A stochastic formula for the entropy and applications

Joseph Lehec
Université Paris-Dauphine

Asymptotic Geometric Analysis
Fields Institute
Toronto, nov. 4th, 2010
(1) Introduction: Borell's formula
(2) Stochastic formula for the entropy
(3) Applications
(1) Introduction: Borell's formula
(2) Stochastic formula for the entropy
(3) Applications

Setting

B : a standard Brownian motion on \mathbb{R}^{n} starting from 0
P : be the corresponding heat semi-group

- $P_{t} f(x)=\mathrm{E} f(x+B(t))$
- $\partial_{t} P_{t} f=\Delta P_{t} f / 2$

Setting

B : a standard Brownian motion on \mathbb{R}^{n} starting from 0
P : be the corresponding heat semi-group

- $P_{t} f(x)=\mathrm{E} f(x+B(t))$
- $\partial_{t} P_{t} f=\Delta P_{t} f / 2$

Throughtout a drift is any process $(u(t))_{t \geq 0}$ adapted to the underlying filtration.
This filtration may be $\mathcal{F}_{t}=\sigma(B(s), s \in[0, t])$ or larger.

Borell's formula

Let γ_{n} be the Gaussian measure on \mathbb{R}^{n} (law of $B(1)$)

Borell's formula

Let γ_{n} be the Gaussian measure on \mathbb{R}^{n} (law of $B(1)$)
Laplace transform
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we define $\mathrm{L}(f):=\log \left(\int_{\mathbb{R}^{n}} \mathrm{e}^{f} \mathrm{~d} \gamma_{n}\right)$.

Borell's formula

Let γ_{n} be the Gaussian measure on \mathbb{R}^{n} (law of $B(1)$)
Laplace transform
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we define $\mathrm{L}(f):=\log \left(\int_{\mathbb{R}^{n}} \mathrm{e}^{f} \mathrm{~d} \gamma_{n}\right)$.

Borell's formula

For all function f on \mathbb{R}^{n} (mild conditions on f)

$$
\mathrm{L}(f)=\sup _{u}\left(\mathrm{E} f\left(B(1)+\int_{0}^{1} u(s) \mathrm{d} s\right)-\frac{1}{2} \int_{0}^{1}|u(s)|^{2} \mathrm{~d} s\right)
$$

the supremum is over all drifts u.

Comments on Borell's formula

The formula is not due to Borell, though he should be credited for the idea of using it to prove functional inequalities such as

- Prékopa-Leindler inequality.
- Brascamp-Lieb inequality.

Entropy

Relative entropy

Let μ be a probability measure on \mathbb{R}^{n}.
Assume that μ has a density, and let $f=\mathrm{d} \mu / \mathrm{d} \gamma_{n}$.

$$
\mathrm{H}(\mu)=\int f \log (f) \mathrm{d} \gamma_{n}=\int \log (f) \mathrm{d} \mu
$$

Entropy

Relative entropy

Let μ be a probability measure on \mathbb{R}^{n}.
Assume that μ has a density, and let $f=\mathrm{d} \mu / \mathrm{d} \gamma_{n}$.

$$
\mathrm{H}(\mu)=\int f \log (f) \mathrm{d} \gamma_{n}=\int \log (f) \mathrm{d} \mu .
$$

Remarks

- $\mathrm{H}(\mu) \geq 0$
- $\mathrm{H}(\mu)=0 \Leftrightarrow \mu=\gamma_{n}$.

Entropy

Relative entropy

Let μ be a probability measure on \mathbb{R}^{n}.
Assume that μ has a density, and let $f=\mathrm{d} \mu / \mathrm{d} \gamma_{n}$.

$$
\mathrm{H}(\mu)=\int f \log (f) \mathrm{d} \gamma_{n}=\int \log (f) \mathrm{d} \mu .
$$

Remarks

- $\mathrm{H}(\mu) \geq 0$
- $\mathrm{H}(\mu)=0 \Leftrightarrow \mu=\gamma_{n}$.

