Triangulation and discretizations of metric measure spaces

Emil Saucan

Technion, Haifa
Toronto, November 1, 2010

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete)

Differential Geometry background.
Therefore, interested in :

- Geometry

Beyond the "BIG" Theorems: Bishop-Gromov,
Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare
Inequalities, etc.....

- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.

Therefore, interested in :

- Geometry

Beyond the "BIG" Theorems : Bishop-Gromov,

- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry

- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry

nequalities, etc
- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry Beyond the "BIG" Theorems

Inequalities, etc.

- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry Beyond the "BIG" Theorems : Bishop-Gromov, Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare Inequalities, etc.....
- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry Beyond the "BIG" Theorems : Bishop-Gromov, Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare Inequalities, etc.....
- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry Beyond the "BIG" Theorems : Bishop-Gromov, Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare Inequalities, etc.....
- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry Beyond the "BIG" Theorems : Bishop-Gromov, Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare Inequalities, etc.....
- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry

Beyond the "BIG" Theorems : Bishop-Gromov, Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare Inequalities, etc.....

- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Samnling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry

Beyond the "BIG" Theorems : Bishop-Gromov, Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare Inequalities, etc.....

- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry

Beyond the "BIG" Theorems : Bishop-Gromov, Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare Inequalities, etc.....

- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation

Point of view : Of a "newcomer", an "amateur", of (Discrete) Differential Geometry background.
Therefore, interested in :

- Geometry

Beyond the "BIG" Theorems : Bishop-Gromov, Bonnet-Myers, Brunn-Minkowski, Sobolev and Poincare Inequalities, etc.....

- Triangulations
- Discretizations
- Geodesics
- Applications
- Information Geometry
- Manifold Learning
- Sampling Theory

Motivation - cont.

- Image Processing and Analysis

Motivation - cont.

- Image Processing and Analysis

Efficient packings

Definition

Let $p_{1}, \ldots, p_{n_{0}}$ be points $\in M^{n}$, satisfying the following conditions:
(1) The set $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is an ε-net on M^{n}, i.e. the balls $\beta^{n}\left(p_{k}, \varepsilon\right), k=1, \ldots, n_{0}$ cover M^{n};
(2) The balls (in the intrinsic metric of $\left.M^{n}\right) \beta^{n}\left(p_{k}, \varepsilon / 2\right)$ are pairwise disjoint.

Efficient packings

Definition

Let $p_{1}, \ldots, p_{n_{0}}$ be points $\in M^{n}$, satisfying the following conditions :
(1) The set $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is an ε-net on M^{n}, i.e. the balls $\beta^{n}\left(p_{k}, \varepsilon\right), k=1, \ldots, n_{0}$ cover M^{n};
(2) The balls (in the intrinsic metric of $\left.M^{n}\right) \beta^{n}\left(p_{k}, \varepsilon / 2\right)$ are pairwise disjoint.
Then the set $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is called a minimal ε-net and the packing with the balls $\beta^{n}\left(p_{k}, \varepsilon / 2\right), k=1, \ldots, n_{0}$, is called an efficient packing.
The set $\left\{(k, I) \mid k, I=1, \ldots, n_{0}\right.$ and $\left.\beta^{n}\left(p_{k}, \varepsilon\right) \cap \beta^{n}\left(p_{l}, \varepsilon\right) \neq \emptyset\right\}$ is
called the intersection pattern of the minimal ε-net (of the efficient packing)

Efficient packings

Definition

Let $p_{1}, \ldots, p_{n_{0}}$ be points $\in M^{n}$, satisfying the following conditions:
(1) The set $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is an ε-net on M^{n}, i.e. the balls $\beta^{n}\left(p_{k}, \varepsilon\right), k=1, \ldots, n_{0}$ cover M^{n};
(2) The balls (in the intrinsic metric of $\left.M^{n}\right) \beta^{n}\left(p_{k}, \varepsilon / 2\right)$ are pairwise disjoint.
Then the set $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is called a minimal ε-net and the packing with the balls $\beta^{n}\left(p_{k}, \varepsilon / 2\right), k=1, \ldots, n_{0}$, is called an efficient packing.
The set $\left\{(k, I) \mid k, I=1, \ldots, n_{0}\right.$ and $\left.\beta^{n}\left(p_{k}, \varepsilon\right) \cap \beta^{n}\left(p_{l}, \varepsilon\right) \neq \emptyset\right\}$ is called the intersection pattern of the minimal ε-net (of the efficient packing).

Efficient packings - cont.

- In the following $M^{n}=\left(M^{n}, g\right)$ is a closed, connected n-dimensional Riemannian manifold with sectional curvature k_{M} bounded from below by k, diam M^{n} bounded from above by D, and $\operatorname{Vol} M^{n}$ bounded from below by v.
- Efficient packings have then the following important properties, which we list below
\square
\square
minimal $\varepsilon-n e t\left\{p_{1}\right.$

Efficient packings - cont.

- In the following $M^{n}=\left(M^{n}, g\right)$ is a closed, connected n-dimensional Riemannian manifold with sectional curvature k_{M} bounded from below by k, diam M^{n} bounded from above by D, and $\mathrm{Vol} M^{n}$ bounded from below by v.
- Efficient packings have then the following important properties, which we list below :

Efficient packings - cont.

- In the following $M^{n}=\left(M^{n}, g\right)$ is a closed, connected n-dimensional Riemannian manifold with sectional curvature k_{M} bounded from below by k, diam M^{n} bounded from above by D, and $\mathrm{Vol} M^{n}$ bounded from below by v.
- Efficient packings have then the following important properties, which we list below :

Lemma (Grove-Petersen, 1988)
There exists $n_{1}=n_{1}(n, k, D)$, such that if $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is a minimal ε-net on M^{n}, then $n_{0} \leq n_{1}$.

Efficient packings - cont.

- In the following $M^{n}=\left(M^{n}, g\right)$ is a closed, connected n-dimensional Riemannian manifold with sectional curvature k_{M} bounded from below by k, diam M^{n} bounded from above by D, and $\operatorname{Vol} M^{n}$ bounded from below by v.
- Efficient packings have then the following important properties, which we list below :

Lemma (Grove-Petersen, 1988)

There exists $n_{1}=n_{1}(n, k, D)$, such that if $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is a minimal ε-net on M^{n}, then $n_{0} \leq n_{1}$.

