A Generalization of Caffarelli's Contraction Theorem via (reverse) Heat-Flow

Emanuel Milman

University of Toronto and Fields Institute

Fields Institute November 5, 2010

joint with Young-Heon Kim, UBC.

A Generalization of Caffarelli's Contraction Theorem via (reverse) Heat-Flow

Emanuel Milman

University of Toronto and Fields Institute

Fields Institute November 5, 2010

joint with Young-Heon Kim, UBC.

Outline

- Optimal Transport and Caffarelli's Contraction Theorem.
- Recall some applications of CCT.
- State Generalization of CCT.
- New Applications.
- Ideas in Proof.
- Challenge.

Monge (Monge–Kantorovich) Transport Problem (~ 1781)

Let μ, ν be two Borel probability measures on \mathbb{R}^n , $\mu << Leb$, $\int |x|^2 d\mu$, $\int |x|^2 d\nu < \infty$.

Among all maps $T : \mathbb{R}^n \to \mathbb{R}^n$ pushing forward μ onto ν , $(\nu = \mu \circ T^{-1}, \text{"}T : \mu \mapsto \nu\text{"})$, minimize $\int |T(x) - x|^2 d\mu(x)$.

Thm (Brenier '91, McCann '95)

Minimizing $T = T_{opt}$ exists, unique (μ -a.e.), and characterized by $T_{opt} = \nabla \varphi$, $\varphi : \mathbb{R}^n \to \mathbb{R}$ convex.

Thms (Caffarelli 90's)

Regularity Theory for the Monge-Ampére equation

$$det D^2 \varphi(x) = \frac{f(x)}{g(\nabla \varphi(x))}$$
, $\mu = f(x) dx$, $\nu = g(x) dx$

Monge (Monge–Kantorovich) Transport Problem (∼ 1781)

Let μ, ν be two Borel probability measures on \mathbb{R}^n , $\mu << Leb$, $\int |x|^2 d\mu$, $\int |x|^2 d\nu < \infty$.

Among all maps $T: \mathbb{R}^n \to \mathbb{R}^n$ pushing forward μ onto ν , $(\nu = \mu \circ T^{-1}, \text{"}T: \mu \mapsto \nu\text{"})$, minimize $\int |T(x) - x|^2 d\mu(x)$.

Thm (Brenier '91, McCann '95)

Minimizing $T = T_{opt}$ exists, unique (μ -a.e.), and characterized by $T_{opt} = \nabla \varphi$, $\varphi : \mathbb{R}^n \to \mathbb{R}$ convex.

Thms (Caffarelli 90's)

Regularity Theory for the Monge-Ampére equation:

$$det D^2 \varphi(x) = rac{f(x)}{g(
abla \varphi(x))} \; , \; \mu = f(x) dx \; , \;
u = g(x) dx \; .$$

Monge (Monge–Kantorovich) Transport Problem (∼ 1781)

Let μ, ν be two Borel probability measures on \mathbb{R}^n , $\mu << Leb$, $\int |x|^2 d\mu$, $\int |x|^2 d\nu < \infty$.

Among all maps $T : \mathbb{R}^n \to \mathbb{R}^n$ pushing forward μ onto ν , $(\nu = \mu \circ T^{-1}, \text{"}T : \mu \mapsto \nu\text{"})$, minimize $\int |T(x) - x|^2 d\mu(x)$.

Thm (Brenier '91, McCann '95)

Minimizing $T=T_{opt}$ exists, unique (μ -a.e.), and characterized by $T_{opt}=\nabla \varphi$, $\varphi:\mathbb{R}^n\to\mathbb{R}$ convex.

Thms (Caffarelli 90's)

Regularity Theory for the Monge-Ampére equation:

$$det D^2 \varphi(x) = \frac{f(x)}{g(\nabla \varphi(x))}$$
, $\mu = f(x) dx$, $\nu = g(x) dx$.

Monge (Monge–Kantorovich) Transport Problem (∼ 1781)

Let μ, ν be two Borel probability measures on \mathbb{R}^n , $\mu << Leb$, $\int |x|^2 d\mu$, $\int |x|^2 d\nu < \infty$.

Among all maps $T: \mathbb{R}^n \to \mathbb{R}^n$ pushing forward μ onto ν , $(\nu = \mu \circ T^{-1}, \text{"}T: \mu \mapsto \nu\text{"})$, minimize $\int |T(x) - x|^2 d\mu(x)$.

Thm (Brenier '91, McCann '95)

Minimizing $T=T_{opt}$ exists, unique (μ -a.e.), and characterized by $T_{opt}=\nabla \varphi$, $\varphi:\mathbb{R}^n\to\mathbb{R}$ convex.

Thms (Caffarelli 90's)

Regularity Theory for the Monge–Ampére equation:

$$det D^2 arphi(x) = rac{f(x)}{g(
abla arphi(x))} \; , \; \mu = f(x) dx \; , \;
u = g(x) dx \; .$$

Thm (Caffarelli, 2000)

Assume $\mu = c \exp(-Q(x)) dx$ and $\nu = \mu \exp(-V)$, with:

$$Q(x) = \langle Ax, x \rangle \ (A \ge 0) \ , \ V \text{ is convex} \ .$$

Then $T_{opt}: \mu \mapsto \nu$ is a contraction:

$$|T_{opt}(x) - T_{opt}(y)| \leq |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

Applications

- Transferring isoperimetric and Sobolev inequalities.
- Transferring Poincaré inequalities (Brascamp–Lieb, B-conjecture).
- Correlation Inequalities.
- More...

Thm (Caffarelli, 2000)

Assume $\mu = c \exp(-Q(x)) dx$ and $\nu = \mu \exp(-V)$, with:

$$Q(x) = \langle Ax, x \rangle \ (A \ge 0) \ , \ V \text{ is convex} \ .$$

Then $T_{opt}: \mu \mapsto \nu$ is a contraction:

$$|T_{opt}(x) - T_{opt}(y)| \le |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

Applications:

- Transferring isoperimetric and Sobolev inequalities.
- Transferring Poincaré inequalities (Brascamp-Lieb, B-conjecture).
- Correlation Inequalities.
- More...

