-Varadarajan)

Let X be a C* manifold with a left action of H, let (7, E) be a
smooth Fréchet representation of a normal subgroup H' of H, and
let O C X be an H-orbit of X.

3. Assume that E is finite dimensional, and assume that for all
y €O

(M © E'® C,)H = (0),
for all r € Z>q, then

Dy(X : E)* = (0).



The Vanishing of Certain Invariant Distributions
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Let G, P = M AN, x and M, be as before.
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The Vanishing of Certain Invariant Distributions

Let G, P = M AN, x and M, be as before.
Let (o, V,) be an admissible, smooth, Fréchet representation of M,
and let v € Lie(A)g.

Set
o,(man) = a”Po(m),

and let I’ be the corresponding smooth induced representation.
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_ The Vanishing of Certain Invariant Distributions
The Vanishing of Certain Invariant Distributions

Let G, P = M AN, x and M, be as before.

Let (o, V,) be an admissible, smooth, Fréchet representation of M,
and let v € Lie(A)g.

Set
o,(man) = a”Po(m),

and let I be the corresponding smooth induced representation.
Given f € C°(G), and v € V,, set

fP,U,z/v / f pg UV 'Udrp

Then

fP,a,y,v(pg) = UV(p)f(g)v e fPﬂ,VyU € IZ%?U,,'






Let

Upg, = {f €I, | supp f C P(w™)*N}.



Let

Upg, = {f €I, | supp f C P(w™)*N}.

Then, given f € C°(G) such that supp f ¢ P(w™)*N,
fP,U,V,v € UP,J,,-



Let

Upg, = {f €I, | supp f C P(w™)*N}.

Then, given f € C°(G) such that supp f ¢ P(w™)*N,
fP,O',V,v € UP,J,,-

Furthermore the map f ® v = fpy,, from CX(G)®V; to Upy,
is surjective.
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Let
Upo, ={f €13, | supp f C P(w™)*N}.

Then, given f € C°(G) such that supp f C P(wM)*N,
fP,cr,l/,v € UP,O'V'

Furthermore the map f @ v+ fpy,, from C2°(G)RV, to Up,,
is surjective.

Let
D'(P(w™)*N : V,) ={T : C*(P(w™)*N) — V!}

be the space of V,, distributions on P(w™)*N.
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be the space of V,, distributions on P(w™)*N.



Let
D'(P(wM)*N : V) ={T: C*(P(w™)*N) — V!}
be the space of V,, distributions on P(w™)*N.

Given A € Why(Ip,, ), define A € D'(P(w™)*N : V) by

)\(f)(U) = A(fP,U’,I/,’U)-
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Let
D'(P(wM)*N : V,) = {T : C>*(P(w™)*N) — V!}
be the space of V,, distributions on P(w™)*N.

Given A € Why(Ip,), define A € D'(P(w™)*N : V,) by

)\(f)(’U) = A(fP,o,u,v)'

It's easy to check that actually

A€ D'(P(w")*N :V,,_, ®Cy)" N,



It's easy to check that actually

Xe D'(P(w")*N:V,,_, ®C)"N.
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It's easy to check that actually

Xe D'(P(w")*N:V,,_, ®C)"N.

Hence, according to part ii) of Kolk-Varadarajan theorem, there
exist 1) € V such that

M) w) = pa (// )L (pwMn)o, (p )—1vd,pdn)
M fPowpw) = W (/Nx(n)_lfp,g,,,,v(an)dn)

= oS, Upowali)
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It's easy to check that actually

Xe D'(P(w")*N:V,,_, ®C)"N.

Hence, according to part ii) of Kolk-Varadarajan theorem, there
exist 1) € V such that

M) w) = pa (// )L (pwMn)o, (p )_1vdrpdn>
M fPowpw) = W (/Nx(n)_lfp,g,,,,v(an)dn)

- )u’)\ © Jj):g’g-u (fP,o’,l/,’U|K)'

We will denote the map A — ) by ®p,, .



A(fP,U,I/,v) = MU\ © J1)§7au(fP,cr,1/,v|K)-



)\(fP7U7VaU) = l'l/)‘ ° ng—u(fp,a',ll,le)-
We will denote the map A — ) by ®p,, .



