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Outline

Optimal Transport and Caffarelli’s Contraction Theorem.
Recall some applications of CCT.
State Generalization of CCT.
New Applications.
Ideas in Proof.
Challenge.
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Optimal Transport

Monge (Monge–Kantorovich) Transport Problem (∼ 1781)

Let µ, ν be two Borel probability measures on Rn, µ << Leb,∫
|x |2dµ,

∫
|x |2dν <∞.

Among all maps T : Rn → Rn pushing forward µ onto ν,
(ν = µ ◦ T−1, “T : µ 7→ ν"), minimize

∫
|T (x)− x |2dµ(x).

Thm (Brenier ’91, McCann ’95)
Minimizing T = Topt exists, unique (µ-a.e.), and characterized
by Topt = ∇ϕ , ϕ : Rn → R convex.

Thms (Caffarelli 90’s)
Regularity Theory for the Monge–Ampére equation:

detD2ϕ(x) =
f (x)

g(∇ϕ(x))
, µ = f (x)dx , ν = g(x)dx .
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Caffarelli’s Contraction Theorem

Thm (Caffarelli, 2000)

Assume µ = c exp(−Q(x))dx and ν = µexp(−V ), with:

Q(x) = 〈Ax , x〉 (A ≥ 0) , V is convex .

Then Topt : µ 7→ ν is a contraction:

|Topt (x)− Topt (y)| ≤ |x − y | ∀x , y ∈ Rn .

Applications:

Transferring isoperimetric and Sobolev inequalities.
Transferring Poincaré inequalities (Brascamp–Lieb,
B-conjecture).
Correlation Inequalities.
More...

Applications only require that there is some map T : µ 7→ ν.
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Example: Gaussian Correlation Conjecture

γn - standard Gaussian measure on (Rn, | · |).
K ,L - two convex subsets of Rn, K = −K , L = −L.

Gaussian Correlation Conjecture
(Das Gupta, Eaton, Olkin, Perlman, Savage and Sobel 1972)

γn(K ∩ L) ≥ γn(K )γn(L) ?

Pitt (1977) confirmed for n = 2, n ≥ 3 still open.

Thm (Hargé 1999, Cordero-Erausquin 2002)

True if K (or L) is a centered ellipsoid.

Choosing a degenerate ellipsoid K = {x ; |〈x , θ〉| ≤ c}, this
recovers Khatri, S̆idák 1967 (holds for other radial measures).
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Cordero–Erausqin’s proof

Thm (Hargé 1999, Cordero-Erausquin 2002)

If E is a centered ellipsoid, then:

γn(E ∩ L) ≥ γn(E)γn(L) ∀L = −L convex .

If E = A(Bn
2), set µ = γn ◦ A. Want to show:

µ(Bn
2 ∩ L) ≥ µ(Bn

2)µ(L) ∀L = −L convex .

Set ν = (µ1L)/µ(L). Want to show:

ν(Bn
2) =

µ(Bn
2 ∩ L)

µ(L)
≥ µ(Bn

2) .

By Caffarelli’s Thm, Topt : µ 7→ ν is a contraction & Topt (0) = 0,
so Topt (Bn

2) ⊂ Bn
2 , and hence Bn

2 ⊂ T−1
opt (Bn

2). Therefore:

ν(Bn
2) = µ(T−1

opt (Bn
2)) ≥ µ(Bn

2) . �
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Conclusion

Thm (Caffarelli, 2000)

Assume µ = c exp(−Q(x))dx and ν = µexp(−V ), with:

Q(x) = 〈Ax , x〉 (A ≥ 0) , V is convex .

Then Topt : µ 7→ ν is a contraction:

|Topt (x)− Topt (y)| ≤ |x − y | ∀x , y ∈ Rn .

Very useful in applications.

