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Preliminaries
Monotonicity

Summary

Setting

I (X , µ), (Y , ν) Polish probability spaces

I c : X × Y → R≥0 ∪ {∞} cost function, usually satisfying
regularity assumptions.

I The Kantorovich Problem is to minimize the functional

Ic [π] : π 7→
∫

X×Y
c(x , y)dπ(x , y)

over all transport plans π ∈ Π(µ, ν).

Π(µ, ν) . . . measures with X -marginal µ and Y -marginal ν.
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Moving Croissants

Topics in Optimal Transportation

X . . . bakeries, Y . . . cafes
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c-Monotonicity
Strong Monotonicity
Better Transport

Cyclical Rerouting

Definition
A Borel set Γ ⊆ X × Y is called c-monotone if

n∑
i=1

c(xi , yi ) ≤
n∑

i=1

c(xi , yσ(i))

for every permutation σ ∈ S(n).

I A transport plan π is called c-monotone if there exists such a
Γ with π(Γ) = 1.
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c-Monotonicity
Strong Monotonicity
Better Transport

Necessary and Sufficient?

X and Y finite: Suppose π is a transport plan on whose support
c-monotonicity is violated.

n∑
i=1

c(xi , yi ) >
n∑

i=1

c(xi , yi+1)

where x1, . . . , xn resp. y1, . . . , yn carry positive mass α.
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c-Monotonicity
Strong Monotonicity
Better Transport

’96, W. Gangbo and R. McCann

Improve π:

πβ := π + α

n∑
i=1

δ(xi ,yi+1) − α
n∑

i=1

δ(xi ,yi ).

Proposition

Let X ,Y compact spaces equipped with Borel probability measures
ν, µ. Let c : X × Y → R≥0 be a continuous cost function. Then
every optimal transport plan is c-monotone.
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Necessary ...

Proposition (’09, BGMS)

Let X and Y be Polish spaces equipped with Borel probability
measures ν, µ. Let c : X × Y → R≥0 ∪ {∞} be a measurable cost
function. Then every optimal transport plan is c-monotone.

I Makes use of deep duality results by H. Kellerer in the
multimarginal setting.

I Dichotomy of Borel subsets of (X × Y )n.
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... but not sufficient

Example (’01, Ambrosio and Pratelli)

Let X = Y = [0, 1] be the torus, equipped with Lebesgue measure.

1. Let Γ1 = {(x , x) : x ∈ X},
2. Pick α irrational.

Let Γ2 = {(x , x + α) : x ∈ X}.
Let c = a on Γ1, c = b on Γ2 and ∞ else.

I Both Γ1 and Γ2 are c-monotone.

I Both Γ1 or Γ2 support a unique transport plan π1 resp. π2.

I Ic [π1] = a and Ic [π2] = b.
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Better Transport

’96, W. Gangbo and R. McCann

Proposition

Let X = Y = Rn and c : X × Y → R≥0 strictly convex. Then
every π which is c-monotone is optimal.
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c-Monotonicity
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Better Transport

’01, L. Ambrosio and A. Pratelli

Proposition

Let X ,Y be Polish spaces and c : X × Y → R≥0 l.s.c. fulfilling the
moment conditions

µ

(
{x :

∫
Y

c(x , y)dν(y) <∞}
)
> 0,

ν

(
{y :

∫
X

c(x , y)dµ(x) <∞}
)
> 0.

Then every π which is c-monotone is optimal.
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’07, A. Pratelli; W. Schachermayer and J. Teichmann

Proposition

Let X ,Y be Polish spaces and c : X × Y → R≥0 ∪ {∞} a
continuous cost function. Then every π which is c-monotone is
optimal.

Proposition

Let X ,Y be Polish spaces and c : X × Y → R≥0 a finite and l.s.c.
cost function. Then every π which is c-monotone is optimal.