)\(fP,O',I/,’U) = ll/)‘ ° J§7Uu(fp7aayav|K)'
We will denote the map A — ) by ®p,, .

Proposition
Ifx € Why(IF, ) and Ay, =0 then A = 0.



)\(fP,O',I/,U) = M)‘ ° J?F%g,,(fP,U,I/,’UlK)'
We will denote the map A — ) by ®p,, .

Proposition
Ifx € Why(IF, ) and Ay, =0 then A = 0.

Corollary
The map
¢P7JV : WhX(IP70'u) — Vol'

is injective.
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M fpoww) = x oI5, (fPowwlK).
We will denote the map A — ) by ®p,, .

Proposition
IfX € Why (I, ) and Ay, =0 then X = 0.

Corollary

The map
®py, : Why(lps,) — V)

is injective.

proof

Using Casselman subrepresentation theorem, we can reduce the
proof to the case where o is an induced representation.



proof

Let (n, F) be a finite dimensional representation of P, and let
Iz 0 be the corresponding smooth induced representation.
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proof
Let (n, F') be a finite dimensional representation of P, and let
Iy 0 be the corresponding smooth induced representation.

Set Up, , = {¢ € I |supp ¢ C P(w™)*N}.
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proof

Let (n, F') be a finite dimensional representation of P, and let
Iy 0 be the corresponding smooth induced representation.

Set Up,y = {¢ € I}, |supp ¢ C P(wM)*N}.
Let A € Why (I} ,) be such that Ay, = 0.
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proof

Let (n, F') be a finite dimensional representation of P, and let
Iy 0 be the corresponding smooth induced representation.

Set Up,y = {¢ € I}, |supp ¢ C P(wM)*N}.
Let A € Why (I} ,) be such that Ay, = 0.

Proceeding as before, we can define a distribution
ANeD'(G:FeC)NN

that vanishes on the big Bruhat cell.



" Bessel Model orInduced Representations | The Vanishing of Cerain Inariant Disriutions

proof

Let (n, F') be a finite dimensional representation of P, and let
Iy 0 be the corresponding smooth induced representation.

Set Up,y = {¢ € I}, |supp ¢ C P(wM)*N}.

Let A € Why (I} ,) be such that Ay, = 0.

Proceeding as before, we can define a distribution
ANeD'(G:FeC)NN

that vanishes on the big Bruhat cell.

Now, if we can prove that

Dy iy N (G 2 F @ Cy)NorN = (0) vw e WM w #£ wM,

then, the standard Bruhat theoretic argument shows that \, and
hence A, is equal to 0.
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proof

Now if we can prove that
D ey NG FRC)N N =(0)  vweWM, w#w,

then the standard Bruhat theoretic argument shows that \, and
hence X is equal to 0.
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proof

Now if we can prove that
D ey NG FRC)N N =(0)  vweWM, w#w,

then the standard Bruhat theoretic argument shows that \, and
hence X is equal to 0.

Now observe that Kj; = M, . Hence we can extend the action of
No x N on F®C, to an action of P, x Ky N.
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proof
Now if we can prove that

D}:’ow*KMN(G o CX)NOXN = (0) Vw € WMa w 7é wM7

then the standard Bruhat theoretic argument shows that \, and
hence A is equal to 0.

Now observe that Kj; = M, . Hence we can extend the action of
No x N on F®C, to an action of P, x Ky N.

Therefore, from part 1. of Kolk-Varadarajan theorem, we just need
to show that

(M7 @ (FoC,))NxNu = (0),  Vr>0.
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proof
Now if we can prove that

D}:’ow*KMN(G PR CX)NOXN = (0) Vw € WMa w 7é wM7

then the standard Bruhat theoretic argument shows that \, and
hence A is equal to 0.

Now observe that Kj; = M, . Hence we can extend the action of
No x N on F®C, to an action of P, x Ky N.

Therefore, from part 1. of Kolk-Varadarajan theorem, we just need
to show that

(M"Y & (F @ C,))NexNus = (0),  Vr>0.

But this follows from the fact NN, acts unipotently on F’ and that
the restriction of x to (w*) ™' N,w* N N is non-trivial.



Tensoring with Finite Dimensional Representations
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Tensoring with Finite Dimensional Representations

Theorem
1. The map
Cp,, WhX(I}%f’UU) — V!
defines a K ys-equivariant isomorphism for all v € afc.