However, leaves room for improvement:
µ = Gaussian.
Topt optimal-transport map:

Non-constructive.
Analysis requires Caffarelli’s regularity theory.
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Main Result (Generalization of Caffarelli’s Theorem)

Thm (Kim and M. 2010)

Fix Rn = E0 ⊕ E1 ⊕ . . .⊕ Ek orthogonal decomposition.
Assume µ = exp(−U(x))dx and ν = µexp(−V ), where:

U(x) = Q(PE0x) +
k∑

i=1

ρi(|PEi x |) ,

(ρ
(2)
i ≥ 0) and ρ(3)

i ≤ 0 on R+ (e.g. ρi(t) = tpi , pi ∈ (0,2]) ;

V is convex and V (x) = v(PE0x , |PE1x |, . . . , |PEk x |) .

Then there exists T : µ 7→ ν which is a contraction:

|T (x)− T (y)| ≤ |x − y | ∀x , y ∈ Rn .

E0 = Rn - recovers Caffarelli’s Thm (with different T ).
E1 = Rn - U = ρ(|x |),V = v(|x |) are radial.
E0 = 0 and dim(Ei) = 1 - U =

∑
ρi(|xi |)⇒ µ is product ;

V is convex and unconditional.
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Applications

Generalizes all the applications mentioned.

Corollary (Generalized Correlation Inequality)

Fix Rn = E0 ⊕ E1 ⊕ . . .⊕ Ek orthogonal decomposition.
Assume µ = exp(−U(x))dx , with:

U(x) = Q(PE0x) +
k∑

i=1

ρi(|PEi x |) , ρ
(3)
i ≤ 0 on R+ .

Let L = −L convex such that:

∃CL ⊂ RdimE0+k 1L(x) = 1CL(PE0x , |PE1x |, . . . , |PEk x |) .

Let K = −K such that if (x0, x1, . . . , xk ) ∈ K then:

∀y0 ∈ E0 ‖y0‖ E ≤ ‖x0‖ E ∀ti ∈ [−1,1] (y0, t1x1, . . . , tkxk ) ∈ K .

Then:
µ(K ∩ L) ≥ µ(K )µ(L) .
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Other Applications:
Transferring isoperimetric inequalities

Fact: Lipschitz maps transfer isoperimetric inequalities

Assume T : (Ω1,d1, µ1)→ (Ω2,d2, µ2), T : µ1 7→ µ2 and:

d2(T (x),T (y)) ≤ d1(x , y) ∀x , y ∈ Ω1 .

If µ1(∂A) ≥ I(µ1(A)) ∀A, then µ2(∂B) ≥ I(µ2(B)) ∀B.

Corollary of Generalized CCT (particular case)

Let µ = c exp(−
∑n

i=1 |xi |p), p ∈ (0,2]. It is known that:

µ(∂A) ≥ Ip,n(µ(A)) .

Set ν = (µ1L)/µ(L), L ⊂ Rn unconditional and convex.
Then:

ν(∂B) ≥ Ip,n(ν(B)) .
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The Construction of T
We construct T−1 : ν 7→ µ, and show it is expanding.

T−1 is constructed by following heat-flow with drift, transforming
ν = µexp(−V ) into µ [= exp(−U(x))dx ].

Denote by Pt (f0) the solution to:

d
dt

f = Lf := ∆f − 〈∇f ,∇U〉 , f |t=0 = f0 .

Pt = exp(tL) is the associated semi-group.

L and Pt are self-adjoint on L2(µ), µ = exp(−U(x))dx .
Pt preserves total µ-mass, and (under mild assumptions) converges
to the constant stationary distribution:

Pt (exp(−V ))→
∫

exp(−V )dµ = |ν| = 1 .

Interpolation:

ν0 = ν = µexp(−V ) → νt := µPt (exp(−V )) → ν∞ = µ .

T−1 := limt→∞ St , where St : ν 7→ νt are diffeomorphisms.
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d
dt
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Pt = exp(tL) is the associated semi-group.
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Pt (exp(−V ))→
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The Construction of T (continued)

ν0 = ν = µexp(−V ) 7→St νt := µPt (exp(−V )) →t→∞ ν∞ = µ .

d
dt

Pt (exp(−V )) = (∆− 〈∇,∇U〉) Pt (exp(−V )) (Eulerian) .

