Optimal and Better Transports

G. Maresch jointly with M. Beiglböck, M. Goldstern and W. Schachermayer

November 1, 2010 Fields Institute, Toronto

Setting

• (X, μ) , (Y, ν) Polish probability spaces

< 口 > < 回 > < 回 > < 回 > < 回 > <

Setting

- (X, μ) , (Y, ν) Polish probability spaces
- ▶ $c: X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ cost function, usually satisfying regularity assumptions.

イロト イヨト イヨト イヨト

Setting

- (X, μ) , (Y, ν) Polish probability spaces
- ▶ $c: X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ cost function, usually satisfying regularity assumptions.
- ► The Kantorovich Problem is to minimize the functional

$$I_c[\pi]: \pi \mapsto \int_{X \times Y} c(x, y) d\pi(x, y)$$

over all transport plans $\pi \in \Pi(\mu, \nu)$.

イロン イヨン イヨン イヨン

Setting

- (X, μ) , (Y, ν) Polish probability spaces
- ▶ $c: X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ cost function, usually satisfying regularity assumptions.
- ► The Kantorovich Problem is to minimize the functional

$$I_c[\pi]: \pi \mapsto \int_{X \times Y} c(x, y) d\pi(x, y)$$

over all transport plans $\pi \in \Pi(\mu, \nu)$.

 $\Pi(\mu,\nu)\dots$ measures with X-marginal μ and Y-marginal ν .

(日) (同) (E) (E) (E)

Moving Croissants

Topics in Optimal Transportation

$X \dots$ bakeries, $Y \dots$ cafes

c-Monotonicity Strong Monotonicity Better Transport

Cyclical Rerouting

Definition

A Borel set $\Gamma \subseteq X \times Y$ is called *c*-monotone if

$$\sum_{i=1}^n c(x_i, y_i) \leq \sum_{i=1}^n c(x_i, y_{\sigma(i)})$$

for every permutation $\sigma \in S(n)$.

イロン イヨン イヨン イヨン

c-Monotonicity Strong Monotonicity Better Transport

Cyclical Rerouting

Definition

A Borel set $\Gamma \subseteq X \times Y$ is called *c*-monotone if

$$\sum_{i=1}^{n} c(x_i, y_i) \leq \sum_{i=1}^{n} c(x_i, y_{i+1})$$

for all pairs $(x_1, y_1), \ldots, (x_n, y_n) \in \Gamma$. (where $y_{n+1} := y_1$)

・ロト ・回ト ・ヨト ・ヨト

c-Monotonicity Strong Monotonicity Better Transport

Cyclical Rerouting

Definition

A Borel set $\Gamma \subseteq X \times Y$ is called *c*-monotone if

$$\sum_{i=1}^{n} c(x_i, y_i) \leq \sum_{i=1}^{n} c(x_i, y_{i+1})$$

for all pairs $(x_1, y_1), \ldots, (x_n, y_n) \in \Gamma$. (where $y_{n+1} := y_1$)

A transport plan π is called c-monotone if there exists such a Γ with π(Γ) = 1.

イロン イヨン イヨン イヨン

c-Monotonicity Strong Monotonicity Better Transport

Necessary and Sufficient?

X and Y finite: Suppose π is a transport plan on whose support *c*-monotonicity is violated.

イロン イヨン イヨン イヨン

c-Monotonicity Strong Monotonicity Better Transport

Necessary and Sufficient?

X and Y finite: Suppose π is a transport plan on whose support *c*-monotonicity is violated.

$$\sum_{i=1}^{n} c(x_i, y_i) > \sum_{i=1}^{n} c(x_i, y_{i+1})$$

where x_1, \ldots, x_n resp. y_1, \ldots, y_n carry positive mass α .

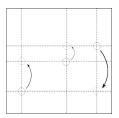
c-Monotonicity Strong Monotonicity Better Transport

Necessary and Sufficient?