G. Maresch et. al. Optimal and Better Transports
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c-Monotonicity
Strong Monotonicity
Better Transport

M. Beiglböck, M. Goldstern, W. Schachermayer, G. M.

Theorem
Let X and Y be Polish spaces. Let c : X × Y → R≥0 ∪ {∞} be
Borel measurable and such that the set {(x , y) : c(x , y) =∞} is

closed:closed the union of a closed set and a µ⊗ ν-null set:

Then every finite c-monotone transport is optimal.

Remark
Transport plans are usually supported on a µ⊗ ν-null set.
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Strong Monotonicity
Better Transport

Towards Better Optimality

Definition
A Borel set Γ ⊆ X × Y is strongly c-monotone iff there exist Borel
measurable functions ϕ : X → R∪ {−∞} and ψ : Y → R∪ {−∞}
such that

1. ϕ(x) + ψ(y) ≤ c(x , y) for all (x , y) ∈ X × Y ,

2. ϕ(x) + ψ(y) = c(x , y) for all (x , y) ∈ Γ.
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Consistency

I A transport plan π ∈ Π(µ, ν) is strongly c-monotone if it is
concentrated on a strongly c-monotone Borel set Γ.

I Strong monotonicity implies ordinary monotonicity.

Proof.

n∑
i=1

c(xi+1, yi ) ≥
n∑

i=1

ϕ(xi+1)+ψ(yi ) =
n∑

i=1

ϕ(xi )+ψ(yi ) =
n∑

i=1

c(xi , yi )

I Strong monotonicity implies optimality.
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Proof.

n∑
i=1

c(xi+1, yi ) ≥
n∑

i=1

ϕ(xi+1)+ψ(yi ) =
n∑

i=1

ϕ(xi )+ψ(yi ) =
n∑

i=1

c(xi , yi )

I Strong monotonicity implies optimality.
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. . . but not necessary.

Example

I Let X = Y = [0, 1] equipped with Lebesgue measure λ.

I Take c : X × Y → R≥0 ∪ {∞} to be infinite above the
diagonal, 1 on the diagonal and 0 below.

I Let Γ = {(x , x) : x ∈ [0, 1]} be the diagonal in X × Y .
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Counterexample

I Γ is c-monotone,

I Γ is not strongly c-monotone,

I Id: X → Y induces an optimal transport, which is
concentrated Γ.

G. Maresch et. al. Optimal and Better Transports



Preliminaries
Monotonicity

Summary

c-Monotonicity
Strong Monotonicity
Better Transport

Counterexample

I Γ is c-monotone,

I Γ is not strongly c-monotone,

I Id: X → Y induces an optimal transport, which is
concentrated Γ.

G. Maresch et. al. Optimal and Better Transports



Preliminaries
Monotonicity

Summary

c-Monotonicity
Strong Monotonicity
Better Transport

Counterexample

I Γ is c-monotone,

I Γ is not strongly c-monotone,

I Id: X → Y induces an optimal transport, which is
concentrated Γ.

G. Maresch et. al. Optimal and Better Transports



Preliminaries
Monotonicity

Summary

c-Monotonicity
Strong Monotonicity
Better Transport

Counterexample

I Γ is c-monotone,

I Γ is not strongly c-monotone,

I Id: X → Y induces an optimal transport, which is
concentrated Γ.

G. Maresch et. al. Optimal and Better Transports



Preliminaries
Monotonicity

Summary

c-Monotonicity
Strong Monotonicity
Better Transport

Robust Optimality

Theorem
For a finite transport plan robust optimality is equivalent to strong
c-monotonicity.
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The almost finite situation

When we put all our results together we get:

Theorem
Let c : X × Y → R≥0 ∪ {∞} be Borel measurable and µ⊗ ν-a.s.
finite. For a finite transport plan π t.f.a.e.

1. π is c-monotone.

2. π is strongly c-monotone.

3. π is optimal.

4. π is robustly optimal.
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Thank you for your attention!
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