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Bessel Models for Induced Representations Introduction

Definition
Let G be a Lie group, and let K be a maximal compact subgroup.

We say that G is a Lie group of tube type if G/K is a hermitian
symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup P = MAN, such that N is
abelian.

2. There exists a generic, unitary character χ on N, such that its
stabilizer in M,

Mχ = {m ∈M |χ(m−1nm) = χ(n) ∀n ∈ N},

is compact.

If P ⊂ G is a parabolic subgroup satisfying 1. and 2., then we say
that P is a Siegel parabolic subgroup.



Bessel Models for Induced Representations Introduction

Definition
Let G be a Lie group, and let K be a maximal compact subgroup.
We say that G is a Lie group of tube type if G/K is a hermitian
symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup P = MAN, such that N is
abelian.

2. There exists a generic, unitary character χ on N, such that its
stabilizer in M,

Mχ = {m ∈M |χ(m−1nm) = χ(n) ∀n ∈ N},

is compact.

If P ⊂ G is a parabolic subgroup satisfying 1. and 2., then we say
that P is a Siegel parabolic subgroup.



Bessel Models for Induced Representations Introduction

Definition
Let G be a Lie group, and let K be a maximal compact subgroup.
We say that G is a Lie group of tube type if G/K is a hermitian
symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup P = MAN, such that N is
abelian.

2. There exists a generic, unitary character χ on N, such that its
stabilizer in M,

Mχ = {m ∈M |χ(m−1nm) = χ(n) ∀n ∈ N},

is compact.

If P ⊂ G is a parabolic subgroup satisfying 1. and 2., then we say
that P is a Siegel parabolic subgroup.



Bessel Models for Induced Representations Introduction

Definition
Let G be a Lie group, and let K be a maximal compact subgroup.
We say that G is a Lie group of tube type if G/K is a hermitian
symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup P = MAN, such that N is
abelian.

2. There exists a generic, unitary character χ on N, such that its
stabilizer in M,

Mχ = {m ∈M |χ(m−1nm) = χ(n) ∀n ∈ N},

is compact.

If P ⊂ G is a parabolic subgroup satisfying 1. and 2., then we say
that P is a Siegel parabolic subgroup.



Bessel Models for Induced Representations Introduction

Definition
Let G be a Lie group, and let K be a maximal compact subgroup.
We say that G is a Lie group of tube type if G/K is a hermitian
symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup P = MAN, such that N is
abelian.

2. There exists a generic, unitary character χ on N, such that its
stabilizer in M,

Mχ = {m ∈M |χ(m−1nm) = χ(n) ∀n ∈ N},

is compact.

If P ⊂ G is a parabolic subgroup satisfying 1. and 2., then we say
that P is a Siegel parabolic subgroup.



Bessel Models for Induced Representations Introduction

Definition
Let G be a Lie group, and let K be a maximal compact subgroup.
We say that G is a Lie group of tube type if G/K is a hermitian
symmetric space of tube type.

Proposition

If G is a Lie group of tube type, then

1. There exists a parabolic subgroup P = MAN, such that N is
abelian.

2. There exists a generic, unitary character χ on N, such that its
stabilizer in M,

Mχ = {m ∈M |χ(m−1nm) = χ(n) ∀n ∈ N},

is compact.

If P ⊂ G is a parabolic subgroup satisfying 1. and 2., then we say
that P is a Siegel parabolic subgroup.



Bessel Models for Induced Representations Introduction

Let G be a Lie group of tube type, and let (π, V ) be an admissible,
smooth, Fréchet representation of G.

Given a Siegel parabolic subgroup, P = MAN, of G, and a
generic character, χ, of N, with compact stabilizer, set

Whχ(V ) = {λ : V −→ C |λ(π(n)v) = χ(n)λ(v)}.

This is the so called space of Bessel functionals (or Bessel models)
of V .
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Let G and P = MAN be as before. Let (σ, Vσ) be an admissible,
smooth, Fréchet representation of M, and let ν ∈ Lie(A)′C.

Set
σν(man) = aν+ρσ(m),

and let I∞P,σν be the corresponding smooth induced representation.

Set KM = K ∩M , and let I∞KM ,σ|KM
be the representation

induced by σ|KM from KM to K.

