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Where does magnitude come from?

Many mathematical objects have a canonical notion of size:

cardinality of sets, dimension of vector spaces, Euler
characteristic of topological spaces, Euler characteristic of
posets, entropy of probability spaces...

A finite category gives rise to a topological space (its “nerve”).
Leinster found an algebraic formula for the Euler characteristic
of the nerve, which also generalizes the Euler characteristic of
a poset.

Metric spaces are examples of enriched categories. Leinster’s
formalism extends to the setting of enriched categories.
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Definition of magnitude (Leinster)
Let (A,d) be a finite metric space. Define the matrix
Z = ZA ∈ RA×A with entries

zab = e−d(a,b).

A weighting for A is a vector w ∈ RA such that

(ZAw)a =
∑
b∈A

e−d(a,b)wb = 1 ∀a ∈ A.

If A possesses a weighting w then the magnitude of A is

|A| =
∑
a∈A

wa.

“Generic” spaces A possess weightings.
Different weightings yield the same |A|.
If ZA is invertible, then |A| =

∑
a,b∈A(Z

−1
A )ab.
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Examples of magnitude

|∅| = 0 and |{∗}| = 1.

Let A have N points with distance r between distinct points
(vertices of a regular N-simplex). Then

|A| = N
1 + (N − 1)e−r .

Let A = {0, r}n with the `1 metric. Then

|A| =
(

2
1 + e−r

)n

.

Let A = K3,2 with edges of length r . Then limr→∞ |A| = 5,
but for some small values of r , |A| is undefined or even
negative.
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Interpretations of magnitude, I (Willerton)

Think of each point a ∈ A as an organism that
can regulate the amount of heat wa which it emits/absorbs,
wishes to be at temperature 1,
feels heat from b ∈ A as e−d(a,b)wb.

Then
A weighting is a distribution of heat production/absorption
that puts each organism at the desired temperature.
The magnitude of A is the net heat production when this is
achieved.
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Interpretations of magnitude, II (Leinster)
We can define a notion of entropy for a probability distribution p
on A which takes the metric into account:

HA(p) = −
∑
a∈A

pa log(ZAp)a.

In theoretical ecology,
points in A represent species,
distances represent differences between species,
probabilities represent relative frequencies of species,
entropy represents total biological diversity.

Given a list of species, what distribution maximizes diversity?

If A possesses a nonnegative weighting w , then p = w∑
a∈A wa

maximizes diversity and

|A| = max
p

HA(p).
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Infinite spaces

There are at least three natural ways to extend the definition of
magnitude to infinite spaces, each with their own problems.

|A| = sup{|B| : B ⊆ A is finite}.

This does not agree with the original definition for finite
spaces in general (magnitude is not always monotone).

Suppose Ak ⊆ A are finite and limk→∞ Ak = A. Let
|A| = limk→∞ |Ak |.

It’s not necessarily clear how this depends on the
approximating sequence {Ak}.
Define a weight measure for A to be a signed Borel
measure such that

∫
A e−d(a,b)dw(b) = 1 for every a ∈ A.

Let |A| = w(A).

It’s not clear how generically weight measures exist.
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Positive definite spaces

A metric space X is positive definite if the matrix[
e−d(xi ,xj )

]
1≤i,j≤N is (strictly) positive definite for every choice of

distinct points x1, . . . , xN ∈ A.

Classical results of Bochner, Lévy, Schoenberg, etc. (plus some
additional work) show that the following spaces are positive
definite.

Lp, 0 < p ≤ 2, with the metric d(f ,g) = ‖f − g‖min{p,1}
p .

2-dimensional normed spaces.
Spaces with ≤ 4 points.
Ultrametric spaces (i.e., d(x , y) ≤ max{d(x , z),d(z, y)}).
rSn with the geodesic metric, r > 0.
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Classical results of Bochner, Lévy, Schoenberg, etc. (plus some
additional work) show that the following spaces are positive
definite.