Thm (Caffarelli, 2000)

Assume $\mu = c \exp(-Q(x)) dx$ and $\nu = \mu \exp(-V)$, with:

$$Q(x) = \langle Ax, x \rangle \ (A \ge 0) \ , \ V \text{ is convex} \ .$$

Then $T_{opt}: \mu \mapsto \nu$ is a contraction:

$$|T_{opt}(x) - T_{opt}(y)| \le |x - y| \quad \forall x, y \in \mathbb{R}^n.$$

Applications:

- Transferring isoperimetric and Sobolev inequalities.
- Transferring Poincaré inequalities (Brascamp–Lieb, B-conjecture).
- Correlation Inequalities.
- More...

Thm (Caffarelli, 2000)

Assume $\mu = c \exp(-Q(x)) dx$ and $\nu = \mu \exp(-V)$, with:

$$Q(x) = \langle Ax, x \rangle \ (A \ge 0) \ , \ V \text{ is convex} \ .$$

Then $T_{opt}: \mu \mapsto \nu$ is a contraction:

$$|T_{opt}(x) - T_{opt}(y)| \le |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

Applications:

- Transferring isoperimetric and Sobolev inequalities.
- Transferring Poincaré inequalities (Brascamp–Lieb, B-conjecture).
- Correlation Inequalities.
- More...

Thm (Caffarelli, 2000)

Assume $\mu = c \exp(-Q(x)) dx$ and $\nu = \mu \exp(-V)$, with:

$$Q(x) = \langle Ax, x \rangle \ (A \ge 0) \ , \ V \text{ is convex} \ .$$

Then $T_{opt}: \mu \mapsto \nu$ is a contraction:

$$|T_{opt}(x) - T_{opt}(y)| \le |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

Applications:

- Transferring isoperimetric and Sobolev inequalities.
- Transferring Poincaré inequalities (Brascamp-Lieb, B-conjecture).
- Correlation Inequalities.
- More...

Thm (Caffarelli, 2000)

Assume $\mu = c \exp(-Q(x)) dx$ and $\nu = \mu \exp(-V)$, with:

$$Q(x) = \langle Ax, x \rangle \ (A \ge 0) \ , \ V \text{ is convex} \ .$$

Then $T_{opt}: \mu \mapsto \nu$ is a contraction:

$$|T_{opt}(x) - T_{opt}(y)| \leq |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

Applications:

- Transferring isoperimetric and Sobolev inequalities.
- Transferring Poincaré inequalities (Brascamp–Lieb, B-conjecture).
- Correlation Inequalities.
- More...

- γ_n standard Gaussian measure on $(\mathbb{R}^n, |\cdot|)$.
- K, L two convex subsets of \mathbb{R}^n , K = -K, L = -L.

Gaussian Correlation Conjecture (Das Gupta, Eaton, Olkin, Perlman, Savage and Sobel 1972)

$$\gamma_n(K \cap L) \geq \gamma_n(K)\gamma_n(L)$$
 ?

Pitt (1977) confirmed for n = 2, $n \ge 3$ still open.

Thm (Hargé 1999, Cordero-Erausquin 2002)

True if K (or L) is a centered ellipsoid.

- γ_n standard Gaussian measure on $(\mathbb{R}^n, |\cdot|)$.
- K, L two convex subsets of \mathbb{R}^n , K = -K, L = -L.

Gaussian Correlation Conjecture (Das Gupta, Eaton, Olkin, Perlman, Savage and Sobel 1972)

$$\gamma_n(K \cap L) \geq \gamma_n(K)\gamma_n(L)$$
 ?

Pitt (1977) confirmed for n = 2, $n \ge 3$ still open.

Thm (Hargé 1999, Cordero-Erausquin 2002)

True if K (or L) is a centered ellipsoid.

- γ_n standard Gaussian measure on $(\mathbb{R}^n, |\cdot|)$.
- K, L two convex subsets of \mathbb{R}^n , K = -K, L = -L.

Gaussian Correlation Conjecture (Das Gupta, Eaton, Olkin, Perlman, Savage and Sobel 1972)

$$\gamma_n(K \cap L) \geq \gamma_n(K)\gamma_n(L)$$
 ?

Pitt (1977) confirmed for n = 2, $n \ge 3$ still open.

Thm (Hargé 1999, Cordero-Erausquin 2002)

True if K (or L) is a centered ellipsoid.

- γ_n standard Gaussian measure on $(\mathbb{R}^n, |\cdot|)$.
- K, L two convex subsets of \mathbb{R}^n , K = -K, L = -L.

Gaussian Correlation Conjecture (Das Gupta, Eaton, Olkin, Perlman, Savage and Sobel 1972)

$$\gamma_n(K \cap L) \geq \gamma_n(K)\gamma_n(L)$$
 ?

Pitt (1977) confirmed for n = 2, $n \ge 3$ still open.

Thm (Hargé 1999, Cordero-Erausquin 2002)

True if K (or L) is a centered ellipsoid.

- γ_n standard Gaussian measure on $(\mathbb{R}^n, |\cdot|)$.
- K, L two convex subsets of \mathbb{R}^n , K = -K, L = -L.

Gaussian Correlation Conjecture (Das Gupta, Eaton, Olkin, Perlman, Savage and Sobel 1972)

$$\gamma_n(K \cap L) \geq \gamma_n(K)\gamma_n(L)$$
 ?

Pitt (1977) confirmed for n = 2, $n \ge 3$ still open.

Thm (Hargé 1999, Cordero-Erausquin 2002)

True if K (or L) is a centered ellipsoid.