X and Y finite: Suppose π is a transport plan on whose support *c*-monotonicity is violated.

$$\sum_{i=1}^{n} c(x_i, y_i) > \sum_{i=1}^{n} c(x_i, y_{i+1})$$

where x_1, \ldots, x_n resp. y_1, \ldots, y_n carry positive mass α .



c-Monotonicity Strong Monotonicity Better Transport

'96, W. Gangbo and R. McCann

Improve π :

$$\pi^{\beta} := \pi + \alpha \sum_{i=1}^{n} \delta_{(x_i, y_{i+1})} - \alpha \sum_{i=1}^{n} \delta_{(x_i, y_i)}.$$

c-Monotonicity Strong Monotonicity Better Transport

'96, W. Gangbo and R. McCann

Improve π :

$$I_{c}[\pi^{\beta}] = I_{c}[\pi] + \alpha \sum_{i=1}^{n} \Big(c(x_{i}, y_{i+1}) - c(x_{i}, y_{i}) \Big).$$

c-Monotonicity Strong Monotonicity Better Transport

'96, W. Gangbo and R. McCann

Improve π :

$$I_{c}[\pi^{\beta}] = I_{c}[\pi] + \alpha \sum_{i=1}^{n} \left(c(x_{i}, y_{i+1}) - c(x_{i}, y_{i}) \right).$$

Proposition

Let X, Y compact spaces equipped with Borel probability measures ν, μ . Let $c : X \times Y \to \mathbb{R}_{\geq 0}$ be a continuous cost function. Then every optimal transport plan is c-monotone.

c-Monotonicity Strong Monotonicity Better Transport

'96, W. Gangbo and R. McCann

Improve π :

$$I_{c}[\pi^{\beta}] = I_{c}[\pi] + \alpha \sum_{i=1}^{n} \left(c(x_{i}, y_{i+1}) - c(x_{i}, y_{i}) \right).$$

Proposition

Let X, Y compact spaces equipped with Borel probability measures ν, μ . Let $c : X \times Y \to \mathbb{R}_{\geq 0}$ be a continuous cost function. Then every optimal transport plan is c-monotone.

<ロ> (日) (日) (日) (日) (日)

c-Monotonicity Strong Monotonicity Better Transport

'96, W. Gangbo and R. McCann

Improve π :

$$I_{c}[\pi^{\beta}] = I_{c}[\pi] + \alpha \sum_{i=1}^{n} \left(c(x_{i}, y_{i+1}) - c(x_{i}, y_{i}) \right).$$

Proposition

Let X, Y compact spaces equipped with Borel probability measures ν, μ . Let $c : X \times Y \to \mathbb{R}_{\geq 0}$ be a continuous cost function. Then every optimal transport plan is c-monotone.

<ロ> (日) (日) (日) (日) (日)

c-Monotonicity Strong Monotonicity Better Transport

Proposition ('09, BGMS)

Let X and Y be Polish spaces equipped with Borel probability measures ν, μ . Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a measurable cost function. Then every optimal transport plan is c-monotone.

c-Monotonicity Strong Monotonicity Better Transport

Proposition ('09, BGMS)

Let X and Y be Polish spaces equipped with Borel probability measures ν, μ . Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a measurable cost function. Then every optimal transport plan is c-monotone.

 Makes use of deep duality results by H. Kellerer in the multimarginal setting.

c-Monotonicity Strong Monotonicity Better Transport

Proposition ('09, BGMS)

Let X and Y be Polish spaces equipped with Borel probability measures ν, μ . Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a measurable cost function. Then every optimal transport plan is c-monotone.

- Makes use of deep duality results by H. Kellerer in the multimarginal setting.
- Dichotomy of Borel subsets of $(X \times Y)^n$.

・ロト ・回ト ・ヨト ・ヨト

c-Monotonicity Strong Monotonicity Better Transport

... but not sufficient

Example ('01, Ambrosio and Pratelli)

Let X = Y = [0, 1] be the torus, equipped with Lebesgue measure.

