The magnitude of a metric space
 Work of T. Leinster, S. Willerton, and M. M.

Mark Meckes

Case Western Reserve University

Geometric Probability and Optimal Transportation, Fields Institute, November 4, 2010

Where does magnitude come from?

Many mathematical objects have a canonical notion of size:

Where does magnitude come from?

Many mathematical objects have a canonical notion of size: cardinality of sets,

Where does magnitude come from?

Many mathematical objects have a canonical notion of size: cardinality of sets, dimension of vector spaces,

Where does magnitude come from?

Many mathematical objects have a canonical notion of size: cardinality of sets, dimension of vector spaces, Euler characteristic of topological spaces,

Where does magnitude come from?

Many mathematical objects have a canonical notion of size: cardinality of sets, dimension of vector spaces, Euler characteristic of topological spaces, Euler characteristic of posets,

Where does magnitude come from?

Many mathematical objects have a canonical notion of size: cardinality of sets, dimension of vector spaces, Euler characteristic of topological spaces, Euler characteristic of posets, entropy of probability spaces...

Where does magnitude come from?

Many mathematical objects have a canonical notion of size: cardinality of sets, dimension of vector spaces, Euler characteristic of topological spaces, Euler characteristic of posets, entropy of probability spaces...

A finite category gives rise to a topological space (its "nerve"). Leinster found an algebraic formula for the Euler characteristic of the nerve, which also generalizes the Euler characteristic of a poset.

Where does magnitude come from?

Many mathematical objects have a canonical notion of size: cardinality of sets, dimension of vector spaces, Euler characteristic of topological spaces, Euler characteristic of posets, entropy of probability spaces...

A finite category gives rise to a topological space (its "nerve"). Leinster found an algebraic formula for the Euler characteristic of the nerve, which also generalizes the Euler characteristic of a poset.

Metric spaces are examples of enriched categories. Leinster's formalism extends to the setting of enriched categories.

Definition of magnitude (Leinster)

Let (A, d) be a finite metric space. Define the matrix $Z=Z_{A} \in \mathbb{R}^{A \times A}$ with entries

$$
z_{a b}=e^{-d(a, b)}
$$

Definition of magnitude (Leinster)

Let (A, d) be a finite metric space. Define the matrix $Z=Z_{A} \in \mathbb{R}^{A \times A}$ with entries

$$
z_{a b}=e^{-d(a, b)}
$$

A weighting for A is a vector $w \in \mathbb{R}^{A}$ such that

$$
\left(Z_{A} w\right)_{a}=\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \forall a \in A
$$

Definition of magnitude (Leinster)

Let (A, d) be a finite metric space. Define the matrix $Z=Z_{A} \in \mathbb{R}^{A \times A}$ with entries

$$
z_{a b}=e^{-d(a, b)}
$$

A weighting for A is a vector $w \in \mathbb{R}^{A}$ such that

$$
\left(Z_{A} w\right)_{a}=\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \forall a \in A
$$

If A possesses a weighting w then the magnitude of A is

$$
|A|=\sum_{a \in A} w_{a}
$$

Definition of magnitude (Leinster)

Let (A, d) be a finite metric space. Define the matrix
$Z=Z_{A} \in \mathbb{R}^{A \times A}$ with entries

$$
z_{a b}=e^{-d(a, b)}
$$

A weighting for A is a vector $w \in \mathbb{R}^{A}$ such that

$$
\left(Z_{A} w\right)_{a}=\sum_{b \in A} e^{-d(a, b)} w_{b}=1 \quad \forall a \in A
$$

If A possesses a weighting w then the magnitude of A is

$$
|A|=\sum_{a \in A} w_{a}
$$

- "Generic" spaces A possess weightings.
- Different weightings yield the same $|A|$.
- If Z_{A} is invertible, then $|A|=\sum_{a, b \in A}\left(Z_{A}^{-1}\right)_{a b}$.

Examples of magnitude

- $|\emptyset|=0$ and $|\{*\}|=1$.

