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Setting

B: a standard Brownian motion on R” starting from 0
P: be the corresponding heat semi-group
e Pf(x) = Ef(:c+ B(t))
e OPf=APf/2
Throughtout a drift is any process (u(t))t>0 adapted to the

underlying filtration.
This filtration may be F; = o(B(s),s € [0,t]) or larger.
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Borell's formula

Let 7, be the Gaussian measure on R™ (law of B(1))
Laplace transform

Let f: R" — R, we define L(f) := log(fRn ef dvn).

Borell's formula

For all function f on R™ (mild conditions on f)

L(f) =su (Ef(B(l) + u(s) ds) - 1 / fus) ds) ,

the supremum is over all drifts w.



Comments on Borell's formula

The formula is not due to Borell, though he should be credited for
the idea of using it to prove functional inequalities such as

o Prékopa-Leindler inequality.

@ Brascamp-Lieb inequality.
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Let u be a probability measure on R".
Assume that p has a density, and let f = du/dvy,.
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Entropy

Relative entropy

Let u be a probability measure on R".
Assume that p has a density, and let f = du/dvy,.

H(w) = [ f1og(f) dvn = [ 1og(£) dp

Remarks
o H(u) >0
o H(p) =0 =



Entropy

Relative entropy

Let u be a probability measure on R".
Assume that p has a density, and let f = du/dvy,.

H(w) = [ f1og(f) dvn = [ 1og(£) dp

Remarks
o H(u) >0
o H(p) =0 =

Legendre duality
For all probability measure u

H(p) = sup (/f dp — L(f)) -



© Stochastic formula for the entropy
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The formula

Theorem
Let i be a probability measure on R™ with smooth positive density.

_ %inf(E /Ollu(8)|2 as).

Infimum on all drifts u such that B(1) + fo ) ds has law pu.

Besides

Let f = dp/d7,. The infimum is attained for some drift v which
@ solves the SDE: v(t) = VIn Pi_.f(B(t) + fo
@ is a martingale, in particular Ev(t) = bar( ) for aII t.

bar(p) := [z dp(x



Proof: Upper bound (1)

@ Let u be a drift such that B(1) + fo ) ds has law p. Then

1

Elog(f)(B(1)+/ u(s) ds) = H(p).

0
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Proof: Upper bound (1)

@ Let u be a drift such that B(1) + fo ) ds has law p. Then

Elog(f) (B(l) + /01 u(s) ds) = H(p).

o Let F(t,z) =log(P1—¢f)(x) and
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@ Then M“(0) = log(Plf)( =log([ f dv,) = 0.
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Proof: Upper bound (1)

Let u be a drift such that B(1) + fo ) ds has law p. Then
1
Elog(f) (B(l) +/0 u(s) ds) = H(p).
o Let F(t,z) =log(Pi_.f)(z) and

M“(t) = F(t,B(t) + /Otu(s) ds) - /{)tu(s)]2/2 ds

Then M*(0) = log(Plf)( ) =log([ f dy) = 0.

And E M(1) = H(X) — E [} u(s)|2/2 ds.

If we prove that M™ is a super-martingale,

then in particular E M*(0) > E M*(1) and we are done.
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Proof: Upper bound (2)

o F(t,z) =log(Pi_.f)(z) yields O, F = —(AF + |V F|?)/2.
@ Recall that

M“(t)—F(t,B(t)—i—/O uls) ds) —/0 lu(s)[2/2 ds.

e By It6's formula (omitting variables)

AM" = O,F dt + VF - (B +u dt) + AF/2 dt — [u|?/2 dt
=VF-dB— |VF —u?/2 dt.