Given f ∈ I∞KM ,σ|KM set

fP,σν (namk) = aν+ρσ(m)f(k).
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Given f ∈ I∞KM ,σ|KM set

fP,σν (namk) = aν+ρσ(m)f(k).

Let wM be an element in NK(A) that conjugates P̄ to P .

Given f ∈ I∞KM ,σ|KM we will consider the integrals

JχP,σν (f) =

∫
N
χ(n)−1fP,σν (wMn) dn.

This integrals converge absolutely and uniformly if ν is in a
translate of the positive Weyl chamber.
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Given µ ∈ V ′σ set γµ(ν) = µ ◦ JχP,σν . Then, for ν as above, γµ
defines a weakly holomorphic map into (I∞M∩K,σ|M∩K )′.

Theorem

1. γµ has a weakly holomorphic continuation to all of Lie(A)′C
2. Given ν ∈ Lie(A)′C define

λµ(fP,σν ) = γµ(ν)(f), f ∈ I∞M∩K,σ|M∩K .

Then λµ ∈Whχ(I∞P,σν ) and the map µ 7→ λµ defines an
Mχ-equivariant isomorphism between V ′σ and Whχ(I∞P,σν ).
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Classification of Simple Lie Groups of Tube Type

We will now give a list describing all the simple Lie groups of tube
type, up to covering.

For each element in the list we will describe a Siegel Parabolic
subgroup P = MAN, and a character χ of N with compact
stabilizer.

Fix a non-degenerate unitary character, χ◦, of R.
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1. G = Sp(n,R) realized as 2n× 2n matrices g, such that
gJng

T = Jn, with

Jn =

[
0 In
−In 0

]
.

Thus, identifying R2n with C, using Jn for the complex
structure, K = G ∩O(2n,R) ∼= U(n).
Set

MA =

{[
g 0
0 (g−1)T

]
|g ∈ GL(n,R)

}
,

and

N =

{[
I X
0 I

]
|X ∈M(n,R), XT = X

}
.

We define a character, χ, on N by

χ

([
I X
0 I

])
= χ◦(Tr(X)).

Then Mχ
∼= O(n,R).



Bessel Models for Induced Representations Classification of Simple Lie Groups of Tube Type

1. G = Sp(n,R) realized as 2n× 2n matrices g, such that
gJng

T = Jn, with

Jn =

[
0 In
−In 0

]
.

Thus, identifying R2n with C, using Jn for the complex
structure, K = G ∩O(2n,R) ∼= U(n).

Set

MA =

{[
g 0
0 (g−1)T

]
|g ∈ GL(n,R)

}
,

and

N =

{[
I X
0 I

]
|X ∈M(n,R), XT = X

}
.

We define a character, χ, on N by

χ

([
I X
0 I

])
= χ◦(Tr(X)).

Then Mχ
∼= O(n,R).



Bessel Models for Induced Representations Classification of Simple Lie Groups of Tube Type

1. G = Sp(n,R) realized as 2n× 2n matrices g, such that
gJng

T = Jn, with

Jn =

[
0 In
−In 0

]
.

Thus, identifying R2n with C, using Jn for the complex
structure, K = G ∩O(2n,R) ∼= U(n).
Set

MA =

{[
g 0
0 (g−1)T

]
|g ∈ GL(n,R)

}
,

and

N =

{[
I X
0 I

]
|X ∈M(n,R), XT = X

}
.

We define a character, χ, on N by

χ

([
I X
0 I

])
= χ◦(Tr(X)).

Then Mχ
∼= O(n,R).



Bessel Models for Induced Representations Classification of Simple Lie Groups of Tube Type

1. G = Sp(n,R) realized as 2n× 2n matrices g, such that
gJng

T = Jn, with

Jn =

[
0 In
−In 0

]
.

Thus, identifying R2n with C, using Jn for the complex
structure, K = G ∩O(2n,R) ∼= U(n).
Set

MA =

{[
g 0
0 (g−1)T

]
|g ∈ GL(n,R)

}
,

and

N =

{[
I X
0 I

]
|X ∈M(n,R), XT = X

}
.