Thm (Hargé 1999, Cordero-Erausquin 2002)

If \mathcal{E} is a centered ellipsoid, then:

$$\gamma_n(\mathcal{E} \cap L) \ge \gamma_n(\mathcal{E})\gamma_n(L) \quad \forall L = -L \text{ convex }.$$

If $\mathcal{E} = A(B_2^n)$, set $\mu = \gamma_n \circ A$. Want to show:

$$\mu(B_2^n \cap L) \ge \mu(B_2^n)\mu(L) \quad \forall L = -L \text{ convex }$$

Set $\nu = (\mu \mathbf{1}_L)/\mu(L)$. Want to show:

$$\nu(B_2^n) = \frac{\mu(B_2^n \cap L)}{\mu(L)} \ge \mu(B_2^n) .$$

$$\nu(B_2^n) = \mu(T_{opt}^{-1}(B_2^n)) \ge \mu(B_2^n) . \quad \Box$$

Thm (Hargé 1999, Cordero-Erausquin 2002)

If \mathcal{E} is a centered ellipsoid, then:

$$\gamma_n(\mathcal{E} \cap L) \ge \gamma_n(\mathcal{E})\gamma_n(L) \quad \forall L = -L \text{ convex }.$$

If $\mathcal{E} = A(B_2^n)$, set $\mu = \gamma_n \circ A$. Want to show:

$$\mu(B_2^n \cap L) \ge \mu(B_2^n)\mu(L) \ \ \forall L = -L \ \text{convex}$$
 .

Set $\nu = (\mu \mathbf{1}_L)/\mu(L)$. Want to show:

$$\nu(B_2^n) = \frac{\mu(B_2^n \cap L)}{\mu(L)} \ge \mu(B_2^n) .$$

$$\nu(B_2^n) = \mu(T_{opt}^{-1}(B_2^n)) \ge \mu(B_2^n) . \quad \Box$$

Thm (Hargé 1999, Cordero-Erausquin 2002)

If \mathcal{E} is a centered ellipsoid, then:

$$\gamma_n(\mathcal{E} \cap L) \ge \gamma_n(\mathcal{E})\gamma_n(L) \quad \forall L = -L \text{ convex }.$$

If $\mathcal{E} = A(B_2^n)$, set $\mu = \gamma_n \circ A$. Want to show:

$$\mu(\mathcal{B}_2^n\cap L)\geq \mu(\mathcal{B}_2^n)\mu(L) \ \ \forall L=-L \ \text{convex}$$
 .

Set $\nu = (\mu \mathbf{1}_L)/\mu(L)$. Want to show:

$$\nu(B_2^n) = \frac{\mu(B_2^n \cap L)}{\mu(L)} \ge \mu(B_2^n) .$$

$$\nu(B_2^n) = \mu(T_{opt}^{-1}(B_2^n)) \ge \mu(B_2^n) . \quad \Box$$

Thm (Hargé 1999, Cordero-Erausquin 2002)

If \mathcal{E} is a centered ellipsoid, then:

$$\gamma_n(\mathcal{E} \cap L) \ge \gamma_n(\mathcal{E})\gamma_n(L) \quad \forall L = -L \text{ convex }.$$

If $\mathcal{E} = A(B_2^n)$, set $\mu = \gamma_n \circ A$. Want to show:

$$\mu(B_2^n\cap L)\geq \mu(B_2^n)\mu(L) \ \ \forall L=-L \ {
m convex}$$
 .

Set $\nu = (\mu \mathbf{1}_L)/\mu(L)$. Want to show:

$$\nu(B_2^n) = \frac{\mu(B_2^n \cap L)}{\mu(L)} \ge \mu(B_2^n) .$$

$$\nu(B_2^n) = \mu(T_{opt}^{-1}(B_2^n)) \ge \mu(B_2^n)$$
. \square

Conclusion

Thm (Caffarelli, 2000)

Assume $\mu = c \exp(-Q(x)) dx$ and $\nu = \mu \exp(-V)$, with:

$$Q(x) = \langle Ax, x \rangle \ (A \ge 0) \ , \ V \text{ is convex} \ .$$

Then $T_{opt}: \mu \mapsto \nu$ is a contraction:

$$|T_{opt}(x) - T_{opt}(y)| \leq |x - y| \quad \forall x, y \in \mathbb{R}^n.$$

Very useful in applications.

However, leaves room for improvement:

- $\mu = Gaussian$.
- *T_{opt}* optimal-transport map:
 - Non-constructive.
 - Analysis requires Caffarelli's regularity theory.

Conclusion

Thm (Caffarelli, 2000)

Assume $\mu = c \exp(-Q(x)) dx$ and $\nu = \mu \exp(-V)$, with:

$$Q(x) = \langle Ax, x \rangle \ (A \ge 0) \ , \ V \text{ is convex} \ .$$

Then $T_{opt}: \mu \mapsto \nu$ is a contraction:

$$|T_{opt}(x) - T_{opt}(y)| \leq |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

Very useful in applications.

However, leaves room for improvement:

- $\mu = \text{Gaussian}$.
- Topt optimal-transport map:
 - Non-constructive.
 - Analysis requires Caffarelli's regularity theory.

Thm (Kim and M. 2010)

Fix $\mathbb{R}^n = \underline{E_0} \oplus \underline{E_1} \oplus \ldots \oplus \underline{E_k}$ orthogonal decomposition.

Assume $\mu = \exp(-U(x))dx$ and $\nu = \mu \exp(-V)$, where:

$$U(x) = Q(P_{E_0}x) + \sum_{i=1}^{\kappa} \rho_i(|P_{E_i}x|),$$

$$(
ho_i^{(2)} \geq 0)$$
 and $ho_i^{(3)} \leq 0$ on \mathbb{R}_+ (e.g. $ho_i(t) = t^{
ho_i}, \,
ho_i \in (0,2])$;

$$V$$
 is convex and $V(x) = v(P_{E_0}x, |P_{E_1}x|, ..., |P_{E_k}x|)$.

$$|T(x)-T(y)| \leq |x-y| \quad \forall x,y \in \mathbb{R}^n$$
.

- $E_0 = \mathbb{R}^n$ recovers Caffarelli's Thm (with different T).
- $E_1 = \mathbb{R}^n$ $U = \rho(|x|)$, V = v(|x|) are radial.
- $E_0 = 0$ and $dim(E_i) = 1 U = \sum \rho_i(|x_i|) \Rightarrow \mu$ is product; V is convex and unconditional.

Thm (Kim and M. 2010)

Fix $\mathbb{R}^n = \underline{E_0} \oplus \underline{E_1} \oplus \ldots \oplus \underline{E_k}$ orthogonal decomposition.