@ So M™ is a super-martingale.
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Proof: Equality case

@ From the previous slide (omitting variables)
dM" =VF -dB — |VF —ul?/2 dt

@ Recalling variables, if v solves the SDE
t
o(t) = VF (t, B(t) + / u(s) ds)
0
t
= Viog(P-if) (B0 + [ o(s) ds)
0

then M" is a martingale and

Blos(f) (B() —1—/011)(8) as) = E/01|v(s)|2/2 ds.

e It only remains to prove that B(1) + fo ) ds has law p.
@ This follows from Girsanov's formula.
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Proof: Optimal drift is a martingale
e Optimal drift:
t
t)=VF(t,B(t ds).
ot) = VP(1.5(0) + [ o(s) as)

@ By Itd's formula again

dv =9, VF dt + V2F(dB + v dt) + A(VF)/2 dt.
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Proof: Optimal drift is a martingale

e Optimal drift:

t
v(t) = VF(t,B(t) +/ v(s) ds).
0
@ By Itd's formula again
dv =9, VF dt + V2F(dB + v dt) + A(VF)/2 dt.

o Recall that O;F = —(AF + |VF|?)/2.
e So

OV F = ~5(V(AF) + V(VFP))

_ _%A(VF) — V2F(VF).



Proof: Optimal drift is a martingale

e Optimal drift:

v(t) = VF(t,B(t) + /Otv(s) ds).

By Itd's formula again

dv =9, VF dt + V2F(dB + v dt) + A(VF)/2 dt.

Recall that O, F = —(AF + |V F|?)/2.
e So
1
OVF =~ (V(AF) + V([VF*)
1
= —5A(VF) - V2E(VF).

Thus dv = V2F(dB) and v is a martingale.
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Comments

@ This proof is very similar to that of Borell

@ It is also reminiscent of works by Follmer in the 80s



e Applications



Transportation cost inequality

Definition
Let 1 and v be probability measures on R™.

‘ 1/2
Wo(p,v) = mf(/]R . lz — y|? dw(x,y)) .
n>< n

Infimum on all probability measure 7 on R™ x R"
having marginals © and v.



Transportation cost inequality

Definition
Let 1 and v be probability measures on R™.

‘ 1/2
Wo(p,v) = 1nf</]R . lz — y|? d7r(x,y)> .
n>< n

Infimum on all probability measure 7 on R™ x R"
having marginals © and v.

Transportation Inequality (Talagrand)

Wa(p,7n)* < 2H(p).
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Proof

@ Let B bea Browman motion and u be a drift such that
X := B(1) + [y u(s) ds has law p.

@ Then (X,B( ) is a coupllng of (1,7n) so
Wa(u,v)? < BIX — B(1)|%.

o By Jensen

1 1
E|X — B(1)]* = E‘/O u(s) ds‘2 < E/o lu(s)|?* ds

e Taking infimum on u we get Wa (11,7, )% < 2H(u).
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Log-Sobolev inequality

Fisher Information
Let © be an absolutely continuous probability measure on R".

Let f = du/dy,.

2
1) = [ T ar= [ (viog(r)P au

Logarithmic Sobolev inequality (Gross)

1

H(p) < 5 1(w).
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Proof
o Let f =du/dv. Optimal drift for pu:

(0= Viog(Pr-)(B0) + "u(s) ds).

e Since B(1) + fo ) ds has law g

1
Elv(1)]? = E‘Vlog(f)(B(l) +/0 v(s) ds)‘2 =1(p).

e v martingale = |v|? sub-martingale.

@ Hence

1
H() = 5 [ Bl ds < S Bu(DP = 3100,
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Shannon's inequality

Definition
X a random vector on R"™ having density f with respect to the
Lebesgue measure

S(X) = / flog(f) dz = Elog(f)(X).

Remark

S(X) = H(X) ~ © log(2r) — %E|X|2.

Shannon’s Inequality
X, Y independant random vectors, A € (0, 1)

S(VI—AX +VAY) < (1 —XA)S(X) + AS(Y).



Proof (1)

Let B be a Brownian motion and u be a drift satisfying
)+ fo ) ds = X in law.
oH( Ef0|u )|2/2 ds.
e Eu(s ) =E X for all s.