Lemma (Grove-Petersen, 1988)

There exists $n_{2}=n_{2}(n, k, D)$, such that for any $x \in M^{n}$, $\mid\left\{j \mid j=1, \ldots, n_{0}\right.$ and $\left.\beta^{n}(x, \varepsilon) \cap \beta^{n}\left(p_{j}, \varepsilon\right) \neq \emptyset\right\} \mid \leq n_{2}$, for any minimal ε-net $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$.

Efficient packings - cont.

> Lemma (Grove-Petersen, 1988)
> Let M_{1}^{n}, M_{2}^{n}, be manifolds having the same bounds $k=k_{1}=k_{2}$ and $D=D_{1}=D_{2}$ (see above) and let $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ and $\left\{q_{1}, \ldots, q_{n_{0}}\right\}$ be minimal ε-nets with the same intersection pattern, on M_{1}^{n}, M_{2}^{n}, respectively. Then there exists a constant $n_{3}=n_{3}(n, k, D, C)$, such that if $d\left(p_{i}, p_{j}\right)<C \cdot \varepsilon$, then $d\left(q_{i}, q_{j}\right)<n_{3} \cdot \varepsilon$.

This properties provide us with a simple triangulation method of closed, connected Riemannian manifolds. Indeed, we can construct a simplicial complex having as vertices the centers of the balls $\beta^{n}\left(p_{k}, \varepsilon\right)$, as follows

Efficient packings - cont.

> Lemma (Grove-Petersen, 1988)
> Let M_{1}^{n}, M_{2}^{n}, be manifolds having the same bounds $k=k_{1}=k_{2}$ and $D=D_{1}=D_{2}$ (see above) and let $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ and $\left\{q_{1}, \ldots, q_{n_{0}}\right\}$ be minimal ε-nets with the same intersection pattern, on M_{1}^{n}, M_{2}^{n}, respectively. Then there exists a constant $n_{3}=n_{3}(n, k, D, C)$, such that if $d\left(p_{i}, p_{j}\right)<C \cdot \varepsilon$, then $d\left(q_{i}, q_{j}\right)<n_{3} \cdot \varepsilon$.

This properties provide us with a simple triangulation method of closed, connected Riemannian manifolds. Indeed, we can construct a simplicial complex having as vertices the centers of the balls $\beta^{n}\left(p_{k}, \varepsilon\right)$, as follows :

Efficient packings - cont.

- Edges are connecting the centers of adjacent balls ; further edges being added to ensure the cell complex obtained is triangulated to obtain a simplicial complex.

Efficient packings - cont.

- Edges are connecting the centers of adjacent balls; further edges being added to ensure the cell complex obtained is triangulated to obtain a simplicial complex.

Efficient packings - cont.

- One can ensure that the triangulation will be convex and that its simplices are convex, by choosing $\varepsilon=\operatorname{ConvRad}\left(M^{n}\right)-$ the convexity radius of M^{n} :
$\operatorname{ConvRad}\left(M^{n}\right)=\inf \left\{r>0 \mid \beta^{n}(x, r)\right.$ is convex, for all $\left.x \in M^{n}\right\}$ (Note that: $\operatorname{ConvRad}\left(M^{n}\right) \geq \frac{1}{2} \operatorname{InjRad}\left(M^{n}\right)$, where $\operatorname{InjRad}\left(M^{n}\right)$ denotes the injectivity radius of M^{n}

$$
\operatorname{Inj} \operatorname{Rad}\left(M^{n}\right)=\inf \left\{\operatorname{Inj}(x) \mid x \in M^{n}\right\}
$$

where
$\operatorname{Inj}(x)=\sup \left\{r\left|\exp _{x}\right|_{\mathbb{B}^{n}(x, r)}\right.$ is a diffeomorphism $\left.\}.\right)$

Efficient packings - cont.

- One can ensure that the triangulation will be convex and that its simplices are convex, by choosing $\varepsilon=\operatorname{ConvRad}\left(M^{n}\right)-$ the convexity radius of M^{n} :
$\operatorname{ConvRad}\left(M^{n}\right)=\inf \left\{r>0 \mid \beta^{n}(x, r)\right.$ is convex, for all $\left.x \in M^{n}\right\}$.
(Note that: $\operatorname{ConvRad}\left(M^{n}\right) \geq \frac{1}{2} \operatorname{InjRad}\left(M^{n}\right)$, where $\operatorname{InjRad}\left(M^{n}\right)$ denotes the injectivity radius of M^{n}

$$
\operatorname{InjRad}\left(M^{n}\right)=\inf \left\{\operatorname{Inj}(x) \mid x \in M^{n}\right\}
$$

where
$\operatorname{Inj}(x)=\sup \left\{r\left|\exp _{x}\right|_{\mathbb{B}^{n}(x, r)}\right.$ is a diffeomorphism $\left.\}.\right)$

Efficient packings - cont.

- One can ensure that the triangulation will be convex and that its simplices are convex, by choosing $\varepsilon=\operatorname{ConvRad}\left(M^{n}\right)-$ the convexity radius of M^{n} :
$\operatorname{ConvRad}\left(M^{n}\right)=\inf \left\{r>0 \mid \beta^{n}(x, r)\right.$ is convex, for all $\left.x \in M^{n}\right\}$.
(Note that: $\operatorname{ConvRad}\left(M^{n}\right) \geq \frac{1}{2} \operatorname{InjRad}\left(M^{n}\right)$, where $\operatorname{InjRad}\left(M^{n}\right)$ denotes the injectivity radius of M^{n} :

where
$\operatorname{Inj}(x)=\sup \left\{r\left|\exp _{x}\right|_{\mathbb{B}^{n}(x, r)}\right.$ is a diffeomorphism $\left.\}.\right)$

Efficient packings - cont.

