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Motivation

Point of view : Of a “newcomer”, an “amateur”, of (Discrete)
Differential Geometry background.
Therefore, interested in :

Geometry
Beyond the “BIG” Theorems : Bishop-Gromov,
Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare
Inequalities, etc.....

Triangulations

Discretizations

Geodesics

Applications
Information Geometry

Manifold Learning

Sampling Theory
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Motivation – cont.

• Image Processing and Analysis

EMIL SAUCAN TRIANGULATION AND DISCRETIZATIONS OF METRIC MEASURE SPACES



INTRODUCTION TRIANGULATION DISCRETIZATIONS FIN

Motivation – cont.

Image Processing and Analysis
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Efficient packings

Definition

Let p1, . . . ,pn0 be points ∈ Mn, satisfying the following
conditions :

1 The set {p1, . . . ,pn0} is an ε-net on Mn, i.e. the balls
βn(pk , ε), k = 1, . . . ,n0 cover Mn ;

2 The balls (in the intrinsic metric of Mn) βn(pk , ε/2) are
pairwise disjoint.

Then the set {p1, . . . ,pn0} is called a minimal ε-net and the
packing with the balls βn(pk , ε/2), k = 1, . . . ,n0, is called an
efficient packing.
The set {(k , l) | k , l = 1, . . . ,n0 and βn(pk , ε) ∩ βn(pl , ε) 6= ∅} is
called the intersection pattern of the minimal ε-net (of the
efficient packing).
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Efficient packings – cont.

• In the following Mn = (Mn,g) is a closed, connected
n-dimensional Riemannian manifold with sectional curvature kM
bounded from below by k , diamMn bounded from above by D,
and VolMn bounded from below by v .
• Efficient packings have then the following important
properties, which we list below :

Lemma (Grove-Petersen, 1988)

There exists n1 = n1(n, k ,D), such that if {p1, . . . ,pn0} is a
minimal ε-net on Mn, then n0 ≤ n1.

Lemma (Grove-Petersen, 1988)

There exists n2 = n2(n, k ,D), such that for any x ∈ Mn,∣∣{j | j = 1, . . . ,n0 and βn(x , ε) ∩ βn(pj , ε) 6= ∅}
∣∣ ≤ n2, for any

minimal ε-net {p1, . . . ,pn0}.
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Efficient packings – cont.

Lemma (Grove-Petersen, 1988)

Let Mn
1 ,M

n
2 , be manifolds having the same bounds k = k1 = k2

and D = D1 = D2 (see above) and let {p1, . . . ,pn0} and
{q1, . . . ,qn0} be minimal ε-nets with the same intersection
pattern, on Mn

1 , Mn
2 , respectively. Then there exists a constant

n3 = n3(n, k ,D,C), such that if d(pi ,pj) < C · ε, then
d(qi ,qj) < n3 · ε.

This properties provide us with a simple triangulation method of
closed, connected Riemannian manifolds. Indeed, we can
construct a simplicial complex having as vertices the centers of
the balls βn(pk , ε), as follows :
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Efficient packings – cont.

• Edges are connecting the centers of adjacent balls ; further
edges being added to ensure the cell complex obtained is
triangulated to obtain a simplicial complex.
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Efficient packings – cont.

• One can ensure that the triangulation will be convex and that
its simplices are convex, by choosing ε = ConvRad(Mn) – the
convexity radius of Mn :

ConvRad(Mn) = inf{r > 0 |βn(x , r) is convex, for all x ∈ Mn} .

(Note that : ConvRad(Mn) ≥ 1
2 InjRad(Mn), where InjRad(Mn)

denotes the injectivity radius of Mn :

InjRad(Mn) = inf{Inj(x) | x ∈ Mn} ;

where

Inj(x) = sup {r | expx |Bn(x ,r) is a diffeomorphism} .)
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Grove-Petersen

Note that by a classical result of Cheeger, there is a universal
positive lower bound for InjRad(M) in terms of k ,D and v ,
where v , k are the lower bounds for the volume and sectional
curvature, respectively and D is an upper bound on the
diameter of Mn.

Moreover, we have the following Finiteness Theorem :

Theorem (Grove-Petersen, 1988)

Let Mn
1 ,M

n
2 be two manifolds having the same upper diameter

bound D, as well as the same lower bounds k and v, on their
curvatures and volumes, respectively. Then there exists
ε = ε(n, k ,D, v) such that, if M1 and M2 have minimal packings
with identical intersection patterns, then they are homotopy
equivalent.
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Bishop-Gromov

Since only volumes of balls arguments are employed, one can
replace the last condition by the more general one
RicM ≥ (n − 1)k .