Assume $\mu = \exp(-U(x))dx$ and $\nu = \mu \exp(-V)$, where:

$$U(x) = Q(P_{E_0}x) + \sum_{i=1}^{\kappa} \rho_i(|P_{E_i}x|),$$

$$(\rho_i^{(2)} \ge 0)$$
 and $\rho_i^{(3)} \le 0$ on \mathbb{R}_+ (e.g. $\rho_i(t) = t^{p_i}, p_i \in (0,2]$);

$$V$$
 is convex and $V(x) = v(P_{E_0}x, |P_{E_1}x|, ..., |P_{E_k}x|)$.

$$|T(x) - T(y)| \le |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

- $E_0 = \mathbb{R}^n$ recovers Caffarelli's Thm (with different T).
- $E_1 = \mathbb{R}^n U = \rho(|x|), V = \nu(|x|)$ are radial.
- $E_0 = 0$ and $dim(E_i) = 1 U = \sum \rho_i(|x_i|) \Rightarrow \mu$ is product; V is convex and unconditional.

Thm (Kim and M. 2010)

Fix $\mathbb{R}^n = \underline{E_0} \oplus \underline{E_1} \oplus \ldots \oplus \underline{E_k}$ orthogonal decomposition.

Assume $\mu = \exp(-U(x))dx$ and $\nu = \mu \exp(-V)$, where:

$$U(x) = Q(P_{E_0}x) + \sum_{i=1}^{\kappa} \rho_i(|P_{E_i}x|),$$

$$(
ho_i^{(2)} \geq 0)$$
 and $ho_i^{(3)} \leq 0$ on \mathbb{R}_+ (e.g. $ho_i(t) = t^{
ho_i}, \,
ho_i \in (0,2])$;

$$V$$
 is convex and $V(x) = v(P_{E_0}x, |P_{E_1}x|, ..., |P_{E_k}x|)$.

$$|T(x) - T(y)| \le |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

- $E_0 = \mathbb{R}^n$ recovers Caffarelli's Thm (with different T).
- $E_1 = \mathbb{R}^n U = \rho(|x|), V = \nu(|x|)$ are radial.
- $E_0 = 0$ and $dim(E_i) = 1 U = \sum \rho_i(|x_i|) \Rightarrow \mu$ is product; V is convex and unconditional.

Thm (Kim and M. 2010)

Fix $\mathbb{R}^n = \underline{E_0} \oplus \underline{E_1} \oplus \ldots \oplus \underline{E_k}$ orthogonal decomposition.

Assume $\mu = \exp(-U(x))dx$ and $\nu = \mu \exp(-V)$, where:

$$U(x) = Q(P_{E_0}x) + \sum_{i=1}^{\kappa} \rho_i(|P_{E_i}x|),$$

$$(
ho_i^{(2)} \geq 0)$$
 and $ho_i^{(3)} \leq 0$ on \mathbb{R}_+ (e.g. $ho_i(t) = t^{
ho_i}, \, p_i \in (0,2]$);

$$V$$
 is convex and $V(x) = v(P_{E_0}x, |P_{E_1}x|, \dots, |P_{E_k}x|)$.

$$|T(x) - T(y)| \le |x - y| \quad \forall x, y \in \mathbb{R}^n$$
.

- $E_0 = \mathbb{R}^n$ recovers Caffarelli's Thm (with different T).
- $E_1 = \mathbb{R}^n U = \rho(|x|), V = v(|x|)$ are radial.
- $E_0 = 0$ and $dim(E_i) = 1 U = \sum \rho_i(|x_i|) \Rightarrow \mu$ is product; V is convex and unconditional.

Applications

Generalizes all the applications mentioned.

Corollary (Generalized Correlation Inequality)

Fix $\mathbb{R}^n = E_0 \oplus E_1 \oplus \ldots \oplus E_k$ orthogonal decomposition

Assume $\mu = \exp(-U(x))dx$, with:

$$U(x) = Q(P_{E_0}x) + \sum_{i=1}^{\kappa} \rho_i(|P_{E_i}x|) , \ \rho_i^{(3)} \le 0 \text{ on } \mathbb{R}_+ .$$

Let L = -L convex such that:

$$\exists C_L \subset \mathbb{R}^{dimE_0+k} \quad \mathbf{1}_L(x) = \mathbf{1}_{C_L}(P_{E_0}x, |P_{E_1}x|, \dots, |P_{E_k}x|) \ .$$

Let K = -K such that if $(x_0, x_1, \dots, x_k) \in K$ then:

$$\forall y_0 \in E_0 \ \|y_0\|_{\mathcal{E}} \le \|x_0\|_{\mathcal{E}} \ \forall t_i \in [-1,1] \ (y_0, t_1x_1, \ldots, t_kx_k) \in K.$$

Then:

$$\mu(K \cap L) \ge \mu(K)\mu(L)$$

Applications

Generalizes all the applications mentioned.

Corollary (Generalized Correlation Inequality)

Fix $\mathbb{R}^n = \underline{E_0} \oplus \underline{E_1} \oplus \ldots \oplus \underline{E_k}$ orthogonal decomposition.

Assume $\mu = \exp(-U(x))dx$, with:

$$U(x) = Q(P_{E_0}x) + \sum_{i=1}^{\kappa} \rho_i(|P_{E_i}x|), \ \rho_i^{(3)} \leq 0 \text{ on } \mathbb{R}_+.$$

Let L = -L convex such that:

$$\exists C_L \subset \mathbb{R}^{\dim E_0 + k} \quad \mathbf{1}_L(x) = \mathbf{1}_{C_L}(P_{E_0}x, |P_{E_1}x|, \dots, |P_{E_k}x|).$$

Let K = -K such that if $(x_0, x_1, \dots, x_k) \in K$ then:

$$\forall y_0 \in E_0 \quad \|y_0\|_{\mathcal{E}} \leq \|x_0\|_{\mathcal{E}} \ \forall t_i \in [-1,1] \ \left(y_0, t_1 x_1, \ldots, t_k x_k\right) \in K \ .$$

Then:

$$\mu(K \cap L) \geq \mu(K)\mu(L)$$
.