- One can ensure that the triangulation will be convex and that its simplices are convex, by choosing $\varepsilon=\operatorname{ConvRad}\left(M^{n}\right)-$ the convexity radius of M^{n} :
$\operatorname{ConvRad}\left(M^{n}\right)=\inf \left\{r>0 \mid \beta^{n}(x, r)\right.$ is convex, for all $\left.x \in M^{n}\right\}$.
(Note that: $\operatorname{ConvRad}\left(M^{n}\right) \geq \frac{1}{2} \operatorname{InjRad}\left(M^{n}\right)$, where $\operatorname{InjRad}\left(M^{n}\right)$ denotes the injectivity radius of M^{n} :

$$
\operatorname{InjRad}\left(M^{n}\right)=\inf \left\{\operatorname{Inj}(x) \mid x \in M^{n}\right\} ;
$$

where
$\operatorname{Inj}(x)=\sup \left\{r\left|\exp _{x}\right|_{\mathbb{B}^{n}(x, r)}\right.$ is a diffeomorphism $\left.\}.\right)$

Efficient packings - cont.

- One can ensure that the triangulation will be convex and that its simplices are convex, by choosing $\varepsilon=\operatorname{ConvRad}\left(M^{n}\right)-$ the convexity radius of M^{n} :
$\operatorname{ConvRad}\left(M^{n}\right)=\inf \left\{r>0 \mid \beta^{n}(x, r)\right.$ is convex, for all $\left.x \in M^{n}\right\}$.
(Note that: $\operatorname{ConvRad}\left(M^{n}\right) \geq \frac{1}{2} \operatorname{InjRad}\left(M^{n}\right)$, where $\operatorname{InjRad}\left(M^{n}\right)$ denotes the injectivity radius of M^{n} :

$$
\operatorname{InjRad}\left(M^{n}\right)=\inf \left\{\operatorname{Inj}(x) \mid x \in M^{n}\right\} ;
$$

where

$$
\left.\operatorname{Inj}(x)=\sup \left\{r\left|\exp _{x}\right|_{\mathbb{B}^{n}(x, r)} \text { is a diffeomorphism }\right\} .\right)
$$

Grove-Petersen

Note that by a classical result of Cheeger, there is a universal positive lower bound for $\operatorname{InjRad}(M)$ in terms of k, D and v, where v, k are the lower bounds for the volume and sectional curvature, respectively and D is an upper bound on the diameter of M^{n}.

Moreover, we have the following Finiteness Theorem

Let M_{1}^{n}, M_{2}^{n} be two manifolds having the same upper diameter bound D, as well as the same lower bounds k and v, on their curvatures and volumes, respectively. Then there exists $\varepsilon=\varepsilon(n, k, D, v)$ such that, if M_{1} and M_{2} have minimal packings with identical intersection patterns, then they are homotopy equivalent.

Grove-Petersen

Note that by a classical result of Cheeger, there is a universal positive lower bound for $\operatorname{InjRad}(M)$ in terms of k, D and v, where v, k are the lower bounds for the volume and sectional curvature, respectively and D is an upper bound on the diameter of M^{n}.

Moreover, we have the following Finiteness Theorem :

Grove-Petersen

Note that by a classical result of Cheeger, there is a universal positive lower bound for $\operatorname{InjRad}(M)$ in terms of k, D and v, where v, k are the lower bounds for the volume and sectional curvature, respectively and D is an upper bound on the diameter of M^{n}.

Moreover, we have the following Finiteness Theorem :

Theorem (Grove-Petersen, 1988)

Let M_{1}^{n}, M_{2}^{n} be two manifolds having the same upper diameter bound D, as well as the same lower bounds k and v, on their curvatures and volumes, respectively. Then there exists $\varepsilon=\varepsilon(n, k, D, v)$ such that, if M_{1} and M_{2} have minimal packings with identical intersection patterns, then they are homotopy equivalent.

Bishop-Gromov

Since only volumes of balls arguments are employed, one can replace the last condition by the more general one $\operatorname{Ric}_{M} \geq(n-1) k$.

The basic tool for proving the Lemmas is

is nonincreasing (as function of r), where

Bishop-Gromov

Since only volumes of balls arguments are employed, one can replace the last condition by the more general one $\operatorname{Ric}_{\mathrm{M}} \geq(n-1) k$.

The basic tool for proving the Lemmas is

is nonincreasing (as function of r), where

Bishop-Gromov

Since only volumes of balls arguments are employed, one can replace the last condition by the more general one $\operatorname{Ric}_{\mathrm{M}} \geq(n-1) k$.

The basic tool for proving the Lemmas is

Theorem (Bishop-Gromov)

Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold satisfying. $\operatorname{Ric}_{M} \geq(n-1) k$. Then, for any $x \in M=M^{n}$, the function

$$
\varphi(r)=\frac{\operatorname{Vol} B(x, r)}{\int_{0}^{r} S_{K}^{n}(t) d t},
$$

is nonincreasing (as function of r), where

Bishop-Gromov - cont.

$$
S_{K}^{n}(r)= \begin{cases}\left(\sin \sqrt{\frac{K}{n-1}} r\right)^{n-1} & \text { if } K>0 \\ r^{n-1} & \text { if } K=0 \\ \left(\sinh \sqrt{\frac{|K|}{n-1}} r\right)^{n-1} & \text { if } K<0\end{cases}
$$

(Here S_{K}^{n} is the model space form.)

Apology

Warning!
We do not introduce here the definition(s) of (weak) $\mathrm{CD}(\mathrm{K}, \mathrm{N})$ spaces, because

- They are technically involved and lengthy. ...and
- Because we do not wish "to bring owls to Athens"...

Apology

Warning!

We do not introduce here the definition(s) of (weak) $\mathrm{CD}(K, N)$ spaces, because

- They are technically involved and lengthy.. ...and
- Because we do not wish "to bring owls to Athens"...

Apology

Warning!

We do not introduce here the definition(s) of (weak) $\mathrm{CD}(K, N)$ spaces, because

- They are technically involved and lengthy..
- Because we do not wish "to bring owls to Athens"...

Apology

Warning!

We do not introduce here the definition(s) of (weak) $\mathrm{CD}(K, N)$ spaces, because

- They are technically involved and lengthy.. ...and
- Because we do not wish "to bring owls to Athens"...