We define a character, χ, on N by

χ

([
I X
0 I

])
= χ◦(Tr(X)).

Then Mχ
∼= O(n,R).



Bessel Models for Induced Representations Classification of Simple Lie Groups of Tube Type

1. G = Sp(n,R) realized as 2n× 2n matrices g, such that
gJng

T = Jn, with

Jn =

[
0 In
−In 0

]
.

Thus, identifying R2n with C, using Jn for the complex
structure, K = G ∩O(2n,R) ∼= U(n).
Set

MA =

{[
g 0
0 (g−1)T

]
|g ∈ GL(n,R)

}
,

and

N =

{[
I X
0 I

]
|X ∈M(n,R), XT = X

}
.

We define a character, χ, on N by

χ

([
I X
0 I

])
= χ◦(Tr(X)).

Then Mχ
∼= O(n,R).



Bessel Models for Induced Representations Classification of Simple Lie Groups of Tube Type

1. G = Sp(n,R) realized as 2n× 2n matrices g, such that
gJng

T = Jn, with

Jn =

[
0 In
−In 0

]
.

Thus, identifying R2n with C, using Jn for the complex
structure, K = G ∩O(2n,R) ∼= U(n).
Set

MA =

{[
g 0
0 (g−1)T

]
|g ∈ GL(n,R)

}
,

and

N =

{[
I X
0 I

]
|X ∈M(n,R), XT = X

}
.

We define a character, χ, on N by

χ

([
I X
0 I

])
= χ◦(Tr(X)).

Then Mχ
∼= O(n,R).



Bessel Models for Induced Representations Classification of Simple Lie Groups of Tube Type

2. G = SU(n, n) realized as the 2n× 2n complex matrices g, such
that gLng

∗ = Ln, with

Ln =

[
0 iIn
−iIn 0

]
.

Then K = U(2n) ∩G = S(U(n)× U(n)).
In this case we set

MA =

{[
g 0
0 (g−1)∗

]
|g ∈ GL(n,C)

}
,

and

N =

{[
I X
0 I

]
|X ∈M(n,C), X∗ = X

}
.

If we now define a character, χ, on N by

χ

([
I X
0 I

])
= χ◦(Tr(X)),

then Mχ
∼= U(n).
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3. G = SO∗(4n) realized as the group of all g ∈ SO(4n,C) such
that gJ2ng

∗ = J2n.

Here K = G ∩ S0(4n,R) = Sp(2n,R) ∩ S0(4n,R) ∼= U(2n).

We can describe g = Lie(G) as the Lie subalgebra of M2n(H)
of matrices of the form [

A X
Y −A∗

]
,

with A, X, Y ∈Mn(H), X∗ = X and Y ∗ = Y .

If we define M, A, N and χ in a similar way as before,
MA ∼= GL(n,H) and Mχ

∼= Sp(n), the quaternionic unitary
group.
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,

with A, X, Y ∈Mn(H), X∗ = X and Y ∗ = Y .

If we define M, A, N and χ in a similar way as before,
MA ∼= GL(n,H) and Mχ

∼= Sp(n), the quaternionic unitary
group.
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4. G the Hermitian symmetric real form of E7.

We will give a description of Lie(G) that makes it look like the
Lie algebras in examples 1, 2, and 3.

In each of those cases we have

Lie(G) =

[
A X
Y −A∗

]
with A, X, Y ∈Mn(F ), X = X∗ and Y = Y ∗, for F = R, C
and H respectively.

Example 4 corresponds to the octonions, O. Here we replace
M3(O) by m⊕ a = E6,2 ⊕R, and take for X,Y elements of the
exceptional Euclidean Jordan algebra (the 3× 3 conjugate
adjoint matrices over O).

If we now define χ as in the above examples, then Mχ is
isomorphic to compact F4.
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5. G = SO(n, 2) realized as the group of n+ 2 by n+ 2 matrices
of determinant 1 that leave invariant the form 0 0 1

0 In−1,1 0
1 0 0

 .

Here K ∼= S(O(n,R)×O(2,R)).