Other Applications: Transferring isoperimetric inequalities

Fact: Lipschitz maps transfer isoperimetric inequalities

Assume
$$T:(\Omega_1, d_1, \mu_1) \rightarrow (\Omega_2, d_2, \mu_2), T: \mu_1 \mapsto \mu_2$$
 and:

$$d_2(T(x), T(y)) \leq d_1(x, y) \quad \forall x, y \in \Omega_1.$$

If
$$\mu_1(\partial A) \geq \mathcal{I}(\mu_1(A)) \ \forall A$$
, then $\mu_2(\partial B) \geq \mathcal{I}(\mu_2(B)) \ \forall B$.

Corollary of Generalized CCT (particular case)

Let $\mu = c \exp(-\sum_{i=1}^{n} |x_i|^p), p \in (0, 2]$. It is known that:

$$\mu(\partial A) \geq \mathcal{I}_{p,n}(\mu(A))$$

Set $\nu=(\mu\mathbf{1}_L)/\mu(L),\,L\subset\mathbb{R}^n$ unconditional and convex. Then:

$$\nu(\partial B) \geq \mathcal{I}_{p,n}(\nu(B))$$

Other Applications: Transferring isoperimetric inequalities

Fact: Lipschitz maps transfer isoperimetric inequalities

Assume $T: (\Omega_1, d_1, \mu_1) \rightarrow (\Omega_2, d_2, \mu_2), T: \mu_1 \mapsto \mu_2$ and:

$$d_2(T(x), T(y)) \leq d_1(x, y) \quad \forall x, y \in \Omega_1$$
.

If $\mu_1(\partial A) \geq \mathcal{I}(\mu_1(A)) \ \forall A$, then $\mu_2(\partial B) \geq \mathcal{I}(\mu_2(B)) \ \forall B$.

Corollary of Generalized CCT (particular case)

Let $\mu = c \exp(-\sum_{i=1}^{n} |x_i|^p)$, $p \in (0,2]$. It is known that:

$$\mu(\partial A) \geq \mathcal{I}_{p,n}(\mu(A))$$
.

Set $\nu = (\mu \mathbf{1}_L)/\mu(L)$, $L \subset \mathbb{R}^n$ unconditional and convex. Then:

$$\nu(\partial B) \geq \mathcal{I}_{p,n}(\nu(B))$$
.

$$\frac{d}{dt}f = Lf := \Delta f - \langle \nabla f, \nabla U \rangle , \ f|_{t=0} = f_0 .$$

$$P_t(\exp(-V)) \rightarrow \int \exp(-V)d\mu = |\nu| = 1$$
.

$$u_0 =
u = \mu \exp(-V) \quad o \quad
u_t := \mu P_t(\exp(-V)) \quad o \quad
u_\infty = \mu \ .$$

We construct $T^{-1}: \nu \mapsto \mu$, and show it is expanding.

 T^{-1} is constructed by following heat-flow with drift, transforming $\nu = \mu \exp(-V)$ into $\mu = \exp(-U(x))dx$.

Denote by $P_t(f_0)$ the solution to:

$$\frac{d}{dt}f = Lf := \Delta f - \langle \nabla f, \nabla U \rangle , \ f|_{t=0} = f_0 .$$

 $P_t = \exp(tL)$ is the associated semi-group.

L and P_t are self-adjoint on $L_2(\mu)$, $\mu = \exp(-U(x))dx$.

 P_t preserves total μ -mass, and (under mild assumptions) converges to the constant stationary distribution:

$$P_t(\exp(-V)) o \int \exp(-V) d\mu = |\nu| = 1$$
.

Interpolation:

$$u_0 =
u = \mu \exp(-V) \rightarrow
u_t := \mu P_t(\exp(-V)) \rightarrow
u_\infty = \mu.$$

 $T^{-1} := \lim_{t \to \infty} S_t$, where $S_t : \nu \mapsto \nu_t$ are diffeomorphisms

We construct $T^{-1}: \nu \mapsto \mu$, and show it is expanding.

 T^{-1} is constructed by following heat-flow with drift, transforming $\nu = \mu \exp(-V)$ into $\mu = \exp(-U(x))dx$.

Denote by $P_t(f_0)$ the solution to:

$$\frac{d}{dt}f = Lf := \Delta f - \langle \nabla f, \nabla U \rangle , \ f|_{t=0} = f_0 .$$

 $P_t = \exp(tL)$ is the associated semi-group.

L and P_t are self-adjoint on $L_2(\mu)$, $\mu = \exp(-U(x))dx$. P_t preserves total μ -mass, and (under mild assumptions) converges to the constant stationary distribution:

$$P_t(\exp(-V)) \rightarrow \int \exp(-V)d\mu = |\nu| = 1$$
.

Interpolation

$$u_0 =
u = \mu \exp(-V) \quad o \quad
u_t := \mu P_t(\exp(-V)) \quad o \quad
u_\infty = \mu .$$

 $T^{-1} := \lim_{t \to \infty} S_t$, where $S_t : \nu \mapsto \nu_t$ are diffeomorphisms

We construct $T^{-1}: \nu \mapsto \mu$, and show it is expanding.

 T^{-1} is constructed by following heat-flow with drift, transforming $\nu = \mu \exp(-V)$ into $\mu = \exp(-U(x))dx$.

Denote by $P_t(f_0)$ the solution to:

$$\frac{d}{dt}f = Lf := \Delta f - \langle \nabla f, \nabla U \rangle , \ f|_{t=0} = f_0 .$$

 $P_t = \exp(tL)$ is the associated semi-group.

L and P_t are self-adjoint on $L_2(\mu)$, $\mu = \exp(-U(x))dx$. P_t preserves total μ -mass, and (under mild assumptions) converges to the constant stationary distribution:

$$P_t(\exp(-V)) \rightarrow \int \exp(-V)d\mu = |\nu| = 1$$
.

Interpolation

$$u_0 = \nu = \mu \exp(-V) \rightarrow \nu_t := \mu P_t(\exp(-V)) \rightarrow \nu_\infty = \mu.$$

 $T^{-1}:=\lim_{t\to\infty}S_t$, where $S_t:
u\mapsto
u_t$ are diffeomorphisms.

The Construction of T

We construct $T^{-1}: \nu \mapsto \mu$, and show it is expanding.