The basic tool for proving the Lemmas is

Theorem (Bishop-Gromov)

Let (Mn,g) be a complete Riemannian manifold satisfying.
RicM ≥ (n − 1)k. Then, for any x ∈ M = Mn, the function

ϕ(r) =
VolB(x , r)∫ r
0 Sn

K (t)dt
,

is nonincreasing (as function of r ), where
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Bishop-Gromov – cont.

Sn
K (r) =



(
sin
√

K
n−1 r

)n−1
if K > 0

rn−1 if K = 0

(
sinh

√
|K |

n−1 r
)n−1

if K < 0

(Here Sn
K is the model space form.)

EMIL SAUCAN TRIANGULATION AND DISCRETIZATIONS OF METRIC MEASURE SPACES



INTRODUCTION TRIANGULATION DISCRETIZATIONS FIN

Apology

Warning !
We do not introduce here the definition(s) of (weak) CD(K ,N)
spaces, because

They are technically involved and lengthy..
...and
Because we do not wish “to bring owls to Athens”...
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Adaptation to MMSp

Theorem (Generalized Bishop-Gromov Inequality, Lott-Villani 2009,
Sturm 2006)

Let M be a Riemannian manifold equipped with a reference
measure ν = e−V Vol and satisfying a curvature-dimension
condition CD(K ,N), K ∈ R,1 < N <∞. Then, for any x ∈ M,
the function

ϕ(r) =
ν [B(x , r)]∫ r
0 SN

K (t)dt
,

is nonincreasing (as function of r ), where
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Adaptation to MMSp – cont.

SN
K (t) =



(
sin
√

K
N−1 t

)N−1
if K > 0

tN−1 if K = 0

(
sinh

√
|K |

N−1 t
)N−1

if K < 0

Remark
A similar – but technically more involved – result a holds for
weak CD(K ,N) spaces.

a. Sturm, 2006
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Adaptation to MMSp – cont.

Lemma

Let (X ,d , ν) be a compact weak CD(K ,N) space, N <∞, such
that Suppν = X and such that diamX ≤ D. Then there exists
n1 = n1(K ,N,D), such that if {p1, . . . ,pn0} is a minimal ε-net in
X, then n0 ≤ n1.

Remark
Note that, since N <∞, the condition Suppν = X imposes no
real restriction on X. a

a. Lott-Villani
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Adaptation to MMSp – cont.

Lemma

Let (X ,d , ν) be a compact weak CD(K ,N) space, N <∞, such
that Suppν = X and such that diamX ≤ D. Then there exists
n2 = n2(N,K ,D), such that, for any x ∈ Mn,∣∣{j |j = 1, . . . ,n0 and βn(x , ε) ∩ βn(pj , ε) 6= ∅}

∣∣ ≤ n2, for any
minimal ε-net {p1, . . . ,pn0}.

Lemma

Let (Mn
1 ,d1, ν1) and (Mn

2 ,d2, ν2) be as in the first Lemma, and
let {p1, . . . ,pn0} and {q1, . . . ,qn0} be minimal ε-nets with the
same intersection pattern, on Mn

1 , Mn
2 , respectively. Then there

exists a constant n3 = n3(N,K ,D,C), such that if
d1(pi ,pj) < C · ε, then d2(qi ,qj) < n3 · ε.
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Limits

• The existence of the triangulation follows now immediately,
since, by definition, weak CD(K ,N) spaces are geodesic.
Moreover, in nonbranching 1 spaces, the geodesics connecting
two vertices of the triangulation are unique a.e.

• Unfortunately, the lower bound on the sectional curvature is
essential for the proof of the Grove-Petersen Homotopy
Theorem. Therefore, one cannot formulate a similar theorem for
weak CD(K ,N) spaces. However, it is possible for weighted
manifolds, by imposing the additional constraint on sectional
curvature :

1. i.e. any two geodesics γ1, γ2 : [0, t ] → X that coincide on a subinterval
[0, t0], 0 < t0 < t , coincide on [0, t ].
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Limits – cont.

Theorem

Let (Mn
1 ,d1, ν1), (Mn

2 ,d2, ν2), νi = e−Vi dVol, Vi ∈ C2(R), i = 1,2
be smooth, compact metric measure spaces satisfying
CD(K ,N) for some K ∈ R and 1 < N <∞, and such that
diamMn

i < D, VolMn
i < v, i = 1,2 and, moreover, having the

same lower bound k on their sectional curvatures. Then there
exists ε = ε(N,K , k ,D, v) such that, if Mn

1 ,M
n
2 have minimal

packings with identical intersection patterns, they are homotopy
equivalent.
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QM

We can strengthen the simple result above, to render a
“geometrically nice” triangulation, namely we can formulate the
following

Proposition

Any smooth, compact metric measure space (Mn,d , ν)
satisfying CD(K ,N) admits a ϕ∗-thick triangulation, where
ϕ∗ = ϕ∗(n,d , ν).