Set

MA =


 a 0 0

0 m 0
0 0 a−1

 | a ∈ R∗, m ∈ SO(n− 1, 1)


and

N =


 1 −vt − 〈v,v〉2

0 I v
0 0 1

 | v ∈ Rn−1,1

 .
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Some Bruhat Theory

Let G be one of the simple Lie groups of tube type we just
described, and set P = MAN, χ and Mχ as before.

Let P◦ = M◦A◦N◦ be a minimal parabolic sugroup such that

P◦ ⊂ P, N ⊂ N◦, A ⊂ A◦, M◦ ⊂M.

Let Φ+ be the system of positive roots of G relative to P◦, and let
Φ+
M be the system of positive roots of MA induced by Φ+.

Let W = W (G,A◦), WM = W (MA,A◦) and set

WM = {w ∈W |wΦ+
M ⊂ Φ+

M}.

Then W = WMW
M .
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Lemma (Bruhat decomposition)

1. Given w ∈W, fix w∗ ∈ NK(A◦) such that M◦w
∗ = w. Then

G =
⋃

w∈WM

P◦w
∗P.

2. Let wG be the longest element of W, wM the longest element
of WM , and set wM = wGwM . Then

P◦(w
M )∗P = P (wM )∗N

and if w 6= wM then

dimP◦w
∗P < dimP (wM )∗N.
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Corollary

G =
⋃

w∈WM

P◦w
∗KMN.

Furthermore, if w 6= wM , then dimP◦w
∗KMN < dimP (wM )∗N .

Lemma
If w ∈WM is not wM , then the restriction of χ to
(w∗)−1N◦w

∗ ∩N is non-trivial.

proof

The tube type assumption implies that Φ is a root system of type
Cn with n = dimAo.
Hence, there exist linear functionals ε1, ..., εn on ao = Lie(Ao)
such that

Φ+ = {εi ± εj |1 ≤ i < j ≤ n} ∪ {2ε1, ..., 2εn}
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Proof.
Hence, there exist linear functionals ε1, ..., εn on Lie(A◦) such that

Φ+ = {εi ± εj |1 ≤ i < j ≤ n} ∪ {2ε1, ..., 2εn}

and
Φ+
M = {εi − εj |1 ≤ i < j ≤ n}.

Let X ∈ Lie(N) be such that [H,X] = 2εi(H)X, for all
H ∈ Lie(A◦). For such an X it can be checked that dχ(X) 6= 0.
Hence, if w ∈WM and χ restricted to (w∗)−1N◦w

∗ ∩N is trivial,
we must have

w−1 · (2εi) ∈ −Φ+, i = 1, ..., n.

Therefore w−1 · (εi + εj) ∈ −Φ+ for all i ≤ j, which implies that
w = wM .
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The Theory of the Transverse Symbol of Kolk-Varadarajan

Let H be a Lie group, and let X be a C∞ manifold with a left H
action.

Given a Fréchet space E, let C∞c (X : E) be the space of smooth
compactly supported functions on X with values in E.

We will denote by

D′(X : E) := (C∞c (X : E))′

to its dual space, and we will make the identification

D′(X : E)←→ Hom(C∞c (X), E′).

We will call any element in this space an E-distribution on X.
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Fix an H-orbit O ⊂ X.

Let Diff(r) be the sheaf of differential operators of order ≤ r on X.

For any x ∈ X let V
(r)
x be the subspace of Diff

(r)
x generated by

germs of r-tuples v1 · · · vr of vector fields around x for which at
least one of the vi is tangent to O.

Let
I(r)
x = Diff(r−1)

x +V (r)
x .

Choosing local coordinates at x it can be seen that I
(r)
x actually is

the stalk at x of a subsheaf I(r) ⊂ Diff(r).
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Choosing local coordinates at x it can be seen that I
(r)
x actually is

the stalk at x of a subsheaf I(r) ⊂ Diff(r).

Hence we have a well-defined quotient sheaf

M (r) = Diff(r) /I(r).

with stalk at x equal to M
(r)
x = Diff

(r)
x /I

(r)
x .

It can be checked that M (r) is a vector bundle over O of finite
rank.
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It can be checked that M (r) is a vector bundle over O of finite
rank.

This is the r-th graded part of the transverse jet bundle on O.
Observe that M (r) is the r-th symmetric power of M (1).