2. For all u € V] the map v +— po JJ’SJV extends to a weakly
holomorphic map of ag. into (I55,, crlzmM)/'
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Tensoring with Finite Dimensional Representations

Theorem
1. The map
Cp,, WhX(I}%f’UU) — V!
defines a K ys-equivariant isomorphism for all v € afc.

2. For all u € V] the map v +— po J;gau extends to a weakly
holomorphic map of ag. into (I55,, UlKnM)’.

Corollary

Let (7, F') be an irreducible representation of M, and let
Why-(I3,,) be the set of maps T': Iy, — F such that
T(mpg, (nm)¢) = x(n)T(m)T(¢) for allneN,me M,. Then

dim Why -(Ip,, ) = dim Hom, (V, F)



Let (1, F') be a finite dimensional representation of G, and let
P = MAN be a Siegel parabolic.
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Let (n, F) be a finite dimensional representation of G, and let
P = M AN be a Siegel parabolic.

Observe that dim A = 1 and, furthermore, there exists
H € Lie(A) such that, if we set

F}:{UEF‘H'U:jU}a

then
F =& _gFoyr,
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Let (n, F) be a finite dimensional representation of G, and let
P = M AN be a Siegel parabolic.

Observe that dim A = 1 and, furthermore, there exists
H € Lie(A) such that, if we set

F}‘:{UEF‘H'U:jU}a
then

F =& _gFoyr,
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Let (n, F) be a finite dimensional representation of G, and let
P = M AN be a Siegel parabolic.

Observe that dim A = 1 and, furthermore, there exists
H € Lie(A) such that, if we set

Fj={ve F|H v =jv},
then
F=&_oFjr
Set X; = @ZZjFQk,T, then
FZX()DXlD--'DXrDXrJ,_l:(O)

is a P-invariant filtration, called the weight filtration.



Set Xj = GBZ:J»FQIC_T, then
F=XoD2X;1D:---DX,DX,41=(0)

is a P-invariant filtration, called the weight filtration.



Set Xj = GBZ:J»FQIC_T, then
F=XoD2X;1D:---DX,DX,41=(0)

is a P-invariant filtration, called the weight filtration.
On the other hand, if we set Y7 = {¢ € F'|¢|x, = 0},
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Set X; = @zszgk_,«, then
F=XoD2X;1D:---DX,DX,41=(0)

is a P-invariant filtration, called the weight filtration.

On the other hand, if we set Y7 = {¢ € F'[¢|x, = 0}, then we
obtain a filtration

F =Yy o5y"5...0Y%=(0)

that is dual to the weight filtration.
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Set X; = @zszgk_,«, then
F=XoD2X;1D:---DX,DX,41=(0)

is a P-invariant filtration, called the weight filtration.
On the other hand, if we set Y7 = {¢ € F'[¢|x, = 0}, then we
obtain a filtration

F =Yy >y >...07%=(0)

that is dual to the weight filtration.

Observe that there is natural isomorphism of G-modules,

o ~ o0
IP,a,, QF = IP,cry@'r]

¢ ¢

_)
¢ = 9
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Lemma (Wallach)
Let g = Lie(G). There exists an element T € U(g)™x such that
1. The map

L:Why(Ip,,) ® F'— Why(Ig,, @ F)

is an isomorphism.
2. IFX € Why(IF, )@Y, then T(\) = A+ X\ with
Ae(Ig,,) @YiTt
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Lemma (Wallach)
Let g = Lie(G). There exists an element T € U(g)™x such that
1. The map

L:Why(Ip,,) ® F'— Why(Ig,, @ F)

is an isomorphism.
2. IFX € Why(IF, )@Y, then T(\) = A+ X\ with
Ae(Ig,,) @YiTt

Define

D Why(IF,,) ® F — Wh(I%, o)
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Lemma (Wallach)
Let g = Lie(G). There exists an element T € U(g)™x such that
1. The map

L:Why(Ip,,) ® F'— Why(Ig,, @ F)

is an isomorphism.
2. IFX € Why(IF, )@Y, then T(\) = A+ X\ with
Ae(Ig,,) @YiTt

Define
D Why(Ig,,) ® F' — Why(I, )

by T(X)(¢) = T(N)(4).
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Lemma (Wallach)
Let g = Lie(G). There exists an element T € U(g)™x such that