イロト イヨト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

... but not sufficient

Example ('01, Ambrosio and Pratelli)

Let X = Y = [0, 1] be the torus, equipped with Lebesgue measure. 1. Let $\Gamma_1 = \{(x, x) : x \in X\}$,

・ロト ・回ト ・ヨト ・ヨト

c-Monotonicity Strong Monotonicity Better Transport

... but not sufficient

Example ('01, Ambrosio and Pratelli)

Let X = Y = [0, 1] be the torus, equipped with Lebesgue measure.

- 1. Let $\Gamma_1 = \{(x, x) : x \in X\}$,
- 2. Pick α irrational.

Let $\Gamma_2 = \{(x, x + \alpha) : x \in X\}.$

・ロト ・回ト ・ヨト ・ヨト

c-Monotonicity Strong Monotonicity Better Transport

... but not sufficient

Example ('01, Ambrosio and Pratelli)

Let X = Y = [0, 1] be the torus, equipped with Lebesgue measure.

- 1. Let $\Gamma_1 = \{(x, x) : x \in X\}$,
- 2. Pick α irrational.

Let
$$\Gamma_2 = \{(x, x + \alpha) : x \in X\}.$$

Let c = a on Γ_1 , c = b on Γ_2 and ∞ else.

イロン イヨン イヨン イヨン

c-Monotonicity Strong Monotonicity Better Transport

... but not sufficient

Example ('01, Ambrosio and Pratelli)

Let X = Y = [0, 1] be the torus, equipped with Lebesgue measure.

- 1. Let $\Gamma_1 = \{(x, x) : x \in X\}$,
- 2. Pick α irrational.

Let $\Gamma_2 = \{(x, x + \alpha) : x \in X\}.$

Let c = a on Γ_1 , c = b on Γ_2 and ∞ else.

• Both Γ_1 and Γ_2 are *c*-monotone.

イロン イヨン イヨン イヨン

c-Monotonicity Strong Monotonicity Better Transport

... but not sufficient

Example ('01, Ambrosio and Pratelli)

Let X = Y = [0, 1] be the torus, equipped with Lebesgue measure.

- 1. Let $\Gamma_1 = \{(x, x) : x \in X\}$,
- 2. Pick α irrational.

Let $\Gamma_2 = \{(x, x + \alpha) : x \in X\}.$

Let c = a on Γ_1 , c = b on Γ_2 and ∞ else.

- Both Γ_1 and Γ_2 are *c*-monotone.
- ▶ Both Γ_1 or Γ_2 support a unique transport plan π_1 resp. π_2 .

c-Monotonicity Strong Monotonicity Better Transport

... but not sufficient

Example ('01, Ambrosio and Pratelli)

Let X = Y = [0, 1] be the torus, equipped with Lebesgue measure.

- 1. Let $\Gamma_1 = \{(x, x) : x \in X\}$,
- 2. Pick α irrational.

Let $\Gamma_2 = \{(x, x + \alpha) : x \in X\}.$

Let c = a on Γ_1 , c = b on Γ_2 and ∞ else.

- Both Γ_1 and Γ_2 are *c*-monotone.
- **b** Both Γ_1 or Γ_2 support a unique transport plan π_1 resp. π_2 .

•
$$I_c[\pi_1] = a$$
 and $I_c[\pi_2] = b$.

c-Monotonicity Strong Monotonicity Better Transport

'96, W. Gangbo and R. McCann

Proposition Let $X = Y = \mathbb{R}^n$ and $c : X \times Y \to \mathbb{R}_{\geq 0}$ strictly convex. Then every π which is c-monotone is optimal.

イロト イヨト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

'01, L. Ambrosio and A. Pratelli

Proposition

Let X,Y be Polish spaces and $c:X\times Y\to \mathbb{R}_{\geq 0}$ l.s.c. fulfilling the moment conditions

$$\mu\left(\left\{x:\int_{Y}c(x,y)d\nu(y)<\infty\right\}\right)>0,\\\nu\left(\left\{y:\int_{X}c(x,y)d\mu(x)<\infty\right\}\right)>0.$$

Then every π which is c-monotone is optimal.

イロン イヨン イヨン イヨン

c-Monotonicity Strong Monotonicity Better Transport

'07, A. Pratelli; W. Schachermayer and J. Teichmann

Proposition

Let X, Y be Polish spaces and $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ a continuous cost function. Then every π which is c-monotone is optimal.