We say that T ∈ D′(X : E) has transverse order ≤ r at x ∈ O, if
there exists an open neighborhood U of x in X, such that for all
f ∈ C∞c (U : E), with the property that Df |O∩U = 0 for all
D ∈ Diff(r)(U), T (f) = 0.

Let D
′(r)
O (X : E) be the linear subspace of elements in D′(X : E)

which have transverse order ≤ r at all points of O.
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Theorem (Kolk-Varadarajan)

Let X be a C∞ manifold with a left action of H, let (π,E) be a
smooth Fréchet representation of a normal subgroup H ′ of H, and
let O ⊂ X be an H-orbit of X.

1. Assume that the action of H ′ can be extended to an action of
H. If there exists y ∈ O, such that

(M (r)
y ⊗ E′ ⊗ C′y)H

′
y = (0),

for all r ∈ Z≥0, then

D′O(X : E)H
′

= (0).

(Cy is just C, with an H ′-action given by the character χy =
δH′
δH′y

).
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Theorem (Kolk-Varadarajan)

Let X be a C∞ manifold with a left action of H, let (π,E) be a
smooth Fréchet representation of a normal subgroup H ′ of H, and
let O ⊂ X be an H-orbit of X.

2. Assume that H = H ′. Then for any

T ∈ D′(r)O (X : E)/D
′(r−1)
O (X : E),

there exists µy ∈ (M
(r)
y ⊗ E′ ⊗ C′y)Hy such that

T (f) =

∫
H/Hy

(h · µy)(f) dh
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Theorem (Kolk-Varadarajan)

Let X be a C∞ manifold with a left action of H, let (π,E) be a
smooth Fréchet representation of a normal subgroup H ′ of H, and
let O ⊂ X be an H-orbit of X.

3. Assume that E is finite dimensional, and assume that for all
y ∈ O

(M (r)
y ⊗ E′ ⊗ C′y)H

′
y = (0),

for all r ∈ Z≥0, then

D′O(X : E)H
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The Vanishing of Certain Invariant Distributions

Let G, P = MAN, χ and Mχ be as before.

Let (σ, Vσ) be an admissible, smooth, Fréchet representation of M,
and let ν ∈ Lie(A)′C.

Set
σν(man) = aν+ρσ(m),

and let I∞P,σν be the corresponding smooth induced representation.

Given f ∈ C∞c (G), and v ∈ Vσ, set

fP,σ,ν,v(g) =

∫
P
f(pg)σν(p)−1v drp.

Then

fP,σ,ν,v(pg) = σν(p)f(g), i.e fP,σ,ν,v ∈ I∞P,σν .
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Let
UP,σν = {f ∈ I∞P,σν | supp f ⊂ P (wM )∗N}.

Then, given f ∈ C∞c (G) such that supp f ⊂ P (wM )∗N,
fP,σ,ν,v ∈ UP,σν .

Furthermore the map f ⊗ v 7→ fP,σ,ν,v from C∞c (G)⊗̄Vσ to UP,σν
is surjective.

Let

D′(P (wM )∗N : Vσ) = {T : C∞c (P (wM )∗N) −→ V ′σ}

be the space of Vσ distributions on P (wM )∗N .
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Let

D′(P (wM )∗N : Vσ) = {T : C∞c (P (wM )∗N) −→ V ′σ}

be the space of Vσ distributions on P (wM )∗N .

Given λ ∈Whχ(IP,σν ), define λ̄ ∈ D′(P (wM )∗N : Vσ) by

λ̄(f)(v) = λ(fP,σ,ν,v).

It’s easy to check that actually

λ̄ ∈ D′(P (wM )∗N : Vσν−2ρ ⊗ Cχ)P×N .
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It’s easy to check that actually

λ̄ ∈ D′(P (wM )∗N : Vσν−2ρ ⊗ Cχ)P×N .

Hence, according to part ii) of Kolk-Varadarajan theorem, there
exist µλ ∈ V ′σ such that

λ̄(f)(v) = µλ

(∫
N

∫
P
χ(n)−1f(pwMn)σν(p)−1v drp dn

)
λ(fP,σ,ν,v) = µλ

(∫
N
χ(n)−1fP,σ,ν,v(w

Mn) dn

)
= µλ ◦ JχP,σν (fP,σ,ν,v|K).