Apology

Warning!

We do not introduce here the definition(s) of (weak) $\mathrm{CD}(K, N)$ spaces, because

- They are technically involved and lengthy.. ...and
- Because we do not wish "to bring owls to Athens"...

Apology

Warning!

We do not introduce here the definition(s) of (weak) $\mathrm{CD}(K, N)$ spaces, because

- They are technically involved and lengthy..
...and
- Because we do not wish "to bring owls to Athens"...

Adaptation to $M M S p$

Theorem (Generalized Bishop-Gromov Inequality, Lott-Villani 2009,
 Sturm 2006)

Let M be a Riemannian manifold equipped with a reference measure $\nu=e^{-V}$ Vol and satisfying a curvature-dimension condition $C D(K, N), K \in \mathbb{R}, 1<N<\infty$. Then, for any $x \in M$, the function

$$
\varphi(r)=\frac{\nu[B(x, r)]}{\int_{0}^{r} S_{K}^{N}(t) d t},
$$

is nonincreasing (as function of r), where

Adaptation to $M M S p$ - cont.

$$
S_{K}^{N}(t)= \begin{cases}\left(\sin \sqrt{\frac{K}{N-1}} t\right)^{N-1} & \text { if } K>0 \\ t^{N-1} & \text { if } K=0 \\ \left(\sinh \sqrt{\frac{|K|}{N-1}} t\right)^{N-1} & \text { if } K<0\end{cases}
$$

Remark

A similar - but technically more involved - resulta holds for weak $\mathrm{CD}(\mathrm{K}, \mathrm{N})$ spaces.
a. Sturm, 2006

Adaptation to $M M S p$ - cont.

$$
S_{K}^{N}(t)= \begin{cases}\left(\sin \sqrt{\frac{K}{N-1}} t\right)^{N-1} & \text { if } K>0 \\ t^{N-1} & \text { if } K=0 \\ \left(\sinh \sqrt{\frac{|K|}{N-1}} t\right)^{N-1} & \text { if } K<0\end{cases}
$$

Remark

A similar - but technically more involved - result ${ }^{\text {a }}$ holds for weak $\mathrm{CD}(K, N)$ spaces.
a. Sturm, 2006

Adaptation to $M M S p$ - cont.

Lemma

Let (X, d, ν) be a compact weak $\mathrm{CD}(K, N)$ space, $N<\infty$, such that $\operatorname{Supp} \nu=X$ and such that $\operatorname{diam} X \leq D$. Then there exists $n_{1}=n_{1}(K, N, D)$, such that if $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is a minimal ε-net in X, then $n_{0} \leq n_{1}$.

Remark

Note that, since $N<\infty$, the condition Supp $=X$ imposes no real restriction on X. a

Adaptation to MMSp - cont.

Lemma

Let (X, d, ν) be a compact weak $\mathrm{CD}(K, N)$ space, $N<\infty$, such that $\operatorname{Supp} \nu=X$ and such that $\operatorname{diam} X \leq D$. Then there exists $n_{1}=n_{1}(K, N, D)$, such that if $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ is a minimal ε-net in X, then $n_{0} \leq n_{1}$.

Remark

Note that, since $N<\infty$, the condition Supp $\nu=X$ imposes no real restriction on X. ${ }^{a}$
a. Lott-Villani

Adaptation to MMSp - cont.

Lemma

Let (X, d, ν) be a compact weak $\mathrm{CD}(K, N)$ space, $N<\infty$, such that Supp $\nu=X$ and such that diam $X \leq D$. Then there exists $n_{2}=n_{2}(N, K, D)$, such that, for any $x \in M^{n}$,
$\mid\left\{j \mid j=1, \ldots, n_{0}\right.$ and $\left.\beta^{n}(x, \varepsilon) \cap \beta^{n}\left(p_{j}, \varepsilon\right) \neq \emptyset\right\} \mid \leq n_{2}$, for any minimal ε-net $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$.

Adaptation to MMSp - cont.

Lemma

Let (X, d, ν) be a compact weak $\mathrm{CD}(K, N)$ space, $N<\infty$, such that $\operatorname{Supp} \nu=X$ and such that $\operatorname{diam} X \leq D$. Then there exists $n_{2}=n_{2}(N, K, D)$, such that, for any $x \in M^{n}$,
$\mid\left\{j \mid j=1, \ldots, n_{0}\right.$ and $\left.\beta^{n}(x, \varepsilon) \cap \beta^{n}\left(p_{j}, \varepsilon\right) \neq \emptyset\right\} \mid \leq n_{2}$, for any minimal ε-net $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$.

Lemma

Let $\left(M_{1}^{n}, d_{1}, \nu_{1}\right)$ and $\left(M_{2}^{n}, d_{2}, \nu_{2}\right)$ be as in the first Lemma, and let $\left\{p_{1}, \ldots, p_{n_{0}}\right\}$ and $\left\{q_{1}, \ldots, q_{n_{0}}\right\}$ be minimal ε-nets with the same intersection pattern, on M_{1}^{n}, M_{2}^{n}, respectively. Then there exists a constant $n_{3}=n_{3}(N, K, D, C)$, such that if $d_{1}\left(p_{i}, p_{j}\right)<C \cdot \varepsilon$, then $d_{2}\left(q_{i}, q_{j}\right)<n_{3} \cdot \varepsilon$.

Limits

- The existence of the triangulation follows now immediately, since, by definition, weak $\mathrm{CD}(K, N)$ spaces are geodesic. Moreover, in nonbranching ${ }^{1}$ spaces, the geodesics connecting two vertices of the triangulation are unique a.e.
- Unfortunately, the lower bound on the sectional curvature is essential for the proof of the Grove-Petersen Homotopy Theorem. Therefore, one cannot formulate a similar theorem for weak $\mathrm{CD}(K, N)$ spaces. However, it is possible for weighted manifolds, by imposing the additional constraint on sectional curvature

1. i.e. any two geodesics $\gamma_{1}, \gamma_{2}:[0, t] \rightarrow X$ that coincide on a subinterval $\left[0, t_{0}\right], 0<t_{0}<t$, coincide on $[0, t]$.