・ロン ・回と ・ヨン・

c-Monotonicity Strong Monotonicity Better Transport

'07, A. Pratelli; W. Schachermayer and J. Teichmann

Proposition

Let X, Y be Polish spaces and $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ a continuous cost function. Then every π which is c-monotone is optimal.

Proposition

Let X, Y be Polish spaces and $c : X \times Y \to \mathbb{R}_{\geq 0}$ a finite and l.s.c. cost function. Then every π which is c-monotone is optimal.

c-Monotonicity Strong Monotonicity Better Transport

'07, A. Pratelli; W. Schachermayer and J. Teichmann

Proposition

Let X, Y be Polish spaces and $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ a continuous cost function. Then every π which is c-monotone is optimal.

Proposition

Let X, Y be Polish spaces and $c : X \times Y \to \mathbb{R}_{\geq 0}$ a finite and l.s.c. cost function. Then every π which is c-monotone is optimal.

c-Monotonicity Strong Monotonicity Better Transport

'07, A. Pratelli; W. Schachermayer and J. Teichmann

Proposition

Let X, Y be Polish spaces and $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ a continuous cost function. Then every π which is c-monotone is optimal.

Proposition

Let X, Y be Polish spaces and $c : X \times Y \to \mathbb{R}_{\geq 0}$ a finite and l.s.c. cost function. Then every π which is c-monotone is optimal.

c-Monotonicity Strong Monotonicity Better Transport

M. Beiglböck, M. Goldstern, W. Schachermayer, G. M.

Theorem

Let X and Y be Polish spaces. Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and such that the set $\{(x, y) : c(x, y) = \infty\}$ is

c-Monotonicity Strong Monotonicity Better Transport

M. Beiglböck, M. Goldstern, W. Schachermayer, G. M.

Theorem

Let X and Y be Polish spaces. Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and such that the set $\{(x, y) : c(x, y) = \infty\}$ is closed:

Then every finite c-monotone transport is optimal.

c-Monotonicity Strong Monotonicity Better Transport

M. Beiglböck, M. Goldstern, W. Schachermayer, G. M.

Theorem

Let X and Y be Polish spaces. Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and such that the set $\{(x, y) : c(x, y) = \infty\}$ is closed the union of a closed set and a $\mu \otimes \nu$ -null set:

Then every finite c-monotone transport is optimal.

c-Monotonicity Strong Monotonicity Better Transport

M. Beiglböck, M. Goldstern, W. Schachermayer, G. M.

Theorem

Let X and Y be Polish spaces. Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and such that the set $\{(x, y) : c(x, y) = \infty\}$ is closed the union of a closed set and a $\mu \otimes \nu$ -null set:

Then every finite c-monotone transport is optimal.

Remark

Transport plans are usually supported on a $\mu \otimes \nu$ -null set.

イロト イポト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

Towards Better Optimality

Definition

A Borel set $\Gamma \subseteq X \times Y$ is strongly *c*-monotone iff there exist Borel measurable functions $\varphi : X \to \mathbb{R} \cup \{-\infty\}$ and $\psi : Y \to \mathbb{R} \cup \{-\infty\}$ such that

・ロン ・回 と ・ ヨ と ・ ヨ と

c-Monotonicity Strong Monotonicity Better Transport

Towards Better Optimality

Definition

A Borel set $\Gamma \subseteq X \times Y$ is strongly *c*-monotone iff there exist Borel measurable functions $\varphi : X \to \mathbb{R} \cup \{-\infty\}$ and $\psi : Y \to \mathbb{R} \cup \{-\infty\}$ such that

1.
$$\varphi(x) + \psi(y) \le c(x, y)$$
 for all $(x, y) \in X \times Y$,

・ロン ・回 と ・ ヨ と ・ ヨ と

c-Monotonicity Strong Monotonicity Better Transport

Towards Better Optimality

Definition

A Borel set $\Gamma \subseteq X \times Y$ is strongly *c*-monotone iff there exist Borel measurable functions $\varphi : X \to \mathbb{R} \cup \{-\infty\}$ and $\psi : Y \to \mathbb{R} \cup \{-\infty\}$ such that

1.
$$\varphi(x) + \psi(y) \le c(x, y)$$
 for all $(x, y) \in X \times Y$,
2. $\varphi(x) + \psi(y) = c(x, y)$ for all $(x, y) \in \Gamma$.