1. The map
I: WhX(I}’f’UV) QF — WhX(II%f’UV ® F)

is an isomorphism.
2. IFX € Why(IF, )@Y, then T(\) = A+ X\ with
Ae(Ig,,) @YiTt

Define
I Wh(I5,)® F — Wh(I¥, o)

by T(A)(¢) = T(A\)(9)-

Then it's clear, from the above lemma, that T" defines an
M, -equivariant isomorphism.
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Let v € Lie(A)} be such that ®p,, is an isomorphism. Let T' be
the map that makes the following diagram commute

I
Why(Ig,,) ® F' Why(IZs,en)
(I)P,al,®77
(I)P,U,, ® id (VU ® F)/
r

VI® F' Vi F
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Let v € Lie(A)} be such that ®p,, is an isomorphism. Let T' be
the map that makes the following diagram commute

r
Why(Ig,,) ® F' Why(IZs,en)
(I)P,al,®77
(I)P,U,, ® id (VU ® F)/
r
V. F' Voo F

Proposition
[ isan isomorphism.



Let (n;,X;) be the restriction of 1 to P acting on X, and let
(75, X/ Xj+1) be the representation induced on the quotient.
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Let (n;, X;) be the restriction of 1 to P acting on X, and let
(75, X/ Xj+1) be the representation induced on the quotient.

Tensoring V,, with F', and using the weight filtration, we obtain
the following G-invariant filtration

00 _ T o0 —
1P on =1Po,an 2 - D 1po,en 1 = (0).
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Let (n;, X;) be the restriction of 1 to P acting on X, and let
(75, X/ Xj+1) be the representation induced on the quotient.

Tensoring V,, with F', and using the weight filtration, we obtain
the following G-invariant filtration

00 _ T o0 —
1P on =1Po,an 2 - D 1po,en 1 = (0).

Moreover, it can be checked that

~

o0 o) A~ TOO
IP10V®nj/IP,UV®77j+1 - Ipao'u@"_]j'
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Let (n;, X;) be the restriction of 1 to P acting on X, and let
(75, X/ Xj+1) be the representation induced on the quotient.

Tensoring V,, with F', and using the weight filtration, we obtain
the following G-invariant filtration

00 _ T o0 —
1P on =1Po,an 2 - D 1po,en 1 = (0).

Moreover, it can be checked that

~Y

(0.9) o0 (0.9]
IP10-V®7]j/IP70-V®77j+1 = IPJV‘X)’/_]]"
In particular, if we choose a representation (n, F'), such that the
action of M on F, is trivial, then o, ® g = 0,,_,, and hence

~Y

T oy T
Po,®no — *Poy—r-



In particular, if we choose a representation (n, F'), such that the
action of M on F, is trivial, then o, ® g = 0,_,, and hence

o0 ~ 70O
IP70'1/®770 = IP,O’,,_T'
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In particular, if we choose a representation (n, F'), such that the
action of M on F, is trivial, then o, ® g = 0,_,, and hence
II%?O'V®770 = IIOD?”V*T'
Let _
W9 = (X € Why(I%,, )iz, .. = O},

P,oy®n;
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In particular, if we choose a representation (n, F'), such that the
action of M on F, is trivial, then o, ® g = 0,_,, and hence

o0 ~ 70O
IP70'V®770 - IPao'Vfr'

Let
Wi = {X € Why(I%,, o)\, . =0}

P,oy®n;

Observe that if A € Wj'H,
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In particular, if we choose a representation (n, F'), such that the
action of M on F, is trivial, then o, ® g = 0,_,, and hence

o0 ~ 70O
IP70'V®770 - IPao'Vfr'

Let '
Wr={X¢e WhX(II%?UV®n)|>\|Ioo =0}.

P,oy®n;

Observe that if A € WJT! then Alres o defines an element in
yOv&Nj
Wh (I, 0)-
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In particular, if we choose a representation (n, F'), such that the
action of M on F, is trivial, then o, ® g = 0,_,, and hence

~ JOO

o0 ~
IP,O’,,@’ﬁO - IP,O'yfr .