We will denote the map λ 7→ µλ by ΦP,σν .
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λ(fP,σ,ν,v) = µλ ◦ JχP,σν (fP,σ,ν,v|K).

We will denote the map λ 7→ µλ by ΦP,σν .

Proposition

If λ ∈Whχ(I∞P,σν ) and λ|UP,σν = 0 then λ = 0.

Corollary

The map
ΦP,σν : Whχ(IP,σν ) −→ V ′σ

is injective.

proof

Using Casselman subrepresentation theorem, we can reduce the
proof to the case where σ is an induced representation.
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proof

Let (η, F ) be a finite dimensional representation of P◦, and let
I∞P◦,η be the corresponding smooth induced representation.

Set UP◦,η = {φ ∈ I∞P◦,η | suppφ ⊂ P (wM )∗N}.

Let λ ∈Whχ(I∞P◦,η) be such that λ|UP◦,η = 0.

Proceeding as before, we can define a distribution

λ̄ ∈ D′(G : F ⊗ Cχ)N◦×N

that vanishes on the big Bruhat cell.

Now, if we can prove that

D′P◦w∗KMN (G : F ⊗ Cχ)N◦×N = (0) ∀w ∈WM , w 6= wM ,

then, the standard Bruhat theoretic argument shows that λ̄, and
hence λ, is equal to 0.
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that vanishes on the big Bruhat cell.

Now, if we can prove that

D′P◦w∗KMN (G : F ⊗ Cχ)N◦×N = (0) ∀w ∈WM , w 6= wM ,

then, the standard Bruhat theoretic argument shows that λ̄, and
hence λ, is equal to 0.
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Now observe that KM = Mχ. Hence we can extend the action of
N◦ ×N on F ⊗ Cχ to an action of P◦ ×KMN .

Therefore, from part 1. of Kolk-Varadarajan theorem, we just need
to show that

(M
(r)
w∗ ⊗ (F ⊗ Cχ)′)(N◦×N)w∗ = (0), ∀r ≥ 0.

But this follows from the fact N◦ acts unipotently on F ′ and that
the restriction of χ to (w∗)−1N◦w

∗ ∩N is non-trivial.
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Tensoring with Finite Dimensional Representations

Theorem

1. The map
ΦP,σν : Whχ(I∞P,σν ) −→ V ′σ

defines a KM -equivariant isomorphism for all ν ∈ a′C.

2. For all µ ∈ V ′σ the map ν 7→ µ ◦ JχP,σν extends to a weakly
holomorphic map of a′C into (I∞K∩M,σ|K∩M )′.

Corollary

Let (τ, F ) be an irreducible representation of Mχ, and let
Whχ,τ (I∞P,σν ) be the set of maps T : I∞P,σν → F such that
T (πP,σν (nm)φ) = χ(n)τ(m)T (φ) for all n ∈ N, m ∈Mχ. Then

dimWhχ,τ (I∞P,σν ) = dimHomMχ(Vσ, F )
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Let (η, F ) be a finite dimensional representation of G, and let
P = MAN be a Siegel parabolic.

Observe that dimA = 1 and, furthermore, there exists
H ∈ Lie(A) such that, if we set

Fj = {v ∈ F |H · v = jv},

then
F = ⊕rj=0F2j−r,

Set Xj = ⊕rk=jF2k−r, then

F = X0 ⊃ X1 ⊃ · · · ⊃ Xr ⊃ Xr+1 = (0)

is a P -invariant filtration, called the weight filtration.
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Set Xj = ⊕rk=jF2k−r, then

F = X0 ⊃ X1 ⊃ · · · ⊃ Xr ⊃ Xr+1 = (0)

is a P -invariant filtration, called the weight filtration.

On the other hand, if we set Y j = {φ ∈ F ′|φ|Xj = 0}, then we
obtain a filtration

F ′ = Y r+1 ⊃ Y r ⊃ · · · ⊃ Y 0 = (0)

that is dual to the weight filtration.