 T^{-1} is constructed by following heat-flow with drift, transforming $\nu = \mu \exp(-V)$ into $\mu = \exp(-U(x))dx$.

Denote by $P_t(f_0)$ the solution to:

$$\frac{d}{dt}f = Lf := \Delta f - \langle \nabla f, \nabla U \rangle , \ f|_{t=0} = f_0 .$$

 $P_t = \exp(tL)$ is the associated semi-group.

L and P_t are self-adjoint on $L_2(\mu)$, $\mu = \exp(-U(x))dx$.

 P_t preserves total μ -mass, and (under mild assumptions) converges to the constant stationary distribution:

$$P_t(\exp(-V))
ightarrow \int \exp(-V) d\mu = |
u| = 1$$
.

Interpolation

$$u_0 = \nu = \mu \exp(-V) \rightarrow \nu_t := \mu P_t(\exp(-V)) \rightarrow \nu_\infty = \mu.$$

 $T^{-1}:= {\sf lim}_{t o\infty}\, S_t$, where $S_t:
u\mapsto
u_t$ are diffeomorphisms

The Construction of T

We construct $T^{-1}: \nu \mapsto \mu$, and show it is expanding.

 T^{-1} is constructed by following heat-flow with drift, transforming $\nu = \mu \exp(-V)$ into $\mu = \exp(-U(x))dx$.

Denote by $P_t(f_0)$ the solution to:

$$\frac{d}{dt}f = Lf := \Delta f - \langle \nabla f, \nabla U \rangle , \ f|_{t=0} = f_0 .$$

 $P_t = \exp(tL)$ is the associated semi-group.

L and P_t are self-adjoint on $L_2(\mu)$, $\mu = \exp(-U(x))dx$.

 P_t preserves total μ -mass, and (under mild assumptions) converges to the constant stationary distribution:

$$P_t(\exp(-V)) o \int \exp(-V) d\mu = |\nu| = 1.$$

Interpolation:

$$\nu_0 = \nu = \mu \exp(-V) \rightarrow \nu_t := \mu P_t(\exp(-V)) \rightarrow \nu_\infty = \mu$$
.

 $T^{-1} := \lim_{t \to \infty} S_t$, where $S_t : \nu \mapsto v_t$ are diffeomorphisms.

$$\begin{split} \nu_0 &= \nu = \mu \exp(-V) & \mapsto_{S_t} & \nu_t := \mu P_t(\exp(-V)) & \to_{t \to \infty} & \nu_\infty = \mu \,. \\ & \frac{d}{dt} P_t(\exp(-V)) = (\Delta - \langle \nabla, \nabla U \rangle) \, P_t(\exp(-V)) & \text{(Eulerian)} \,. \end{split}$$

Construct S_t as flow along time-dependent vector-field W_t :

$$\frac{d}{dt}S_t(x) = W_t(S_t(x)) \; , \; S_0 = Id \; \; \text{(Lagrangian)} \; .$$

To determine W_t , use Continuity Equation:

$$rac{d}{dt}
u_t +
abla \cdot (
u_t W_t) = 0 \ \Rightarrow \ W_t := -
abla \log P_t(\exp(-V)) \ ext{(advection)} \ .$$

$$\begin{split} \nu_0 &= \nu = \mu \exp(-V) & \mapsto_{S_t} & \nu_t := \mu P_t(\exp(-V)) & \to_{t \to \infty} & \nu_\infty = \mu \,. \\ & \frac{d}{dt} P_t(\exp(-V)) = (\Delta - \langle \nabla, \nabla \textit{U} \rangle) \, P_t(\exp(-V)) \quad \text{(Eulerian)} \,. \end{split}$$

Construct S_t as flow along time-dependent vector-field W_t :

$$\frac{d}{dt}S_t(x) = W_t(S_t(x)), S_0 = Id$$
 (Lagrangian).

To determine W_t , use Continuity Equation:

$$\frac{d}{dt}
u_t +
abla \cdot (
u_t W_t) = 0 \ \Rightarrow \ W_t := -
abla \log P_t(\exp(-V)) \ (ext{advection}) \ .$$

$$u_0 = \nu = \mu \exp(-V) \quad \mapsto_{S_t} \quad \nu_t := \mu P_t(\exp(-V)) \quad \to_{t \to \infty} \quad \nu_\infty = \mu.$$

$$\frac{d}{dt} P_t(\exp(-V)) = (\Delta - \langle \nabla, \nabla U \rangle) P_t(\exp(-V)) \quad \text{(Eulerian)}.$$

Construct S_t as flow along time-dependent vector-field W_t :

$$\frac{d}{dt}S_t(x) = W_t(S_t(x)), S_0 = Id$$
 (Lagrangian).

To determine W_t , use Continuity Equation:

$$\frac{d}{dt} v_t + \nabla \cdot (v_t W_t) = 0 \implies W_t := -\nabla \log P_t(\exp(-V))$$
 (advection) .

$$u_0 = \nu = \mu \exp(-V) \quad \mapsto_{S_t} \quad \nu_t := \mu P_t(\exp(-V)) \quad \to_{t \to \infty} \quad \nu_\infty = \mu.$$

$$\frac{d}{dt} P_t(\exp(-V)) = (\Delta - \langle \nabla, \nabla U \rangle) P_t(\exp(-V)) \quad \text{(Eulerian)}.$$

Construct S_t as flow along time-dependent vector-field W_t :

$$\frac{d}{dt}S_t(x) = W_t(S_t(x)), S_0 = Id$$
 (Lagrangian).

To determine W_t , use Continuity Equation:

$$\frac{d}{dt} v_t + \nabla \cdot (v_t W_t) = 0 \implies W_t := -\nabla \log P_t(\exp(-V))$$
 (advection) .

The Reduction

Reduction

When does heat-flow w.r.t. $\mu = \exp(-U(x))dx$:

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0,$$

preserve log-concavity: $-\log P_t(f_0)$ remains convex $\forall t \geq 0$?

Example: $\mu=$ Gaussian ($\emph{U}=\emph{Q}$) "Ornstein–Uhlenbeck"

By the Mehler formula, it is known that:

$$P_t(f_0) = \operatorname{rescaled}_{t} f_0 * \operatorname{Gaussian}_{t}$$
.