Construct St as flow along time-dependent vector-field Wt :

d
dt

St (x) = Wt (St (x)) , S0 = Id (Lagrangian) .

To determine Wt , use Continuity Equation:

d
dt
νt +∇ · (νtWt ) = 0 ⇒ Wt := −∇ log Pt (exp(−V )) (advection) .

Showing that St are expansions ∀t ≥ 0 amounts to DWt ≥ 0,
i.e. to −D2 log Pt (exp(−V )) ≥ 0.
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The Reduction

Reduction
When does heat-flow w.r.t. µ = exp(−U(x))dx :

d
dt

f = (∆− 〈∇f ,∇U〉)f , f |t=0 = f0 ,

preserve log-concavity: − log Pt (f0) remains convex ∀t ≥ 0 ?

Example: µ = Gaussian (U = Q) “Ornstein–Uhlenbeck”
By the Mehler formula, it is known that:

Pt (f0) = rescaledt -f0 ∗Gaussiant .

By Prékopa–Leindler Thm, Pt preserves log-concavity,
immediately recovering Caffarelli’s Thm (with different map T ).
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The Reduction (continued)

Thm (Kolesnikov ’01)

For general initial log-concave data f0 = exp(−V ),
only Ornstein–Uhlenbeck (U = Q) preserves log-concavity.

Observation (“inherent tradeoff”)
For less general convex V , log-concavity may still be preserved
by more general U.

Thm (Kim and M. 10)

Let Pt (f0) denote solution to:

d
dt

f = (∆− 〈∇f ,∇U〉)f , f |t=0 = f0 .

With previous assmpts, − log Pt (exp(−V )) is convex ∀t ≥ 0.
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Idea of Proof
Classical PDE problem (Korevaar, Caffarelli–Spruck, Kawohl ...).
One of key methods is maximum principle.

New - Geometric ideas + technical points previously not treated:

Reduce to Dirichlet boundary valued problem on B(R)× [0,T ]:

d
dt

f = (∆− 〈∇f ,∇U〉)f , f |t=0 = f0 , f |∂B(R)×[0,T ] ≡ 0 .

Show that f remains log-concave near the parabolic boundary
∂B(R)× [0,T ]: D2(− log f ) = −D2f

f + ∇f⊗∇f
f 2 ≥ 0 ?

Problem: f /∈ C2;1(B(R)× [0,T ]) !
∂n,n - assume 〈∇f0,n〉 > 0 and use Hopf strong principle.
∂t,∗ - use strong convexity of ∂B(R) + extra regularity.

Set V := − log f , and assume V0 is strictly convex. V satisfies:
d
dt

V = ∆V − 〈∇V ,∇U〉 − 〈∇V ,∇V 〉 , V |t=0 = V0 .

Apply maximum principle to De,eV . Assume De,eV (x0, t0) = 0:

0 ≥ (
d
dt
−∆)(De,eV ) = −D3U(e,e,∇V ) .

To obtain contradiction, need:
0 ≥ D3U(e,e,∇V ) =

∑n
i=1 ρ

(3)
i (|xi |)|ei |2 DiV sign(xi ).
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Epilogue: T vs. Topt

Intuitively, T 6= Topt generically.

T = Topt in dimension 1, or in 1-dimensional situations.

Example (where everything is computable):

µ = exp(−〈Ax , x〉) , ν = µexp(−〈Bx , x〉) , A,B ≥ 0 .

Topt = A1/2(A1/2(A + B)A1/2)−1/2A1/2 , d
dt St = BtSt .

Fact
When A,B commute, T = Topt .

Conjecture

When A and B do not commute, T 6= Topt generically.

Can show that generically for n ≥ 2, along the flow, DSt is not
symmetric except at discrete set of times, so St is not the gradient of
a potential, i.e. not interpolating optimal map.

But perhaps symmetry is restored in the limit DT−1 = limt→∞ DSt?
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