・ロン ・回 と ・ ヨ と ・ ヨ と

c-Monotonicity Strong Monotonicity Better Transport

Consistency

A transport plan π ∈ Π(μ, ν) is strongly c-monotone if it is concentrated on a strongly c-monotone Borel set Γ.

イロト イヨト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

Consistency

- A transport plan π ∈ Π(μ, ν) is strongly c-monotone if it is concentrated on a strongly c-monotone Borel set Γ.
- Strong monotonicity implies ordinary monotonicity.

イロト イヨト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

Consistency

- A transport plan π ∈ Π(μ, ν) is strongly c-monotone if it is concentrated on a strongly c-monotone Borel set Γ.
- Strong monotonicity implies ordinary monotonicity.

Proof.

$$\sum_{i=1}^n c(x_{i+1}, y_i)$$

イロト イヨト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

Consistency

- A transport plan π ∈ Π(μ, ν) is strongly c-monotone if it is concentrated on a strongly c-monotone Borel set Γ.
- Strong monotonicity implies ordinary monotonicity.

Proof.

$$\sum_{i=1}^{n} c(x_{i+1}, y_i) \ge \sum_{i=1}^{n} \varphi(x_{i+1}) + \psi(y_i)$$

イロト イヨト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

Consistency

- A transport plan π ∈ Π(μ, ν) is strongly c-monotone if it is concentrated on a strongly c-monotone Borel set Γ.
- Strong monotonicity implies ordinary monotonicity.

Proof.

$$\sum_{i=1}^{n} c(x_{i+1}, y_i) \ge \sum_{i=1}^{n} \varphi(x_{i+1}) + \psi(y_i) = \sum_{i=1}^{n} \varphi(x_i) + \psi(y_i)$$

<ロ> (日) (日) (日) (日) (日)

c-Monotonicity Strong Monotonicity Better Transport

Consistency

- A transport plan π ∈ Π(μ, ν) is strongly c-monotone if it is concentrated on a strongly c-monotone Borel set Γ.
- Strong monotonicity implies ordinary monotonicity.

Proof.

$$\sum_{i=1}^{n} c(x_{i+1}, y_i) \ge \sum_{i=1}^{n} \varphi(x_{i+1}) + \psi(y_i) = \sum_{i=1}^{n} \varphi(x_i) + \psi(y_i) = \sum_{i=1}^{n} c(x_i, y_i)$$

イロト イヨト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

Consistency

- A transport plan π ∈ Π(μ, ν) is strongly c-monotone if it is concentrated on a strongly c-monotone Borel set Γ.
- Strong monotonicity implies ordinary monotonicity.

Proof.

$$\sum_{i=1}^{n} c(x_{i+1}, y_i) \ge \sum_{i=1}^{n} \varphi(x_{i+1}) + \psi(y_i) = \sum_{i=1}^{n} \varphi(x_i) + \psi(y_i) = \sum_{i=1}^{n} c(x_i, y_i)$$

Strong monotonicity implies optimality.

イロト イヨト イヨト イヨト

c-Monotonicity Strong Monotonicity Better Transport

... but not necessary.

Example

• Let X = Y = [0, 1] equipped with Lebesgue measure λ .

・ロン ・回と ・ヨン・

c-Monotonicity Strong Monotonicity Better Transport

... but not necessary.

Example

- Let X = Y = [0, 1] equipped with Lebesgue measure λ .
- Take c : X × Y → ℝ_{≥0} ∪ {∞} to be infinite above the diagonal, 1 on the diagonal and 0 below.