Let
Wi={\e th([lg?cru®n)|)‘|fz°§,’g,,®nj = 0}.
Observe that if A € W71 then )\|1}gf>ay®nj defines an element in
Why (%, 00)
Proposition

There exists and isomorphism

.
¢: th(II%?aV@m) - @Wﬁl’]?ay@nj
j=0

such that the following diagram is commutative:



Proof (of theorem)

Why(I55, o) B Wit e

P,O'u®77j

Dj—oWhx (TP, ;)
(bP,O'V ®7’_]j
@r:OVé@)ﬁj

Xj/Xj1 = Fr_oj

(Vo @ F)'



Let v € Lie(A)i be such that ®p,, is an isomorphism.
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Let v € Lie(A)i be such that ®p,, is an isomorphism.

Then we know that ®p, g, is an isomorphism, and from the
above diagram ®p;, gy, is an isomorphism for all j.
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Let v € Lie(A)i be such that ®p,, is an isomorphism.

Then we know that ®p, g, is an isomorphism, and from the
above diagram ®p;, gy, is an isomorphism for all j.

In particular, if (1, F) is as before, then ®p, _ is an isomorphism.
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Let v € Lie(A)i be such that ®p,, is an isomorphism.

Then we know that ®p, g, is an isomorphism, and from the
above diagram ®p;, gy, is an isomorphism for all j.

In particular, if (1, F) is as before, then ®p, _ is an isomorphism.

Proceeding by induction, it can now be shown that ®p,, is an

isomorphism for all v € Lie(A, ).



The Holomorphic Continuation of Certain Jacquet Integrals



_ The Holomorphic Continuation of Certain Jacquet Integrals

The Holomorphic Continuation of Certain Jacquet Integrals

Theorem
1. The map
Cp,, : WhX(Il%f’Uu) — V!
defines a K ys-equivariant isomorphism for all v € afc.

2. For all p € V] the map v — po Jfé’au extends to a weakly
holomorphic map of ag. into (I35, UI;mM),'
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The Holomorphic Continuation of Certain Jacquet Integrals

Theorem

1. The map
Qpo, : Why(lp,,) — V!

defines a K ys-equivariant isomorphism for all v € afc.

2. For all p € V] the map v — po Jfé’au extends to a weakly
holomorphic map of ag. into (I35, UI;mM),'

We have already seen that ®p,, is an isomorphism for all v € af..
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The Holomorphic Continuation of Certain Jacquet Integrals

Theorem
1. The map
Cp,, : WhX(I%fUV) — V!
defines a K ys-equivariant isomorphism for all v € u{c.

2. For all p € V] the map v — po Jfg’au extends to a weakly
holomorphic map of ag. into (I35, al;mM),'

We have already seen that ®p,, is an isomorphism for all v € af..

We will now show that the map v+ po Ji5  is weakly

holomorphic for all v € Lie(Ao ).



Let ved and ¢ € LM |y, DE arbitrary.



Let ved and ¢ € LM |y, DE arbitrary.

By definition

'yu(y - T) (¢) = (1)1_3‘,1071/—7-(“) (¢P,a',1/—'r) = >\(¢P,0',I/—T)



Let ved and ¢ € LM |y, DE arbitrary.

By definition
WV =1)(8) = o, (1)(OPos—r) = NSPow—r)

for some A € Why (15, , ).
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Let v €d’ and ¢ € LM o]y D€ Arbitrary.
By definition

’YM(V - T)(¢) = (I)Ig,lcf,y—r(lu’) ((z)P,a,l/—T) = )‘(¢P,cr,1/—r)
for some \ € WhX(II%?O',I/—r)'

Let {v;}]L; be a basis of F, and let {/;}, be its dual basis.
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Let v €d’ and ¢ € LM o]y D€ Arbitrary.
By definition

fyu(y - T)(¢) = ¢;’710',1/—7‘(/J’) (¢P,0’,I/—7‘) = )‘(¢P,U,1/—T)
for some A € Why (15, , ).

Let {v;}]L, be a basis of F, and let {/;}L, be its dual basis.
Then we can find 7); € WhX(I]%?UV), j=1,...,m, and
Y € Ipg,gny such that

fyu(y - T)(¢) = )‘((pP,a,u—r) = f(z n; @ lj)(w)
= T _nl)[)
= Q_njol)TT).