By Prékopa—Leindler Thm, P_t preserves log-concavity, immediately recovering Caffarelli's Thm (with different map T).

The Reduction

Reduction

When does heat-flow w.r.t. $\mu = \exp(-U(x))dx$:

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0,$$

preserve log-concavity: $-\log P_t(f_0)$ remains convex $\forall t \geq 0$?

Example: $\mu = \text{Gaussian} (U = Q)$ "Ornstein-Uhlenbeck"

By the Mehler formula, it is known that:

$$P_t(f_0) = \operatorname{rescaled}_{t} f_0 * \operatorname{Gaussian}_{t}$$
.

By Prékopa–Leindler Thm, P_t preserves log-concavity, immediately recovering Caffarelli's Thm (with different map T).

The Reduction (continued)

Thm (Kolesnikov '01)

For general initial log-concave data $f_0 = \exp(-V)$, only Ornstein–Uhlenbeck (U = Q) preserves log-concavity.

Observation ("inherent tradeoff")

For less general convex V, log-concavity may still be preserved by more general U.

Thm (Kim and M. 10)

Let $P_t(f_0)$ denote solution to:

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0$$

With previous assmpts, $-\log P_t(\exp(-V))$ is convex $\forall t \geq 0$.

The Reduction (continued)

Thm (Kolesnikov '01)

For general initial log-concave data $f_0 = \exp(-V)$, only Ornstein–Uhlenbeck (U = Q) preserves log-concavity.

Observation ("inherent tradeoff")

For less general convex V, log-concavity may still be preserved by more general U.

Thm (Kim and M. 10)

Let $P_t(f_0)$ denote solution to

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0.$$

With previous assmpts, $-\log P_t(\exp(-V))$ is convex $\forall t \geq 0$.

The Reduction (continued)

Thm (Kolesnikov '01)

For general initial log-concave data $f_0 = \exp(-V)$, only Ornstein–Uhlenbeck (U = Q) preserves log-concavity.

Observation ("inherent tradeoff")

For less general convex V, log-concavity may still be preserved by more general U.

Thm (Kim and M. 10)

Let $P_t(f_0)$ denote solution to:

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0.$$

With previous assmpts, $-\log P_t(\exp(-V))$ is convex $\forall t \geq 0$.

Classical PDE problem (Korevaar, Caffarelli–Spruck, Kawohl ...). One of key methods is maximum principle.

New - Geometric ideas + technical points previously not treated:

• Reduce to Dirichlet boundary valued problem on $B(R) \times [0, T]$:

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0, \ f|_{\partial B(R) \times [0,T]} \equiv \mathbf{0}.$$

- Show that f remains log-concave near the parabolic boundary $\partial B(R) \times [0, T]$: $D^2(-\log f) = -\frac{D^2 f}{f} + \frac{\nabla f \otimes \nabla f}{f^2} \ge 0$?
 - Problem: $f \notin C^{2;1}(\overline{B(R)} \times [0, T])$!
 - $\partial_{n,n}$ assume $\langle \nabla f_0, n \rangle > 0$ and use Hopf strong principle.
 - $\partial_{t,*}$ use strong convexity of $\partial B(R)$ + extra regularity.
- Set $V := -\log f$, and assume V_0 is strictly convex. V satisfies:

$$\frac{d}{dt}V = \Delta V - \langle \nabla V, \nabla U \rangle - \langle \nabla V, \nabla V \rangle , \ V|_{t=0} = V_0.$$

Apply maximum principle to $D_{e,e}V$. Assume $D_{e,e}V(x_0,t_0)=0$:

• Reduce to Dirichlet boundary valued problem on $B(R) \times [0, T]$:

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0, \ f|_{\partial B(R) \times [0,T]} \equiv 0.$$

- Show that f remains log-concave near the parabolic boundary $\partial B(R) \times [0, T]$: $D^2(-\log f) = -\frac{D^2 f}{f} + \frac{\nabla f \otimes \nabla f}{f^2} \ge 0$?
 - Problem: $f \notin C^{2;1}(\overline{B(R)} \times [0, T])$!
 - $\partial_{n,n}$ assume $\langle \nabla f_0, n \rangle > 0$ and use Hopf strong principle.
 - $\partial_{t,*}$ use strong convexity of $\partial B(R)$ + extra regularity.
- Set $V := -\log f$, and assume V_0 is strictly convex. V satisfies:

$$\frac{d}{dt}V = \Delta V - \langle \nabla V, \nabla U \rangle - \langle \nabla V, \nabla V \rangle , \ V|_{t=0} = V_0 .$$

Apply maximum principle to $D_{e,e}V$. Assume $D_{e,e}V(x_0,t_0)=0$:

$$0 \ge (\frac{d}{dt} - \Delta)(D_{e,e}V) = -D^3U(e,e,\nabla V).$$

To obtain contradiction, need:

$$0 \geq D^3 U(e, e,
abla V) = \sum_{i=1}^n
ho_i^{(3)}(|x_i|) |e_i|^2 \ \mathcal{D}_i V \ \mathsf{sign}(x_i).$$

• Reduce to Dirichlet boundary valued problem on $B(R) \times [0, T]$:

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0, \ f|_{\partial B(R) \times [0,T]} \equiv \mathbf{0}.$$

- Show that f remains log-concave near the parabolic boundary $\partial B(R) \times [0, T]$: $D^2(-\log f) = -\frac{D^2 f}{f} + \frac{\nabla f \otimes \nabla f}{f^2} \ge 0$?
 - Problem: $f \notin C^{2;1}(\overline{B(R)} \times [0, T])$!
 - $\partial_{n,n}$ assume $\langle \nabla f_0, n \rangle > 0$ and use Hopf strong principle.
 - $\partial_{t,*}$ use strong convexity of $\partial B(R)$ + extra regularity.
- Set $V := -\log f$, and assume V_0 is strictly convex. V satisfies:

$$\frac{d}{dt}V = \Delta V - \langle \nabla V, \nabla U \rangle - \langle \nabla V, \nabla V \rangle , \ V|_{t=0} = V_0.$$