イロト イヨト イヨト イヨト

2

c-Monotonicity Strong Monotonicity Better Transport

Example

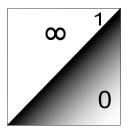
- Let X = Y = [0, 1] equipped with Lebesgue measure λ .
- Take c : X × Y → ℝ_{≥0} ∪ {∞} to be infinite above the diagonal, 1 on the diagonal and 0 below.
- Let $\Gamma = \{(x, x) : x \in [0, 1]\}$ be the diagonal in $X \times Y$.

イロン イヨン イヨン イヨン

2

c-Monotonicity Strong Monotonicity Better Transport

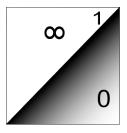
Counterexample

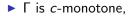


・ロン ・四と ・ヨン ・ヨン

c-Monotonicity Strong Monotonicity Better Transport

Counterexample



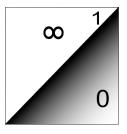


G. Maresch et. al. Optimal and Better Transports

・ロト ・回 ト ・ヨト ・ヨト

c-Monotonicity Strong Monotonicity Better Transport

Counterexample

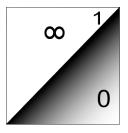


- Γ is c-monotone,
- **Γ** is not strongly *c*-monotone,

・ロト ・回ト ・ヨト ・ヨト

c-Monotonicity Strong Monotonicity Better Transport

Counterexample

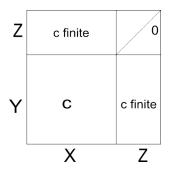


- Γ is c-monotone,
- **Γ** is not strongly *c*-monotone,
- Id: X → Y induces an optimal transport, which is concentrated Γ.

イロン イヨン イヨン イヨン

c-Monotonicity Strong Monotonicity Better Transport

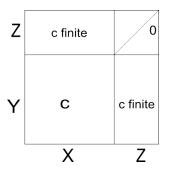
Robust Optimality



・ロン ・回 と ・ ヨン ・ ヨン

c-Monotonicity Strong Monotonicity Better Transport

Robust Optimality



Theorem

For a finite transport plan robust optimality is equivalent to strong *c*-monotonicity.

イロン イヨン イヨン イヨン

The almost finite situation

When we put all our results together we get:

Theorem

Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and $\mu \otimes \nu$ -a.s. finite. For a finite transport plan π t.f.a.e.

4 B M 4 B M

The almost finite situation

When we put all our results together we get:

Theorem

Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and $\mu \otimes \nu$ -a.s. finite. For a finite transport plan π t.f.a.e.

1. π is c-monotone.

(3)

The almost finite situation

When we put all our results together we get:

Theorem

Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and $\mu \otimes \nu$ -a.s. finite. For a finite transport plan π t.f.a.e.

- 1. π is c-monotone.
- 2. π is strongly *c*-monotone.

< 4 A >

E 🖌 🖌 E 🕨

The almost finite situation

When we put all our results together we get:

Theorem

Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and $\mu \otimes \nu$ -a.s. finite. For a finite transport plan π t.f.a.e.

- 1. π is c-monotone.
- 2. π is strongly *c*-monotone.
- 3. π is optimal.

4 B M 4 B M

The almost finite situation

When we put all our results together we get:

Theorem

Let $c : X \times Y \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ be Borel measurable and $\mu \otimes \nu$ -a.s. finite. For a finite transport plan π t.f.a.e.

- 1. π is c-monotone.
- 2. π is strongly *c*-monotone.
- 3. π is optimal.
- 4. π is robustly optimal.

Thank you for your attention!

- W. Gango and R. McCann, The geometry of optimal transportation, 1996, Acta Mathematica
- L. Ambrosio and A. Pratelli, Existence and stability results in the L¹-theory of optimal transportation, 2001, in: Lecture Notes in Mathematics
- A. Pratelli, On the sufficiency of c-cyclical monotonicity for optimality of transport plans, 2007, Mathematische Zeitschrift
- M. Beiglböck, G. Maresch, M. Goldstern and W. Schachermayer, *Optimal and Better Transport Plans*, 2009, Journal of Functional Analysis

イロト イポト イヨト イヨト