Lp, 0 < p ≤ 2, with the metric d(f ,g) = ‖f − g‖min{p,1}
p .

2-dimensional normed spaces.
Spaces with ≤ 4 points.
Ultrametric spaces (i.e., d(x , y) ≤ max{d(x , z),d(z, y)}).
rSn with the geodesic metric, r > 0.



Positive definite spaces

A metric space X is positive definite if the matrix[
e−d(xi ,xj )

]
1≤i,j≤N is (strictly) positive definite for every choice of

distinct points x1, . . . , xN ∈ A.

Classical results of Bochner, Lévy, Schoenberg, etc. (plus some
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Properties of positive definite spaces

Theorem (M.)
If X is positive definite and A ⊆ X is compact then all three
definitions of |A| coincide.

Theorem (Leinster (finite case), M.)
If X is positive definite and A ⊆ B ⊆ X are compact, then
0 ≤ |A| ≤ |B|.

Theorem (M.)
Magnitude is lower semicontinuous on the class of compact
positive definite metric spaces, equipped with the
Gromov-Hausdorff distance; it is continuous for subsets of R.
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More examples of magnitude (Leinster, Willerton)
|[0, r ]| = 1 + 1

2 r .

If A =
∏n

k=1[0, rk ] ⊆ `n1, then

|A| =
n∏

k=1

(
1 +

rk

2

)
=

n∑
k=0

2−kVk (A) =
n∑

k=0

Vk (A)
k ! volk (Bk

1 )
.

Let A be the ternary Cantor set of length r . Then

|A| = 1 +
1
2

∞∑
k=1

2k tanh
( r

2 · 3k

)
.

With the geodesic metric,

∣∣rSn∣∣ = 2
(
1 + e−πr) n/2∏

k=1

(
1 +

(
r

n − 2k + 1

)2
)

for n even. (There is a similar formula for odd n.)
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Magnitude and dimension, I

Although the definition of magnitude comes from enriched
category theory, magnitude turns out to know about classical
geometric invariants.

For a metric space (A,d) and t > 0, let tA = (A, t · d). Define

dimMag(A) = inf
{
ν ≥ 0 : lim sup

t→∞

|tA|
tν

<∞
}
.

The previous examples show that
dimMag(finite space) = 0,
dimMag(interval) = 1,
dimMag(Cantor set) = log3 2,
dimMag(Sn) = n,

all of which agree with Hausdorff dimension.
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Magnitude and dimension, II

Theorem (Leinster (p = 2), M.)
If A ⊆ `np is compact for 0 < p ≤ 2, then dimMag(A) ≤ n.

Theorem (Leinster)
Let X be an n-dimensional positive definite metric vector space.
If A ⊆ X then

|A| ≥ voln(A)
n! voln(BX )

.

Corollary
If A ⊆ `np is compact with nonempty interior for 0 < p ≤ 2, then
dimMag(A) = n.
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Magnitude and intrinsic volumes, I

The results on the last slide and the formula for the magnitude
of cuboids in `n1 suggest the following conjecture.

Conjecture (Leinster, Willerton)
If A ⊆ `n2 is convex and compact, then

|A| =
n∑

k=0

Vk (A)
k ! volk (Bk

2 )
,

where V0, . . . ,Vn are intrinsic volumes and ωk = volk (Bk
2 ).

This is also supported by numerical calculations and heuristics.



Magnitude and intrinsic volumes, II

Theorem (Willerton)
Suppose A is an n-dimensional homogeneous Riemannian
manifold with the geodesic metric. Then

|tA| = Vn(tA)
n!ωn

+
(n + 1)Vn−2(tA)
3(n − 1)!ωn−2

+ O
(
tn−4) as t →∞.

In particular, dimMag(A) = n.

Corollary
Suppose A is a homogeneous Riemannian surface. Then

|tA| = area(tA)
2π

+ χ(A) + O
(
t−2) as t →∞.



Thank you.