Proof (1)

Let B be a Brownian motion and u be a drift satisfying
)+ fo ) ds = X in law.
oH( Ef0|u )|2/2 ds.
e Eu(s ) =E X for all s.
Let C' be a Brownian motion independant of B and v be a drift
satisfying
)+ fo )ds =Y in law.
oH( :Efo\v s)|?/2 ds.
e Ev(s) =EY for all s.
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Proof (2)

o Let W =+11—=AB+ VAC and w = /1 — M+ V.

@ Then W is a standard Brownian motion and
1
Wt / w(s) ds "2 VI ZAX + VAY.
0

o Hence H(v1 — AX + VAY) < E [ Jw(s)|?/2 ds.

o Elw(s)]? = (1=N)|u(s)|>+A|v(s)[2+2/A(1 = M) E(X)-E(Y



Proof (2)

Let W = /1= AB + VAC and w = /1 — M+ V.

@ Then W is a standard Brownian motion and

1
Wt / w(s) ds "2 VI ZAX + VAY.
0

Hence H(v1 — AX + VAY) < E [ Jw(s)[?/2 ds.
Elw(s)|? = (1=X\)|u(s)|?4+A|v(s)|?4+2/A(1 = A\ E(X)-E(Y).

Therefore

H(VI—AX +VAY) < (1= A H(X) + AH(Y)
+ VA = N E(X) -E(Y)

which is the result.
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Let E be a Euclidean space, F1, ..., E,, subspaces, cq,...

positive numbers, satisfying
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where P; is the orthogonal projection with range E;.



Brascamp-Lieb inequality

Frame condition

Let E/ be a Euclidean space, F1,..., E,, subspaces, ci,...,Cn
positive numbers, satisfying

m
Z ciP; =idg
i=1

where P; is the orthogonal projection with range E;.

Brascamp-Lieb Inequality
Under the frame condition, for all f;: E; — R,

/Eezcifi(Pix) dye(z) < g(/E = d’YE")Ci

i

~vg : Gaussian measure on E.



Comments on BL inequality

/Eezcifi(Pim) d’yE(CC) < Z1_[1(/E efi d’YEi>Ci

i

Remarks

@ If ¢; =1 and the spaces F; form an orthogonal decomposition
of E there is equality (this is just Fubini).

@ When E; = E for all i and ) ¢; = 1 this is just Holder.

@ Remains true with Lebesgue measures instead of Gaussian
measures.



Comments on BL inequality

> cifi(Piz) g < / fi q “
e YE\Z) > € YE;
e g < (. o)
Remarks

@ If ¢; =1 and the spaces F; form an orthogonal decomposition
of E there is equality (this is just Fubini).

@ When E; = E for all i and ) ¢; = 1 this is just Holder.

@ Remains true with Lebesgue measures instead of Gaussian
measures.

Applications
@ Connection with Young's convolution inequality.
@ Hypercontractivity of the Ornstein-Uhlenbeck semi-group.

@ Other geometric applications
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Dual formulation of the BL inequality (Carlen-Cordero)
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Dual version

Dual formulation of the BL inequality (Carlen-Cordero)

Under the frame condition, for all random vector X on E

H(X) > » ¢ H(PX)

[

Il
—

)

The equivalence follows from the Legendre duality

H(p) = s [ #an-1)
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Proof of Dual BL

B a Brownian motion.

u a drift satisfying B(1) + fo ) ds = X in law.
then P;B is a Brownian motion on E;

and PB+fO Pu(s) ds = P;X in law

Thus H(P,X) < Efo | Pu(s)]?/2 ds

Using the frame condition
1
Y eH(PX) < E/ > " cilPu(s)?/2 ds
0

1
= ’LLS2 S.
=B [ ue)P/2d

Taking infimum on u yields the result.
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Reversed Brascamp-Lieb Inequality (Barthe)
Under the frame condition, for all h: F — R and f;: E; — R
satisying
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Reversed Brascamp-Lieb inequality