Observe that there is natural isomorphism of G-modules,

I∞P,σν ⊗ F ∼= I∞P,σν⊗η

φ → φ̂

φ̌ ← φ,
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Lemma (Wallach)

Let g = Lie(G). There exists an element Γ ∈ U(g)Mχ such that

1. The map

Γ : Whχ(I∞P,σν )⊗ F ′ −→Whχ(I∞P,σν ⊗ F )

is an isomorphism.

2. If λ ∈Whχ(I∞P,σν )⊗ Y j , then Γ(λ) = λ+ λ̃ with

λ̃ ∈ (I∞P,σν )′ ⊗ Y j−1.

Define
Γ̌ : Whχ(I∞P,σν )⊗ F ′ −→Whχ(I∞P,σν⊗η)

by Γ̌(λ)(φ) = Γ(λ)(φ̌).

Then it’s clear, from the above lemma, that Γ̌ defines an
Mχ-equivariant isomorphism.
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Let ν ∈ Lie(A)′C be such that ΦP,σν is an isomorphism. Let Γ̃ be
the map that makes the following diagram commute

V ′σ ⊗ F ′

(Vσ ⊗ F )′

Whχ(I∞P,σν )⊗ F ′ Whχ(I∞P,σν⊗η)

V ′σ ⊗ F ′

?

?

-

-
?

Γ̌

Γ̃

ΦP,σν ⊗ id

ΦP,σν⊗η

Proposition

Γ̃ is an isomorphism.
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Let (ηj , Xj) be the restriction of η to P acting on Xj , and let
(η̄j , Xj/Xj+1) be the representation induced on the quotient.

Tensoring Vσν with F , and using the weight filtration, we obtain
the following G-invariant filtration

I∞P,σν⊗η = I∞P,σν⊗η0 ⊃ . . . ⊃ I
∞
P,σν⊗ηr+1

= (0).

Moreover, it can be checked that

I∞P,σν⊗ηj/I
∞
P,σν⊗ηj+1

∼= I∞P,σν⊗η̄j .

In particular, if we choose a representation (η, F ), such that the
action of M on Fr is trivial, then σν ⊗ η̄0

∼= σν−r, and hence

I∞P,σν⊗η̄0
∼= I∞P,σν−r .
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In particular, if we choose a representation (η, F ), such that the
action of M on Fr is trivial, then σν ⊗ η̄0

∼= σν−r, and hence

I∞P,σν⊗η̄0
∼= I∞P,σν−r .

Let
W j = {λ ∈Whχ(I∞P,σν⊗η)|λ|I∞P,σν⊗ηj = 0}.

Observe that if λ ∈W j+1, then λ|I∞P,σν⊗ηj defines an element in

Whχ(I∞P,σν⊗η̄j ).

Proposition

There exists and isomorphism

φ : Whχ(I∞P,σν⊗η) −→
r⊕
j=0

W j+1|I∞P,σν⊗ηj

such that the following diagram is commutative:
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action of M on Fr is trivial, then σν ⊗ η̄0

∼= σν−r, and hence

I∞P,σν⊗η̄0
∼= I∞P,σν−r .

Let
W j = {λ ∈Whχ(I∞P,σν⊗η)|λ|I∞P,σν⊗ηj = 0}.

Observe that if λ ∈W j+1, then λ|I∞P,σν⊗ηj defines an element in

Whχ(I∞P,σν⊗η̄j ).

Proposition

There exists and isomorphism

φ : Whχ(I∞P,σν⊗η) −→
r⊕
j=0

W j+1|I∞P,σν⊗ηj

such that the following diagram is commutative:
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Proof (of theorem)

Whχ(I∞P,σν⊗η) ⊕rj=0W
j+1|I∞P,σν⊗ηj

⊕rj=0Whχ(I∞P,σν⊗η̄j )

⊕rj=0V
′
σ⊗η̄j

(Vσ ⊗ F )′

-

?

?

?

@
@
@
@
@
@
@

@
@
@

@
@
@

@
@
@R

φ

ΦP,σν⊗η
ΦP,σν⊗η̄j

Xj/Xj+1
∼= Fr−2j
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Let ν ∈ Lie(A)′C be such that ΦP,σν is an isomorphism.

Then we know that ΦP,σν⊗η is an isomorphism, and from the
above diagram ΦP,σν⊗η̄j is an isomorphism for all j.