Limits

- The existence of the triangulation follows now immediately, since, by definition, weak $\mathrm{CD}(K, N)$ spaces are geodesic. Moreover, in nonbranching ${ }^{1}$ spaces, the geodesics connecting two vertices of the triangulation are unique a.e.
- Unfortunately, the lower bound on the sectional curvature is essential for the proof of the Grove-Petersen Homotopy
Theorem. Therefore, one cannot formulate a similar theorem for weak $\mathrm{CD}(K, N)$ spaces. However, it is possible for weighted manifolds, by imposing the additional constraint on sectional curvature :

[^0]
Limits - cont.

Theorem

Let $\left(M_{1}^{n}, d_{1}, \nu_{1}\right),\left(M_{2}^{n}, d_{2}, \nu_{2}\right), \nu_{i}=e^{-V_{i}} d V o l, V_{i} \in \mathcal{C}^{2}(\mathbb{R}), i=1,2$ be smooth, compact metric measure spaces satisfying $\mathrm{CD}(K, N)$ for some $K \in \mathbb{R}$ and $1<N<\infty$, and such that $\operatorname{diam} M_{i}^{n}<D, \operatorname{Vol} M_{i}^{n}<v, i=1,2$ and, moreover, having the same lower bound k on their sectional curvatures. Then there exists $\varepsilon=\varepsilon(N, K, k, D, v)$ such that, if M_{1}^{n}, M_{2}^{n} have minimal packings with identical intersection patterns, they are homotopy equivalent.

We can strengthen the simple result above, to render a "geometrically nice" triangulation, namely we can formulate the following

Proposition
Any smooth, compact metric measure space (M^{n}, d, v) satisfying $\mathrm{CD}(K, N)$ admits a φ^{*}-thick triangulation, where

Recall that thick (or fat) triangulations are defined as follows

$Q M$

We can strengthen the simple result above, to render a "geometrically nice" triangulation, namely we can formulate the following

Proposition

Any smooth, compact metric measure space (M^{n}, d, ν) satisfying $\mathrm{CD}(K, N)$ admits a φ^{*}-thick triangulation, where $\varphi^{*}=\varphi^{*}(n, d, \nu)$.

Recall that thick (or fat) triangulations are defined as follows

$Q M$

We can strengthen the simple result above, to render a "geometrically nice" triangulation, namely we can formulate the following

Proposition

Any smooth, compact metric measure space (M^{n}, d, ν) satisfying $\mathrm{CD}(K, N)$ admits a φ^{*}-thick triangulation, where $\varphi^{*}=\varphi^{*}(n, d, \nu)$.

Recall that thick (or fat) triangulations are defined as follows :

Definition

Let $\tau \subset \mathbb{R}^{n} ; 0 \leq k \leq n$ be a k-dimensional simplex. The thickness φ of τ is defined as being :

$$
\varphi=\varphi(\tau)=\inf _{\substack{\sigma<\tau \\ \operatorname{dim} \sigma=j}} \frac{\operatorname{Vol}_{j}(\sigma)}{\operatorname{diam}^{j} \sigma} .
$$

The infimum is taken over all the faces of $\tau, \sigma<\tau$, and $\operatorname{Vol}_{j}(\sigma)$ and $\operatorname{diam} \sigma^{j}$ stand for the Euclidian j-volume and the diameter of σ respectively. (If $\operatorname{dim} \sigma=0$, then $\operatorname{Vol}_{j}(\sigma)=1$, by convention.) A simplex τ is φ_{0}-thick, for some $\varphi_{0}>0$, if $\varphi(\tau) \geq \varphi_{0}$. A triangulation (of a submanifold of \mathbb{R}^{n}) $\mathcal{T}=\left\{\sigma_{i}\right\}_{i \in \mathrm{I}}$ is φ_{0}-thick if all its simplices are φ_{0}-thick. A triangulation $\mathcal{T}=\left\{\sigma_{i}\right\}_{i \in \mathbf{I}}$ is thick if there exists $\varphi_{0} \geq 0$ such that all its simplices are φ_{0}-thick.

Definition

Let $\tau \subset \mathbb{R}^{n} ; 0 \leq k \leq n$ be a k-dimensional simplex. The thickness φ of τ is defined as being :

$$
\varphi=\varphi(\tau)=\inf _{\substack{\sigma<\tau \\ \operatorname{dim} \sigma=j}} \frac{\operatorname{Vol}_{j}(\sigma)}{\operatorname{diam}^{\mathrm{j}} \sigma}
$$

The infimum is taken over all the faces of $\tau, \sigma<\tau$, and $\operatorname{Vol}_{j}(\sigma)$ and $\operatorname{diam} \sigma^{j}$ stand for the Euclidian j-volume and the diameter of σ respectively. (If $\operatorname{dim} \sigma=0$, then $\operatorname{Vol}_{j}(\sigma)=1$, by convention.) A simplex τ is φ_{0}-thick, for some $\varphi_{0}>0$, if $\varphi(\tau) \geq \varphi_{0}$. A triangulation (of a submanifold of \mathbb{R}^{n}) $\mathcal{T}=\left\{\sigma_{i}\right\}_{i \in \mathrm{I}}$ is φ_{0}-thick if all its simplices are φ_{0}-thick. A triangulation $\mathcal{T}=\left\{\sigma_{i}\right\}_{i \in \mathbf{I}}$ is thick if there exists $\varphi_{0} \geq 0$ such that all its simplices are φ_{0}-thick.

This type of triangulations allows us, amongst others, to construct ${ }^{2}$ quasimeromorphic mappings :

2. using the so called Alexander trick

This type of triangulations allows us, amongst others, to construct ${ }^{2}$ quasimeromorphic mappings :

Definition

Let M^{n}, N^{n} be oriented, Riemannian n-manifolds.
(1) $f: M^{n} \rightarrow N^{n}$ is called quasiregular (qr) iff
(1) f is locally Lipschitz (and thus differentiable a.e.); and
(2) $0<\left|f^{\prime}(x)\right|^{n} \leq K J_{f}(x)$, for any $x \in M^{n}$;
where $\left|f^{\prime}(x)\right|=\sup _{|h|=1}\left|f^{\prime}(x) h\right|$, and where $J_{f}(x)=\operatorname{det} f^{\prime}(x)$;
(2) quasimeromorphic (qm) iff $N^{n}=\mathbb{S}^{n}$.