Reversed Brascamp-Lieb Inequality (Barthe)
Under the frame condition, for all h: F — R and f;: E; — R
satisying

m m

\V/(:El,. . .,Im) € Fi1 x---x E,, h(z Ciﬂji) > chfz(l‘l)

i=1 i=1

h fi “
a2 [I([ o dom,)
[ ae=T1(],

7

we have



Reversed Brascamp-Lieb inequality

Reversed Brascamp-Lieb Inequality (Barthe)

Under the frame condition, for all h: F — R and f;: E; — R
satisying

V(z1,. .. Zm) € By X -+ X Ep, h(icia:i) > icz'fi(m)
i=1 =1
we have m
/Eeh dhg = 21;[1(/& ofi dm)
Remark

When m =2, E1 = E5 = E, ¢1 + co = 1 this yields the log
concavity of the Gaussian measure.
Related to the Brunn-Minkowski inequality.



Entropic RBL inequality

Dual version of RBL

Under the frame condition,
for all random vectors X1,...,X,, on E1,..., E,, respectively,



Entropic RBL inequality

Dual version of RBL

Under the frame condition,

for all random vectors X1,...,X,, on E1,..., E,, respectively,
there exists Y1, ..., Yy, satisfying Y; = X; in law for all ¢ and



Entropic RBL inequality

Dual version of RBL

Under the frame condition,
for all random vectors X1,...,X,, on E1,..., E,, respectively,
there exists Y1, ..., Yy, satisfying Y; = X; in law for all ¢ and

H(i aY;) < Zm: e H(X;).
=1 =1



Entropic RBL inequality

Dual version of RBL

Under the frame condition,
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Entropic RBL inequality

Dual version of RBL

Under the frame condition,
for all random vectors X1,...,X,, on E1,..., E,, respectively,
there exists Y1, ..., Yy, satisfying Y; = X; in law for all ¢ and

H(i aY;) < Zm: e H(X;).
=1 =1

Proof that this implies RBL:
o Let f1,..., fm,h satisfy the hypothesis of RBL.
o Let X4,...,X,, berandom vectorson E1,..., E,,
and Yy,...,Y,, be as above.



Entropic RBL implies RBL

o > c¢ifi(xi) < h(Y cim;) for all (1, ...

e V,=X;inlawfori=1,...,m.

) € By X -

X E,,.
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Entropic RBL implies RBL

o Y cifi(zi) <h(D cixy) forall (z1,...,2m) € By X -+ X Ep,.
oY, =X, inlawfori=1,..

o HY ¢;V;) < Y ¢ H(X:).
@ Then

> (B fi(X) - HX)) =B afi¥s) = > e H(
<EBh()_ ) _H@m).

o Using log([ e/ dv) = supy (E f(X) — H(X)) we obtain

ﬁ(/E eft d’YEi)Ci < /Eeh dve.

i=1
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Let B be a Brownian motion.
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Let X4,...,X,, be random vectors on E1,..., E,,.
Let B be a Brownian motion.
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a drift u; satisfying P;B(1) + fo u;(s) ds = X; in law and
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Proof of Entropic RBL

Let X4,...,X,, be random vectors on E1,..., E,,.
Let B be a Brownian motion.

@ Since P, B is a Brownian mot|on on E;, there exists
a drift u; satisfying P;B(1) + fo u;(s) ds = X; in law and

'82 S.
—E/Oruz<>| /2d

o LetY; = P,B(1)+ fo u;i(s) ds.

e The frame condltlon yields ZCZY; B(1) + [} 3 ciuils)
@ Hence (using the frame condition agam)

1
H(chY;) < E/o ‘Zciui(s)‘zﬂ ds

1
<Y GE /0 jui(s)[2/2 ds
=> ¢H(X
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