Examples of magnitude

- $|\emptyset|=0$ and $|\{*\}|=1$.
- Let A have N points with distance r between distinct points (vertices of a regular N-simplex). Then

$$
|A|=\frac{N}{1+(N-1) e^{-r}}
$$

Examples of magnitude

- $|\emptyset|=0$ and $|\{*\}|=1$.
- Let A have N points with distance r between distinct points (vertices of a regular N-simplex). Then

$$
|A|=\frac{N}{1+(N-1) e^{-r}}
$$

- Let $A=\{0, r\}^{n}$ with the ℓ_{1} metric. Then

$$
|A|=\left(\frac{2}{1+e^{-r}}\right)^{n}
$$

Examples of magnitude

- $|\emptyset|=0$ and $|\{*\}|=1$.
- Let A have N points with distance r between distinct points (vertices of a regular N-simplex). Then

$$
|A|=\frac{N}{1+(N-1) e^{-r}}
$$

- Let $A=\{0, r\}^{n}$ with the ℓ_{1} metric. Then

$$
|A|=\left(\frac{2}{1+e^{-r}}\right)^{n}
$$

- Let $A=K_{3,2}$ with edges of length r. Then $\lim _{r \rightarrow \infty}|A|=5$, but for some small values of $r,|A|$ is undefined or even negative.

Interpretations of magnitude, I (Willerton)

Think of each point $a \in A$ as an organism that

- can regulate the amount of heat w_{a} which it emits/absorbs,
- wishes to be at temperature 1 ,
- feels heat from $b \in A$ as $e^{-d(a, b)} w_{b}$.

Interpretations of magnitude, I (Willerton)

Think of each point $a \in A$ as an organism that

- can regulate the amount of heat w_{a} which it emits/absorbs,
- wishes to be at temperature 1 ,
- feels heat from $b \in A$ as $e^{-d(a, b)} w_{b}$.

Then

- A weighting is a distribution of heat production/absorption that puts each organism at the desired temperature.
- The magnitude of A is the net heat production when this is achieved.

Interpretations of magnitude, II (Leinster)

We can define a notion of entropy for a probability distribution p on A which takes the metric into account:

$$
H_{A}(p)=-\sum_{a \in A} p_{a} \log \left(Z_{A} p\right)_{a} .
$$

Interpretations of magnitude, II (Leinster)

We can define a notion of entropy for a probability distribution p on A which takes the metric into account:

$$
H_{A}(p)=-\sum_{a \in A} p_{a} \log \left(Z_{A} p\right)_{a}
$$

In theoretical ecology,

- points in A represent species,
- distances represent differences between species,
- probabilities represent relative frequencies of species,
- entropy represents total biological diversity.

Given a list of species, what distribution maximizes diversity?

Interpretations of magnitude, II (Leinster)

We can define a notion of entropy for a probability distribution p on A which takes the metric into account:

$$
H_{A}(p)=-\sum_{a \in A} p_{a} \log \left(Z_{A} p\right)_{a}
$$

In theoretical ecology,

- points in A represent species,
- distances represent differences between species,
- probabilities represent relative frequencies of species,
- entropy represents total biological diversity.

Given a list of species, what distribution maximizes diversity?
If A possesses a nonnegative weighting w, then $p=\frac{w}{\sum_{a \in A} w_{a}}$ maximizes diversity and

$$
|A|=\max _{p} H_{A}(p)
$$

Infinite spaces

There are at least three natural ways to extend the definition of magnitude to infinite spaces, each with their own problems.

- $|A|=\sup \{|B|: B \subseteq A$ is finite $\}$.

This does not agree with the original definition for finite spaces in general (magnitude is not always monotone).

Infinite spaces

There are at least three natural ways to extend the definition of magnitude to infinite spaces, each with their own problems.

- $|A|=\sup \{|B|: B \subseteq A$ is finite $\}$.

This does not agree with the original definition for finite spaces in general (magnitude is not always monotone).

- Suppose $A_{k} \subseteq A$ are finite and $\lim _{k \rightarrow \infty} A_{k}=A$. Let $|A|=\lim _{k \rightarrow \infty}\left|A_{k}\right|$.

It's not necessarily clear how this depends on the approximating sequence $\left\{A_{k}\right\}$.

Infinite spaces

There are at least three natural ways to extend the definition of magnitude to infinite spaces, each with their own problems.

- $|A|=\sup \{|B|: B \subseteq A$ is finite $\}$.