Recall that thick (or fat) triangulations are defined as follows :
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Definition

Let τ ⊂ Rn; 0 ≤ k ≤ n be a k -dimensional simplex. The
thickness ϕ of τ is defined as being :

ϕ = ϕ(τ) = inf
σ<τ

dimσ = j

Volj(σ)

diamj σ
.

The infimum is taken over all the faces of τ , σ < τ , and Volj(σ)
and diamσj stand for the Euclidian j-volume and the diameter of
σ respectively. (If dimσ = 0, then Volj(σ) = 1, by convention.) A
simplex τ is ϕ0-thick, for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0. A
triangulation (of a submanifold of Rn) T = {σi}i∈I is ϕ0-thick if
all its simplices are ϕ0-thick. A triangulation T = {σi}i∈I is thick
if there exists ϕ0 ≥ 0 such that all its simplices are ϕ0-thick.
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This type of triangulations allows us, amongst others, to
construct 2 quasimeromorphic mappings :

Definition

Let Mn,Nn be oriented, Riemannian n-manifolds.
1 f : Mn → Nn is called quasiregular (qr ) iff

1 f is locally Lipschitz (and thus differentiable a.e.) ;
and

2 0 < |f ′(x)|n ≤ KJf (x), for any x ∈ Mn ;

where |f ′(x)| = sup
|h| = 1
|f ′(x)h|, and where Jf (x) = det f ′(x) ;

2 quasimeromorphic (qm) iff Nn = Sn.
The smallest number K that satisfies condition (b) above is
called the outer dilatation of f .

2. using the so called Alexander trick
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Remark

Usually Sn is identified with R̂n = Rn ∪ {∞} endowed with the
spherical metric.

Corollary

Any smooth, compact metric measure space (Mn,d , ν)
satisfying CD(K ,N) admits a non-constant quasimeromorphic
mapping f : Mn → Sn.

Remark
This result can be extended to m dimensional Alexandrov
spaces with curvature ≥ K .

(Recall that Alex [K ] ⊂ CD
(
(m − 1)K ,m)

)
. a)

a. Petrunin, 2009
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First Application : Information Geometry

The method of triangulation and qm mapping of weighted
Riemannian manifolds above represents a generalization of a
result classical in Information Geometry :

• Let A be a finite set, let fi(x), i = 1,2 be bounded distributions
on A, and let pi(x) = fi (x)∑

A fi (x) , viewed as probability densities on
A.

• The relative information between p1 and p2 (or the
Kullback-Leibler divergence) is defined as

KL(p1‖p2) =
∑

A

p1 log
(

p1

p2

)
,
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First Application : Information Geometry – cont.

• KL(p1‖p2) represents a generally accepted measure of the
divergence between the two given probabilities, but,
unfortunately, it fails to be a metric.

• However, it induces a Riemannian metric on P(A) – the
manifold of probability densities on A, namely the Fisher
information metric :

gFischer,p(∆) = KL(p,p + ∆) =
∑

A

∆(x)2

p(x)
,

where p ∈ P(A) is given and ∆ represents an infinitesimal
perturbation.
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First Application : Information Geometry – cont.

• It turns out that the Fisher information can be written as
Riemannian metric in the following form : gFischer,· = (gij), where

gij = Ep

(
∂l
∂θi ,

∂l
∂θj

)
,

where θ1, . . . , θk , k = |A| represent the coordinates on σ0,
l = log p is the so called log-likelihood and Ep(fg) denotes the
expectation of fg, Ep(fg) =

∫
fgdp.
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First Application : Information Geometry – cont.

• The correspondence p(x) 7→ u(x) = 2
√

p(x) maps the
probability simplex σ0 = {p(x) | x ∈ A,p(x) > 0,

∑
A p(x) = 1},

onto the first orthant of the sphere S =
∑

A u(x)2 = 4. This
mapping preserves the geometry, in the sense that the
geodesic distance between p,q ∈ σ0), measured in the Fisher
metric, equal the spherical distance between their images
(under the mapping above). Moreover, geodesics are mapped
to great circles.
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First Application : Information Geometry – cont.