Apply maximum principle to $D_{e,e}V$. Assume $D_{e,e}V(x_0,t_0)=0$:

$$0 \geq (\frac{d}{dt} - \Delta)(D_{e,e}V) = -D^3U(e,e,\nabla V).$$

To obtain contradiction, need:

$$0 \ge D^3 U(e, e, \nabla V) = \sum_{i=1}^n \rho_i^{(3)}(|x_i|)|e_i|^2 D_i V \operatorname{sign}(x_i).$$

• Reduce to Dirichlet boundary valued problem on $B(R) \times [0, T]$:

$$\frac{d}{dt}f = (\Delta - \langle \nabla f, \nabla U \rangle)f, \ f|_{t=0} = f_0, \ f|_{\partial B(R) \times [0,T]} \equiv 0.$$

- Show that f remains log-concave near the parabolic boundary $\partial B(R) \times [0, T]$: $D^2(-\log f) = -\frac{D^2 f}{f} + \frac{\nabla f \otimes \nabla f}{f^2} \ge 0$?
 - Problem: $f \notin C^{2;1}(\overline{B(R)} \times [0, T])$!
 - $\partial_{n,n}$ assume $\langle \nabla f_0, n \rangle > 0$ and use Hopf strong principle.
 - $\partial_{t,*}$ use strong convexity of $\partial B(R)$ + extra regularity.
- Set $V := -\log f$, and assume V_0 is strictly convex. V satisfies:

$$\frac{d}{dt}V = \Delta V - \langle \nabla V, \nabla U \rangle - \langle \nabla V, \nabla V \rangle , V|_{t=0} = \frac{V_0}{V}.$$

Apply maximum principle to $D_{e,e}V$. Assume $D_{e,e}V(x_0,t_0)=0$:

$$0 \geq (rac{d}{dt} - \Delta)(D_{e,e}V) = - D^3 U(e, e, \nabla V)$$
.

To obtain contradiction, need:

$$0 \ge D^3 U(e, e, \nabla V) = \sum_{i=1}^n \rho_i^{(3)}(|x_i|)|e_i|^2 D_i V \operatorname{sign}(x_i).$$

Epilogue: T vs. Topt

Intuitively, $T \neq T_{opt}$ generically.

 $T = T_{opt}$ in dimension 1, or in 1-dimensional situations

Example (where everything is computable):

$$\mu = \exp(-\langle Ax, x \rangle) \;,\; \nu = \mu \exp(-\langle Bx, x \rangle) \;,\; A, B \ge 0 \;.$$
 $T_{opt} = A^{1/2} (A^{1/2} (A+B) A^{1/2})^{-1/2} A^{1/2} \;,\; rac{d}{dt} S_t = B_t S_t \;.$

Fact

When A, B commute, $T = T_{opt}$.

Conjecture

When *A* and *B* do not commute, $T \neq T_{opt}$ generically.

Can show that generically for $n \ge 2$, along the flow, DS_t is not symmetric except at discrete set of times, so S_t is not the gradient of a potential, i.e. not interpolating optimal map.

But perhaps symmetry is restored in the limit $DT^{-1} = \lim_{t\to\infty} DS_t$?

Epilogue: T vs. Topt

Intuitively, $T \neq T_{opt}$ generically.

 $T = T_{opt}$ in dimension 1, or in 1-dimensional situations.

Example (where everything is computable):

$$\mu = \exp(-\langle Ax, x \rangle) , \ \nu = \mu \exp(-\langle Bx, x \rangle) , \ A, B \ge 0 .$$
 $T_{opt} = A^{1/2} (A^{1/2} (A+B) A^{1/2})^{-1/2} A^{1/2} , \ \frac{d}{dt} S_t = B_t S_t .$

Fact

When A, B commute, $T = T_{opt}$.

Conjecture

When A and B do not commute, $T \neq T_{opt}$ generically.

Can show that generically for $n \ge 2$, along the flow, DS_t is not symmetric except at discrete set of times, so S_t is not the gradient of a potential, i.e. not interpolating optimal map.

But perhaps symmetry is restored in the limit $DT^{-1} = \lim_{t\to\infty} DS_t$?

Epilogue: T vs. Topt

Intuitively, $T \neq T_{opt}$ generically.

 $T = T_{opt}$ in dimension 1, or in 1-dimensional situations.

Example (where everything is computable):

$$\mu = \exp(-\langle Ax, x \rangle) \;,\; \nu = \mu \exp(-\langle Bx, x \rangle) \;,\; A, B \geq 0 \;.$$

$$T_{opt} = A^{1/2} (A^{1/2} (A+B) A^{1/2})^{-1/2} A^{1/2} \; , \; \frac{d}{dt} S_t = B_t S_t \; .$$

Fact

When A, B commute, $T = T_{opt}$.

Conjecture

When A and B do not commute, $T \neq T_{opt}$ generically.

Can show that generically for $n \ge 2$, along the flow, DS_t is not symmetric except at discrete set of times, so S_t is not the gradient of a potential, i.e. not interpolating optimal map.

But perhaps symmetry is restored in the limit $DT^{-1} = \lim_{t\to\infty} DS_t$?

Epilogue: T vs. T_{opt}

Intuitively, $T \neq T_{opt}$ generically.

 $T = T_{opt}$ in dimension 1, or in 1-dimensional situations.

Example (where everything is computable):

$$\begin{split} \mu &= \exp(-\left< Ax, x \right>) \;,\; \nu = \mu \exp(-\left< Bx, x \right>) \;,\; A, B \geq 0 \;. \\ T_{opt} &= A^{1/2} (A^{1/2} (A+B) A^{1/2})^{-1/2} A^{1/2} \;,\; \frac{d}{dt} S_t = B_t S_t \;. \end{split}$$

Fact

When A, B commute, $T = T_{opt}$.

Conjecture

When A and B do not commute, $T \neq T_{opt}$ generically.

Can show that generically for $n \ge 2$, along the flow, DS_t is not symmetric except at discrete set of times, so S_t is not the gradient of a potential, i.e. not interpolating optimal map.

But perhaps symmetry is restored in the limit $DT^{-1} = \lim_{t \to \infty} DS_t$?