This does not agree with the original definition for finite spaces in general (magnitude is not always monotone).

- Suppose $A_{k} \subseteq A$ are finite and $\lim _{k \rightarrow \infty} A_{k}=A$. Let $|A|=\lim _{k \rightarrow \infty}\left|A_{k}\right|$.

It's not necessarily clear how this depends on the approximating sequence $\left\{A_{k}\right\}$.

- Define a weight measure for A to be a signed Borel measure such that $\int_{A} e^{-d(a, b)} d w(b)=1$ for every $a \in A$. Let $|A|=w(A)$.
It's not clear how generically weight measures exist.

Positive definite spaces

A metric space X is positive definite if the matrix $\left[e^{-d\left(x_{i}, x_{j}\right)}\right]_{1 \leq i, j \leq N}$ is (strictly) positive definite for every choice of distinct points $x_{1}, \ldots, x_{N} \in A$.

Positive definite spaces

A metric space X is positive definite if the matrix
$\left[e^{-d\left(x_{i}, x_{j}\right)}\right]_{1 \leq i, j \leq N}$ is (strictly) positive definite for every choice of distinct points $x_{1}, \ldots, x_{N} \in A$.

Classical results of Bochner, Lévy, Schoenberg, etc. (plus some additional work) show that the following spaces are positive definite.

- $L_{p}, 0<p \leq 2$, with the metric $d(f, g)=\|f-g\|_{p}^{\min \{p, 1\}}$.

Positive definite spaces

A metric space X is positive definite if the matrix
$\left[e^{-d\left(x_{i}, x_{j}\right)}\right]_{1 \leq i, j \leq N}$ is (strictly) positive definite for every choice of distinct points $x_{1}, \ldots, x_{N} \in A$.

Classical results of Bochner, Lévy, Schoenberg, etc. (plus some additional work) show that the following spaces are positive definite.

- $L_{p}, 0<p \leq 2$, with the metric $d(f, g)=\|f-g\|_{p}^{\min \{p, 1\}}$.
- 2-dimensional normed spaces.

Positive definite spaces

A metric space X is positive definite if the matrix
$\left[e^{-d\left(x_{i}, x_{j}\right)}\right]_{1 \leq i, j \leq N}$ is (strictly) positive definite for every choice of distinct points $x_{1}, \ldots, x_{N} \in A$.

Classical results of Bochner, Lévy, Schoenberg, etc. (plus some additional work) show that the following spaces are positive definite.

- $L_{p}, 0<p \leq 2$, with the metric $d(f, g)=\|f-g\|_{p}^{\min \{p, 1\}}$.
- 2-dimensional normed spaces.
- Spaces with ≤ 4 points.

Positive definite spaces

A metric space X is positive definite if the matrix
$\left[e^{-d\left(x_{i}, x_{j}\right)}\right]_{1 \leq i, j \leq N}$ is (strictly) positive definite for every choice of distinct points $x_{1}, \ldots, x_{N} \in A$.

Classical results of Bochner, Lévy, Schoenberg, etc. (plus some additional work) show that the following spaces are positive definite.

- $L_{p}, 0<p \leq 2$, with the metric $d(f, g)=\|f-g\|_{p}^{\min \{p, 1\}}$.
- 2-dimensional normed spaces.
- Spaces with ≤ 4 points.
- Ultrametric spaces (i.e., $d(x, y) \leq \max \{d(x, z), d(z, y)\})$.

Positive definite spaces

A metric space X is positive definite if the matrix
$\left[e^{-d\left(x_{i}, x_{j}\right)}\right]_{1 \leq i, j \leq N}$ is (strictly) positive definite for every choice of distinct points $x_{1}, \ldots, x_{N} \in A$.

Classical results of Bochner, Lévy, Schoenberg, etc. (plus some additional work) show that the following spaces are positive definite.

- $L_{p}, 0<p \leq 2$, with the metric $d(f, g)=\|f-g\|_{p}^{\min \{p, 1\}}$.
- 2-dimensional normed spaces.
- Spaces with ≤ 4 points.
- Ultrametric spaces (i.e., $d(x, y) \leq \max \{d(x, z), d(z, y)\})$.
- $r S^{n}$ with the geodesic metric, $r>0$.