The smallest number K that satisfies condition (b) above is called the outer dilatation of f.
2. using the so called Alexander trick

Emil Saucan
Triangulation and discretizations of metric measure s

Remark

Usually \mathbb{S}^{n} is identified with $\widehat{\mathbb{R}^{n}}=\mathbb{R}^{n} \cup\{\infty\}$ endowed with the spherical metric.

Corollary

Any smooth, compact metric measure space (M^{n}, d, ν) satisfying $\mathrm{CD}(K, N)$ admits a non-constant quasimeromorphic mapping $f: M^{n} \rightarrow \mathbb{S}^{n}$.

Remark

This result can be extended to m dimensional Alexandrov spaces with curvature $\geq K$.
(Recall that Alex $[K] \subset C D((m-1) K, m)) \cdot{ }^{a}$)
a. Petrunin, 2009

Remark

Usually \mathbb{S}^{n} is identified with $\widehat{\mathbb{R}^{n}}=\mathbb{R}^{n} \cup\{\infty\}$ endowed with the spherical metric.

Corollary

Any smooth, compact metric measure space (M^{n}, d, ν) satisfying $\mathrm{CD}(K, N)$ admits a non-constant quasimeromorphic mapping $f: M^{n} \rightarrow \mathbb{S}^{n}$.

Remark

This result can be extended to m dimensional Alexandrov spaces with curvature $\geq K$.
(Recall that Alex $[K] \subset C D((m-1) K, m)) \cdot{ }^{a}$)
a. Petrunin, 2009

First Application : Information Geometry

The method of triangulation and qm mapping of weighted Riemannian manifolds above represents a generalization of a result classical in Information Geometry:

- Let A be a finite set, let $f_{i}(x), i=1,2$ be bounded distributions on A, and let $p_{i}(x)=\frac{f_{i}(x)}{f_{i(x)}}$, viewed as probability densities on
- The relative information between p_{1} and p_{2} (or the Kullback-Leibler divergence) is defined as

First Application : Information Geometry

The method of triangulation and qm mapping of weighted Riemannian manifolds above represents a generalization of a result classical in Information Geometry:

- Let A be a finite set, let $f_{i}(x), i=1,2$ be bounded distributions on A, and let $p_{i}(x)=\frac{f_{i}(x)}{\sum_{A} f_{i}(x)}$, viewed as probability densities on A.

- The relative information between p_{1} and p_{2} (or the Kullback-Leibler divergence) is defined as

First Application : Information Geometry

The method of triangulation and qm mapping of weighted Riemannian manifolds above represents a generalization of a result classical in Information Geometry:

- Let A be a finite set, let $f_{i}(x), i=1,2$ be bounded distributions on A, and let $p_{i}(x)=\frac{f_{i}(x)}{\sum_{A} f_{i}(x)}$, viewed as probability densities on A.
- The relative information between p_{1} and p_{2} (or the Kullback-Leibler divergence) is defined as

$$
K L\left(p_{1} \| p_{2}\right)=\sum_{A} p_{1} \log \left(\frac{p_{1}}{p_{2}}\right)
$$

First Application : Information Geometry - cont.

- $K L\left(p_{1} \| p_{2}\right)$ represents a generally accepted measure of the divergence between the two given probabilities, but, unfortunately, it fails to be a metric.
- However, it induces a Riemannian metric on $P(A)$ - the manifold of probability densities on A, namely the Fisher information metric

where $p \in P(A)$ is given and Δ represents an infinitesimal

 perturbation.
First Application : Information Geometry - cont.

- $K L\left(p_{1} \| p_{2}\right)$ represents a generally accepted measure of the divergence between the two given probabilities, but, unfortunately, it fails to be a metric.
- However, it induces a Riemannian metric on $P(A)$ - the manifold of probability densities on A, namely the Fisher information metric :

$$
g_{\text {Fischer }, p}(\Delta)=K L(p, p+\Delta)=\sum_{A} \frac{\Delta(x)^{2}}{p(x)},
$$

where $p \in P(A)$ is given and Δ represents an infinitesimal perturbation.

First Application : Information Geometry - cont.

- It turns out that the Fisher information can be written as Riemannian metric in the following form : $g_{\text {Fischer, }}=\left(g_{i j}\right)$, where

First Application : Information Geometry - cont.

- It turns out that the Fisher information can be written as Riemannian metric in the following form : $g_{\text {Fischer, }}=\left(g_{i j}\right)$, where

$$
g_{i j}=E_{p}\left(\frac{\partial \mathbf{I}}{\partial \theta^{i}}, \frac{\partial \mathbf{I}}{\partial \theta^{j}}\right),
$$

where $\theta^{1}, \ldots, \theta^{k}, k=|A|$ represent the coordinates on σ_{0}, $\mathbf{I}=\log p$ is the so called \log-likelihood and $E_{p}(f g)$ denotes the expectation of $f g, E_{p}(f g)=\int f g d p$.

First Application : Information Geometry - cont.

- The correspondence $p(x) \mapsto u(x)=2 \sqrt{p(x)}$ maps the probability simplex $\sigma_{0}=\left\{p(x) \mid x \in A, p(x)>0, \sum_{A} p(x)=1\right\}$, onto the first orthant of the sphere $S=\sum_{A} u(x)^{2}=4$. This mapping preserves the geometry, in the sense that the geodesic distance between $p, q \in \sigma_{0}$), measured in the Fisher metric, equal the spherical distance between their images (under the mapping above). Moreover, geodesics are mapped to great circles.

First Application : Information Geometry - cont.

To summarize :The quasimeromorphic mapping of a weighted Riemannian manifold (M^{n}, d, ν) onto the n-dimensional unit sphere \mathbb{S}^{n}, represents a generalization of the considerents above in two manners

- It allows for the mapping with controlled and bounded distortion (i.e. qm) of a more general class of Riemannian manifolds (with arbitrary metrics) endowed with a variety of (probability) measures, and not just of the standard statistical model ;
- It permits the reduction to the study of the geometry of the standard simplex in \mathbb{S}^{n}, of the geometry of the whole information manifold, and not just of the probability simplex.