In particular, if (η, F ) is as before, then ΦP,σν−r is an isomorphism.

Proceeding by induction, it can now be shown that ΦP,σν is an
isomorphism for all ν ∈ Lie(A◦)′C.
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The Holomorphic Continuation of Certain Jacquet Integrals

Theorem

1. The map
ΦP,σν : Whχ(I∞P,σν ) −→ V ′σ

defines a KM -equivariant isomorphism for all ν ∈ a′C.

2. For all µ ∈ V ′σ the map ν 7→ µ ◦ JχP,σν extends to a weakly
holomorphic map of a′C into (I∞K∩M,σ|K∩M )′.

We have already seen that ΦP,σν is an isomorphism for all ν ∈ a′C.

We will now show that the map ν 7→ µ ◦ JχP,σnu is weakly
holomorphic for all ν ∈ Lie(A◦)′C.
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Let ν ∈ a′ and φ ∈ I∞K∩M,σ|K∩M be arbitrary.

By definition

γµ(ν − r)(φ) = Φ−1
P,σ,ν−r(µ)(φP,σ,ν−r) = λ(φP,σ,ν−r)

for some λ ∈Whχ(I∞P,σ,ν−r).

Let {vj}mj=1 be a basis of F, and let {lj}mj=1 be its dual basis.
Then we can find ηj ∈Whχ(I∞P,σν ), j = 1, . . . ,m, and
ψ ∈ IP,σν⊗η such that

γµ(ν − r)(φ) = λ(φP,σ,ν−r) = Γ̌(
∑

ηj ⊗ lj)(ψ)

= Γ(
∑

ηj ⊗ lj)(ψ̌)

= (
∑

ηj ⊗ lj)(ΓT ψ̌).
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Proof (of theorem)

γµ(ν − r)(φ) = (
∑

ηj ⊗ lj)(ΓT ψ̌).

Now since ΓT ψ̌ ∈ I∞P,σν ⊗ F,

we can find φj ∈ I∞K∩M,σ|K∩M ,
j = 1, . . . ,m, such that

ΓT ψ̌ =
∑

(φj)P,σν ⊗ vj .

Hence

γµ(ν − r)(φ) =
∑

ηj((φj)P,σν ) =
∑

γηj (ν)(φj).

This is the desired shift equation which shows that γµ is weakly
holomorphic everywhere.
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Further Research

Bessel-Plancherel Measure for Mχ compact

Theorem
Let G, P = MAN , χ and Mχ be as before.

Then the spectral
decomposition of L2(N\G;χ) with respect to the action of
Mχ ×G is given by

L2(N\G;χ) ∼=
∫
G∧

⊕
τ∈M∧χ

Whχ,τ (π)⊗ τ∗ ⊗ π dµ(π)

where µ is the usual Plancherel measure of G.
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Further Research

Bessel Models for Mχ non-compact
Let G and P = MAN be as before, and let χ be a generic
character of N .

Let σwM be the twisting of σ by wM and let Vτ be a tempered
representation of Mχ.

Given µ ∈ HomMχ(HσwM , Vτ ) define γµ(ν) = µ ◦ JχP,σ,ν .
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Bessel Models for Mχ non-compact

Theorem

1. γµ extends to a weakly holomorphic map from a′C to
Hom(I∞M∩K,σ|M∩K , Vτ ).

2. Given ν ∈ a′C define

λµ(fP,σ,ν) = γµ(ν)(f), f ∈ I∞M∩K,σ|M∩K .

Then λµ ∈Whχ,τ (I∞P,σ,ν) and the map µ 7→ λµ defines an
isomorphism between HomMχ(HσwM , Vτ ) and Whχ,τ (I∞P,σ,ν).
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Bessel-Plancherel Measure for Mχ non-compact

Conjecture

Let G, P = MAN be as usual, and let χ be a generic unitary
character of N .
Then the spectral decomposition of L2(N\G;χ) with respect to
the action of Mχ ×G is given by

L2(N\G;χ) ∼=
∫
G∧

∫
M∧χ

Whχ,τ (π)⊗ τ∗ ⊗ π dν(τ) dµ(π).

where ν and µ are the usual Plancherel measures of Mχ and G,
respectively.
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