Properties of positive definite spaces

Theorem (M.)
If X is positive definite and $A \subseteq X$ is compact then all three definitions of $|A|$ coincide.

Properties of positive definite spaces

Theorem (M.)

If X is positive definite and $A \subseteq X$ is compact then all three definitions of $|A|$ coincide.

Theorem (Leinster (finite case), M.)

 If X is positive definite and $A \subseteq B \subseteq X$ are compact, then $0 \leq|A| \leq|B|$.
Properties of positive definite spaces

Theorem (M.)

If X is positive definite and $A \subseteq X$ is compact then all three definitions of $|A|$ coincide.

Theorem (Leinster (finite case), M.)

If X is positive definite and $A \subseteq B \subseteq X$ are compact, then $0 \leq|A| \leq|B|$.

Theorem (M.)

Magnitude is lower semicontinuous on the class of compact positive definite metric spaces, equipped with the
Gromov-Hausdorff distance; it is continuous for subsets of \mathbb{R}.

More examples of magnitude (Leinster, Willerton)

- $[0, r]=1+\frac{1}{2} r$.

More examples of magnitude (Leinster, Willerton)

- $[0, r]=1+\frac{1}{2} r$.
- If $A=\prod_{k=1}^{n}\left[0, r_{k}\right] \subseteq \ell_{1}^{n}$, then

$$
|A|=\prod_{k=1}^{n}\left(1+\frac{r_{k}}{2}\right)
$$

More examples of magnitude (Leinster, Willerton)

- $[0, r] \left\lvert\,=1+\frac{1}{2} r\right.$.
- If $A=\prod_{k=1}^{n}\left[0, r_{k}\right] \subseteq \ell_{1}^{n}$, then

$$
|A|=\prod_{k=1}^{n}\left(1+\frac{r_{k}}{2}\right)=\sum_{k=0}^{n} 2^{-k} V_{k}(A)=\sum_{k=0}^{n} \frac{V_{k}(A)}{k!\operatorname{vol}_{k}\left(B_{1}^{k}\right)}
$$

More examples of magnitude (Leinster, Willerton)

- $|[0, r]|=1+\frac{1}{2} r$.
- If $A=\prod_{k=1}^{n}\left[0, r_{k}\right] \subseteq \ell_{1}^{n}$, then

$$
|A|=\prod_{k=1}^{n}\left(1+\frac{r_{k}}{2}\right)=\sum_{k=0}^{n} 2^{-k} V_{k}(A)=\sum_{k=0}^{n} \frac{V_{k}(A)}{k!\operatorname{vol}_{k}\left(B_{1}^{k}\right)}
$$

- Let A be the ternary Cantor set of length r. Then

$$
|A|=1+\frac{1}{2} \sum_{k=1}^{\infty} 2^{k} \tanh \left(\frac{r}{2 \cdot 3^{k}}\right)
$$

More examples of magnitude (Leinster, Willerton)

- $|[0, r]|=1+\frac{1}{2} r$.
- If $A=\prod_{k=1}^{n}\left[0, r_{k}\right] \subseteq \ell_{1}^{n}$, then

$$
|A|=\prod_{k=1}^{n}\left(1+\frac{r_{k}}{2}\right)=\sum_{k=0}^{n} 2^{-k} V_{k}(A)=\sum_{k=0}^{n} \frac{V_{k}(A)}{k!\operatorname{vol}_{k}\left(B_{1}^{k}\right)} .
$$

- Let A be the ternary Cantor set of length r. Then

$$
|A|=1+\frac{1}{2} \sum_{k=1}^{\infty} 2^{k} \tanh \left(\frac{r}{2 \cdot 3^{k}}\right)
$$

- With the geodesic metric,

$$
\left|r S^{n}\right|=2\left(1+e^{-\pi r}\right) \prod_{k=1}^{n / 2}\left(1+\left(\frac{r}{n-2 k+1}\right)^{2}\right)
$$

for n even. (There is a similar formula for odd n.)

Magnitude and dimension, I

Although the definition of magnitude comes from enriched category theory, magnitude turns out to know about classical geometric invariants.

Magnitude and dimension, I

Although the definition of magnitude comes from enriched category theory, magnitude turns out to know about classical geometric invariants.