First Application : Information Geometry - cont.

To summarize :The quasimeromorphic mapping of a weighted Riemannian manifold (M^{n}, d, ν) onto the n-dimensional unit sphere \mathbb{S}^{n}, represents a generalization of the considerents above in two manners :

- It allows for the mapping with controlled and bounded distortion (i.e. qm) of a more general class of Riemannian manifolds (with arbitrary metrics) endowed with a variety of (probability) measures, and not just of the standard statistical model
- It permits the reduction to the study of the geometry of the standard simplex in \mathbb{S}^{n}, of the geometry of the whole information manifold, and not just of the probability simplex.

First Application : Information Geometry - cont.

To summarize :The quasimeromorphic mapping of a weighted Riemannian manifold (M^{n}, d, ν) onto the n-dimensional unit sphere \mathbb{S}^{n}, represents a generalization of the considerents above in two manners :

- It allows for the mapping with controlled and bounded distortion (i.e. qm) of a more general class of Riemannian manifolds (with arbitrary metrics) endowed with a variety of (probability) measures, and not just of the standard statistical model;
- It permits the reduction to the study of the geometry of the standard simplex in \mathbb{S}^{n}, of the geometry of the whole information manifold, and not just of the probability simplex.

First Application : Information Geometry - cont.

To summarize :The quasimeromorphic mapping of a weighted Riemannian manifold (M^{n}, d, ν) onto the n-dimensional unit sphere \mathbb{S}^{n}, represents a generalization of the considerents above in two manners :

- It allows for the mapping with controlled and bounded distortion (i.e. qm) of a more general class of Riemannian manifolds (with arbitrary metrics) endowed with a variety of (probability) measures, and not just of the standard statistical model ;
- It permits the reduction to the study of the geometry of the standard simplex in \mathbb{S}^{n}, of the geometry of the whole information manifold, and not just of the probability simplex.

Kanai

We concentrate on unbounded spaces and generalize the work of Kanai on discretizations of Riemannian manifolds to MMSp.

- As before, we consider ε-nets \mathcal{N}, with the further proviso that they are maximal with respect to inclusion.
- We call the graph $G(\mathcal{N})$ obtained as above (i.e the 1-skeleton of the simplicial complex constructed) a discretization of X, with separation ε and covering radius ε, (or a ε-separated net).
- We say that $G(\mathcal{N})$ has bounded geometry iff there exists $\rho_{0}>0$, such that $\rho(p) \leq \rho_{0}$, for any vertex $p \in \mathcal{N}$, where $\rho(p)$ denotes the degree of p.

Kanai

We concentrate on unbounded spaces and generalize the work of Kanai on discretizations of Riemannian manifolds to MMSp.

- As before, we consider ε-nets \mathcal{N}, with the further proviso that they are maximal with respect to inclusion.
- We call the graph $G(\mathcal{N})$ obtained as above (i.e the 1-skeleton of the simplicial complex constructed) a discretization of X, with
- We say that $G(\mathcal{N})$ has bounded geometry iff there exists $\rho_{0}>0$, such that $\rho(p) \leq \rho_{0}$, for any vertex $p \in \mathcal{N}$, where $\rho(p)$ denotes the degree of p.

Kanai

We concentrate on unbounded spaces and generalize the work of Kanai on discretizations of Riemannian manifolds to MMSp.

- As before, we consider ε-nets \mathcal{N}, with the further proviso that they are maximal with respect to inclusion.
- We call the graph $G(\mathcal{N})$ obtained as above (i.e the 1-skeleton of the simplicial complex constructed) a discretization of X, with separation ε and covering radius ε, (or a ε-separated net).
- We say that $G(\mathcal{N})$ has bounded geometry iff there exists $\rho_{0}>0$, such that $\rho(p) \leq \rho_{0}$, for any vertex $p \in \mathcal{N}$, where $\rho(p)$ denotes the degree of p.

Kanai

We concentrate on unbounded spaces and generalize the work of Kanai on discretizations of Riemannian manifolds to MMSp.

- As before, we consider ε-nets \mathcal{N}, with the further proviso that they are maximal with respect to inclusion.
- We call the graph $G(\mathcal{N})$ obtained as above (i.e the 1-skeleton of the simplicial complex constructed) a discretization of X, with separation ε and covering radius ε, (or a ε-separated net).
- We say that $G(\mathcal{N})$ has bounded geometry iff there exists $\rho_{0}>0$, such that $\rho(p) \leq \rho_{0}$, for any vertex $p \in \mathcal{N}$, where $\rho(p)$ denotes the degree of p.

Kanai - cont.

Definition (Rough isometry)

Let (X, d) and (Y, δ) be two metric spaces, and let $f: X \rightarrow Y$ (not necessarily continuous). f is called a rough isometry iff
(1) There exist $a \geq 1$ and $b>0$, such that

$$
\frac{1}{a} d\left(x_{1}, x_{2}\right)-b \leq \delta\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq a d\left(x_{1}, x_{2}\right)+b
$$

(2) there exists ε_{1} such that

$$
\bigcup_{x \in X} B\left(f(x), \varepsilon_{1}\right)=Y ;
$$

(that is f is $\varepsilon_{1}-f u l l$.)

Remark

(1) Rough isometry represents an equivalence relation.
(2) If $\operatorname{diam}(X), \operatorname{diam}(Y)$ are finite, then X, Y are roughly isometric.

We have the following theorem, that extends a result of Kanai (1985), on Riemannian manifolds

> Theorem (Rough Isometry)
> Let (X, d, ν) be a weak $C D(K, N)$ space and let G be a discretization of X. Then (X, d) and (G, d), where d is the combinatorial metric, are roughly isometric.

Kanai - cont.

Remark

(1) Rough isometry represents an equivalence relation.
(2) If $\operatorname{diam}(X), \operatorname{diam}(Y)$ are finite, then X, Y are roughly isometric.

We have the following theorem, that extends a result of Kanai (1985), on Riemannian manifolds :

Kanai - cont.