Proof (of theorem)

W =1)(@) = Q_n @ L)TTY).
Now since T4 € Iz, ®F,



Proof (of theorem)

Yulv =1)(#) = (D1 ® ) (T7T4).

Now since Ty € Iz, ®F, we can find ¢; € L Mol
j=1,...,m, such that

T = (¢j)po, @ vj.



_ The Holomorphic Continuation of Certain Jacquet Integrals

Proof (of theorem)

V(v = 1)(@) = O n; @ ;)T 7).

Now since FTw € Ip, ®F, wecanfind ¢; € I},
j=1,...,m, such that

NM,o|knm’

T = (6;)po, @ vj.

Hence

7 V_T Zn] ¢] PO’V Z”Ynj(’/)(%)
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Proof (of theorem)

V(v = 1)(@) = O n; @ ;)T 7).

Now since FTw € Ip, ®F, wecanfind ¢; € I},
j=1,...,m, such that

NM,o|knm’

T = (6;)po, @ vj.

Hence
7 7/—7" Zn] ¢] Pau ZFYWJ‘(V)(%)

This is the desired shift equation which shows that 7, is weakly
holomorphic everywhere.



Further Research

Bessel-Plancherel Measure for M, compact

Theorem
Let G, P = MAN, x and M, be as before.



| Bessel Models orInduced Representations  Furthr escarh

Further Research

Bessel-Plancherel Measure for M, compact

Theorem

Let G, P = MAN, x and M, be as before.Then the spectral
decomposition of L*(N\G; x) with respect to the action of
M, x G is given by

PG = [ @ Whyolr) @ @ mdu(x)

TEMS)
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Further Research

Bessel-Plancherel Measure for M, compact

Theorem
Let G, P = MAN, x and M, be as before.Then the spectral

decomposition of L*(N\G; x) with respect to the action of
M, x G is given by

PG = [ @ Whyolr) @ @ mdu(x)

TEMS)

where i is the usual Plancherel measure of G.



Further Research

Bessel Models for M, non-compact
Let G and P = M AN be as before, and let x be a generic
character of N.



| Bessel Models orInduced Representations  Furthr escarh

Further Research

Bessel Models for M, non-compact
Let G and P = M AN be as before, and let x be a generic
character of N.

Let o™M be the twisting of o by wys and let V; be a tempered
representation of M, .
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Further Research

Bessel Models for M, non-compact
Let G and P = M AN be as before, and let x be a generic
character of N.

Let o™M be the twisting of o by wys and let V; be a tempered
representation of M, .

Given 1 € Homyy, (Hywnr , Vy) define v, (v) = po J§ .
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Further Research

Bessel Models for M, non-compact

Theorem

1. 7, extends to a weakly holomorphic map from a¢ to
Hom(I]‘f;nK’U'MmK, V).

2. Given v € ai define

A,u(fP,a,l/) = ’YM(V)(f)v f € I]T;mK,O"MﬁK.

Then A\, € Why +(Ig, ) and the map ju— A, defines an
isomorphism between Homy, (Hgwa, V;) and Why - (I7, ).



Further Research

Bessel-Plancherel Measure for M, non-compact



Further Research

Bessel-Plancherel Measure for M, non-compact

Conjecture

Let G, P = M AN be as usual, and let x be a generic unitary
character of N.
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Further Research

Bessel-Plancherel Measure for M, non-compact

Conjecture
Let G, P = M AN be as usual, and let x be a generic unitary
character of N.

Then the spectral decomposition of L?(N\G; x) with respect to
the action of M, x G is given by
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Further Research

Bessel-Plancherel Measure for M, non-compact

Conjecture
Let G, P = M AN be as usual, and let x be a generic unitary
character of N.

Then the spectral decomposition of L?(N\G; x) with respect to
the action of M, x G is given by

L*(N\G; ) = / Why r(m) @ 7" @ mdv(T) dp(r).
an Jmp
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Further Research

Bessel-Plancherel Measure for M, non-compact

Conjecture

Let G, P = M AN be as usual, and let x be a generic unitary
character of N.

Then the spectral decomposition of L>(N\G; ) with respect to
the action of M, x G is given by

L*(N\G; ) = / Why r(m) @ 7" @ mdv(T) dp(r).
an Jmp

where v and p are the usual Plancherel measures of M, and G,
respectively.
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