For a metric space (A, d) and $t>0$, let $t A=(A, t \cdot d)$. Define

$$
\operatorname{dim}_{\text {Mag }}(A)=\inf \left\{\nu \geq 0: \limsup _{t \rightarrow \infty} \frac{|t A|}{t^{\nu}}<\infty\right\}
$$

Magnitude and dimension, I

Although the definition of magnitude comes from enriched category theory, magnitude turns out to know about classical geometric invariants.
For a metric space (A, d) and $t>0$, let $t A=(A, t \cdot d)$. Define

$$
\operatorname{dim}_{\text {Mag }}(A)=\inf \left\{\nu \geq 0: \limsup _{t \rightarrow \infty} \frac{|t A|}{t^{\nu}}<\infty\right\} .
$$

The previous examples show that

- $\operatorname{dim}_{\text {Mag }}($ finite space $)=0$,
- $\operatorname{dim}_{\text {Mag }}($ interval $)=1$,
- $\operatorname{dim}_{\text {Mag }}($ Cantor set $)=\log _{3} 2$,
- $\operatorname{dim}_{\text {Mag }}\left(S^{n}\right)=n$,
all of which agree with Hausdorff dimension.

Magnitude and dimension, II

Theorem (Leinster ($p=2$), M.)
If $A \subseteq \ell_{p}^{n}$ is compact for $0<p \leq 2$, then $\operatorname{dim}_{\text {Mag }}(A) \leq n$.

Magnitude and dimension, II

Theorem (Leinster ($p=2$), M.)
If $A \subseteq \ell_{p}^{n}$ is compact for $0<p \leq 2$, then $\operatorname{dim}_{\mathrm{Mag}}(A) \leq n$.

Theorem (Leinster)
Let X be an n-dimensional positive definite metric vector space. If $A \subseteq X$ then

$$
|A| \geq \frac{\operatorname{vol}_{n}(A)}{n!\operatorname{vol}_{n}\left(B_{X}\right)} .
$$

Magnitude and dimension, II

Theorem (Leinster ($p=2$), M.)
If $A \subseteq \ell_{p}^{n}$ is compact for $0<p \leq 2$, then $\operatorname{dim}_{\mathrm{Mag}}(A) \leq n$.

Theorem (Leinster)

Let X be an n-dimensional positive definite metric vector space. If $A \subseteq X$ then

$$
|A| \geq \frac{\operatorname{vol}_{n}(A)}{n!\operatorname{vol}_{n}\left(B_{X}\right)} .
$$

Corollary

If $A \subseteq \ell_{p}^{n}$ is compact with nonempty interior for $0<p \leq 2$, then $\operatorname{dim}_{\text {Mag }}(A)=n$.

Magnitude and intrinsic volumes, I

The results on the last slide and the formula for the magnitude of cuboids in ℓ_{1}^{n} suggest the following conjecture.

Conjecture (Leinster, Willerton)
If $A \subseteq \ell_{2}^{n}$ is convex and compact, then

$$
|A|=\sum_{k=0}^{n} \frac{V_{k}(A)}{k!\operatorname{vol}_{k}\left(B_{2}^{k}\right)},
$$

where V_{0}, \ldots, V_{n} are intrinsic volumes and $\omega_{k}=\operatorname{vol}_{k}\left(B_{2}^{k}\right)$.

This is also supported by numerical calculations and heuristics.

Magnitude and intrinsic volumes, II

Theorem (Willerton)

Suppose A is an n-dimensional homogeneous Riemannian manifold with the geodesic metric. Then

$$
|t A|=\frac{V_{n}(t A)}{n!\omega_{n}}+\frac{(n+1) V_{n-2}(t A)}{3(n-1)!\omega_{n-2}}+O\left(t^{n-4}\right) \quad \text { as } t \rightarrow \infty .
$$

In particular, $\operatorname{dim}_{\text {Mag }}(A)=n$.

Corollary

Suppose A is a homogeneous Riemannian surface. Then

$$
|t A|=\frac{\operatorname{area}(t A)}{2 \pi}+\chi(A)+O\left(t^{-2}\right) \quad \text { as } t \rightarrow \infty .
$$

Thank you.