Remark

(1) Rough isometry represents an equivalence relation.
(2) If $\operatorname{diam}(X), \operatorname{diam}(Y)$ are finite, then X, Y are roughly isometric.

We have the following theorem, that extends a result of Kanai (1985), on Riemannian manifolds :

Theorem (Rough Isometry)

Let (X, d, ν) be a weak $\mathrm{CD}(K, N)$ space and let G be a discretization of X. Then (X, d) and $(G, \mathrm{~d})$, where d is the combinatorial metric, are roughly isometric.

Adaptation - cont.

Main tool in the proof of the theorem :

```
Lemma
Let ( }X,d,\nu)\mathrm{ be a (weak) CD (K,N) space, K < 0,N< , and
let \mathcal{N}\mathrm{ be a }\varepsilon\mathrm{ -separated net. Then}
```


for any $x \in X$ and r

Adaptation - cont.

Main tool in the proof of the theorem :

Lemma

Let (X, d, ν) be a (weak) $\mathrm{CD}(K, N)$ space, $K \leq 0, N<\infty$, and let \mathcal{N} be a ε-separated net. Then
(1)

$$
|\mathcal{N} \cap B(x, r)| \leq \frac{\int_{0}^{2 r+\varepsilon / 2} S_{K}^{N}(t) d t}{\int_{0}^{\varepsilon / 2} S_{K}^{N}(t) d t},
$$

(2)

$$
\rho(p) \leq \frac{\int_{0}^{4 r+\varepsilon / 2} S_{K}^{N}(t) d t}{\int_{0}^{\varepsilon / 2} S_{K}^{N}(t) d t} ;
$$

for any $x \in X$ and $r>0$.

Kanai - cont.

Definition (Volume growth)

For $x \in X$ and $r>0$ we denote the "volume" growth function by :

$$
\begin{equation*}
\mathcal{V}(x, r)=\nu[B(x, r)] . \tag{3.1}
\end{equation*}
$$

We say that X has exponential (volume) growth iff

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup \frac{\log \mathcal{V}(x, r)}{r}>0 \tag{3.2}
\end{equation*}
$$

and polynomial (volume) growth iff there exists $k>0$ such that

$$
\begin{equation*}
\mathcal{V}(x, r) \leq C \cdot r^{k} \tag{3.3}
\end{equation*}
$$

($C=$ const.) for all sufficiently large r.

Kanai - cont.

Kanai's main result in this direction is the following :

> Lemma (Roughly isometric graphs have identical growth rate)
> Let G and Γ be connected, roughly isometric graphs with bounded geometry. Then G has polynomial (exponential) growth iff Γ has polynomial (exponential) growth.

which we generalize as follows :

Kanai - cont.

Kanai's main result in this direction is the following :

Lemma (Roughly isometric graphs have identical growth rate)
Let G and Γ be connected, roughly isometric graphs with bounded geometry. Then G has polynomial (exponential) growth iff Γ has polynomial (exponential) growth.
which we generalize as follows

Kanai - cont.

Kanai's main result in this direction is the following :

Abstract

Lemma (Roughly isometric graphs have identical growth rate) Let G and Γ be connected, roughly isometric graphs with bounded geometry. Then G has polynomial (exponential) growth iff Γ has polynomial (exponential) growth.

which we generalize as follows :

Adaptation

Theorem (Weak spaces have the same growth as their

discretizations)

Let (X, d, ν) be a weak $\mathrm{CD}(K, N)$ space, $K \leq 0, N<\infty$, satisfying the following non-collapsing condition :
(*) There exist $r_{0}, \mathcal{V}_{0}>0$ such that $\mathcal{V}\left(x, r_{0}\right) \geq \mathcal{V}_{0}$, for all $x \in X$.
Let G be a discretization of X. Then X has polynomial (exponential) volume growth iff G has polynomial (exponential) volume growth.

Adaptation - cont.

Corollary

Let X_{1}, X_{2} be weak $\mathrm{CD}(K, N)$ spaces, $K \leq 0, N<\infty$, satisfying condition (*) above. Then, if X_{1}, X_{2} are roughly isometric, then they have the same volume growth type.

Remark
The results above hold, a fortiori, for smooth metric measure spaces as well.

Adaptation - cont.

Corollary

Let X_{1}, X_{2} be weak $\mathrm{CD}(K, N)$ spaces, $K \leq 0, N<\infty$, satisfying condition ($*$) above. Then, if X_{1}, X_{2} are roughly isometric, then they have the same volume growth type.

Remark

The results above hold, a fortiori, for smooth metric measure spaces as well.

Adaptation - cont.

"Ingredients" in the proof of the theorem :

- The previous theorem
- Estimates on $\mathcal{V}(x, r)$, more precisely :

where \mathcal{B} denotes the ball in the combinatorial metric of G.

Adaptation - cont.

"Ingredients" in the proof of the theorem :

- The previous theorem
- Estimates on $\mathcal{V}(x, r)$, more precisely :

where \mathcal{B} denotes the ball in the combinatorial metric of G.

Adaptation - cont.

"Ingredients" in the proof of the theorem :

- The previous theorem
- Estimates on $\mathcal{V}(x, r)$, more precisely :

where \mathcal{B} denotes the ball in the combinatorial metric of G.

Adaptation - cont.

"Ingredients" in the proof of the theorem :

- The previous theorem
- Estimates on $\mathcal{V}(x, r)$, more precisely :

$$
\left|\mathcal{B}\left(x, a d\left(p_{1}, p_{2}\right)+b\right)\right| \geq \mathcal{V}(x, r) \geq \frac{\int_{0}^{r} S_{K}^{N}(t) d t}{\int_{0}^{r_{0}} S_{K}^{N}(t) d t} \mathcal{V}_{0}
$$

where \mathcal{B} denotes the ball in the combinatorial metric of G.

Finis

Thank you for your attention!

Finis

Thank you for your attention!

[^0]: 1. i.e. any two geodesics $\gamma_{1}, \gamma_{2}:[0, t] \rightarrow X$ that coincide on a subinterval $\left[0, t_{0}\right], 0<t_{0}<t$, coincide on $[0, t]$.