To summarize :The quasimeromorphic mapping of a weighted
Riemannian manifold (Mn,d , ν) onto the n-dimensional unit
sphere Sn, represents a generalization of the considerents
above in two manners :

• It allows for the mapping with controlled and bounded
distortion (i.e. qm) of a more general class of Riemannian
manifolds (with arbitrary metrics) endowed with a variety of
(probability) measures, and not just of the standard statistical
model ;

• It permits the reduction to the study of the geometry of the
standard simplex in Sn, of the geometry of the whole
information manifold, and not just of the probability simplex.
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Kanai

We concentrate on unbounded spaces and generalize the work
of Kanai on discretizations of Riemannian manifolds to MMSp.

As before, we consider ε-nets N , with the further proviso
that they are maximal with respect to inclusion.
We call the graph G(N ) obtained as above (i.e the
1-skeleton of the simplicial complex constructed) a
discretization of X , with separation ε and covering radius ε,
(or a ε-separated net).
We say that G(N ) has bounded geometry iff there exists
ρ0 > 0, such that ρ(p) ≤ ρ0, for any vertex p ∈ N , where
ρ(p) denotes the degree of p.
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Kanai – cont.

Definition (Rough isometry)

Let (X ,d) and (Y , δ) be two metric spaces, and let f : X → Y
(not necessarily continuous). f is called a rough isometry iff

1 There exist a ≥ 1 and b > 0, such that

1
a

d(x1, x2)− b ≤ δ(f (x1), f (x2)) ≤ ad(x1, x2) + b ,

2 there exists ε1 such that⋃
x∈X

B(f (x), ε1) = Y ;

(that is f is ε1-full.)
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Kanai – cont.

Remark
1 Rough isometry represents an equivalence relation.
2 If diam(X ), diam(Y ) are finite, then X, Y are roughly

isometric.

We have the following theorem, that extends a result of Kanai
(1985), on Riemannian manifolds :

Theorem (Rough Isometry)

Let (X ,d , ν) be a weak CD(K ,N) space and let G be a
discretization of X . Then (X ,d) and (G,d), where d is the
combinatorial metric, are roughly isometric.
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Adaptation – cont.

Main tool in the proof of the theorem :

Lemma
Let (X ,d , ν) be a (weak) CD(K ,N) space, K ≤ 0,N <∞, and
let N be a ε-separated net. Then

1

|N ∩ B(x , r)| ≤
∫ 2r+ε/2

0 SN
K (t)dt∫ ε/2

0 SN
K (t)dt

,

2

ρ(p) ≤
∫ 4r+ε/2

0 SN
K (t)dt∫ ε/2

0 SN
K (t)dt

;

for any x ∈ X and r > 0.
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Kanai – cont.

Definition (Volume growth)

For x ∈ X and r > 0 we denote the “volume” growth function
by :

V(x , r) = ν[B(x , r)] . (3.1)

We say that X has exponential (volume) growth iff

lim
r→∞

sup
logV(x , r)

r
> 0 , (3.2)

and polynomial (volume) growth iff there exists k > 0 such that

V(x , r) ≤ C · r k , (3.3)

(C = const.) for all sufficiently large r .
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Kanai – cont.

Kanai’s main result in this direction is the following :

Lemma (Roughly isometric graphs have identical growth rate)

Let G and Γ be connected, roughly isometric graphs with
bounded geometry. Then G has polynomial (exponential)
growth iff Γ has polynomial (exponential) growth.

which we generalize as follows :
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Adaptation

Theorem (Weak CD(K ,N) spaces have the same growth as their
discretizations)

Let (X ,d , ν) be a weak CD(K ,N) space, K ≤ 0,N <∞,
satisfying the following non-collapsing condition :

(∗) There exist r0,V0 > 0 such that V(x , r0) ≥ V0, for all x ∈ X.

Let G be a discretization of X . Then X has polynomial
(exponential) volume growth iff G has polynomial (exponential)
volume growth.
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Adaptation – cont.

Corollary

Let X1, X2 be weak CD(K ,N) spaces, K ≤ 0,N <∞, satisfying
condition (∗) above. Then, if X1,X2 are roughly isometric, then
they have the same volume growth type.

Remark
The results above hold, a fortiori, for smooth metric measure
spaces as well.
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Adaptation – cont.
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Adaptation – cont.

“Ingredients” in the proof of the theorem :

The previous theorem

Estimates on V(x , r), more precisely :

|B(x ,ad(p1,p2) + b)| ≥ V(x , r) ≥
∫ r

0 SN
K (t)dt∫ r0

0 SN
K (t)dt

V0 .

where B denotes the ball in the combinatorial metric of G.
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Finis

Thank you for your attention !
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Finis

Thank you for your attention !
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