Legendre duality

For all probability measure μ

$$
\mathrm{H}(\mu)=\sup _{f}\left(\int f \mathrm{~d} \mu-\mathrm{L}(f)\right) .
$$

(1) Introduction: Borell's formula

(2) Stochastic formula for the entropy

The formula

Theorem
Let μ be a probability measure on \mathbb{R}^{n} with smooth positive density.

$$
\mathrm{H}(\mu)=\frac{1}{2} \inf \left(\mathrm{E} \int_{0}^{1}|u(s)|^{2} \mathrm{~d} s\right) .
$$

Infimum on all drifts u such that $B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ.

The formula

Theorem

Let μ be a probability measure on \mathbb{R}^{n} with smooth positive density.

$$
\mathrm{H}(\mu)=\frac{1}{2} \inf \left(\mathrm{E} \int_{0}^{1}|u(s)|^{2} \mathrm{~d} s\right) .
$$

Infimum on all drifts u such that $B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ.

Besides

Let $f=\mathrm{d} \mu / \mathrm{d} \gamma_{n}$. The infimum is attained for some drift v which

- solves the SDE: $v(t)=\nabla \ln P_{1-t} f\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)$.
- is a martingale, in particular $\operatorname{E~} v(t)=\operatorname{bar}(\mu)$ for all t.
$\operatorname{bar}(\mu):=\int x \mathrm{~d} \mu(x)$.

Proof: Upper bound (1)

- Let u be a drift such that $B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ. Then

$$
\mathrm{E} \log (f)\left(B(1)+\int_{0}^{1} u(s) \mathrm{d} s\right)=\mathrm{H}(\mu)
$$

Proof: Upper bound (1)

- Let u be a drift such that $B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ. Then

$$
\mathrm{E} \log (f)\left(B(1)+\int_{0}^{1} u(s) \mathrm{d} s\right)=\mathrm{H}(\mu)
$$

- Let $F(t, x)=\log \left(P_{1-t} f\right)(x)$ and

$$
M^{u}(t)=F\left(t, B(t)+\int_{0}^{t} u(s) \mathrm{d} s\right)-\int_{0}^{t}|u(s)|^{2} / 2 \mathrm{~d} s
$$

Proof: Upper bound (1)

- Let u be a drift such that $B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ. Then

$$
\mathrm{E} \log (f)\left(B(1)+\int_{0}^{1} u(s) \mathrm{d} s\right)=\mathrm{H}(\mu)
$$

- Let $F(t, x)=\log \left(P_{1-t} f\right)(x)$ and

$$
M^{u}(t)=F\left(t, B(t)+\int_{0}^{t} u(s) \mathrm{d} s\right)-\int_{0}^{t}|u(s)|^{2} / 2 \mathrm{~d} s
$$

- Then $M^{u}(0)=\log \left(P_{1} f\right)(0)=\log \left(\int f \mathrm{~d} \gamma_{n}\right)=0$.

Proof: Upper bound (1)

- Let u be a drift such that $B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ. Then

$$
\mathrm{E} \log (f)\left(B(1)+\int_{0}^{1} u(s) \mathrm{d} s\right)=\mathrm{H}(\mu)
$$

- Let $F(t, x)=\log \left(P_{1-t} f\right)(x)$ and

$$
M^{u}(t)=F\left(t, B(t)+\int_{0}^{t} u(s) \mathrm{d} s\right)-\int_{0}^{t}|u(s)|^{2} / 2 \mathrm{~d} s
$$

- Then $M^{u}(0)=\log \left(P_{1} f\right)(0)=\log \left(\int f \mathrm{~d} \gamma_{n}\right)=0$.
- And $\mathrm{E} M^{u}(1)=\mathrm{H}(X)-\mathrm{E} \int_{0}^{1}|u(s)|^{2} / 2 \mathrm{~d} s$.

Proof: Upper bound (1)

- Let u be a drift such that $B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ. Then

$$
\mathrm{E} \log (f)\left(B(1)+\int_{0}^{1} u(s) \mathrm{d} s\right)=\mathrm{H}(\mu)
$$

- Let $F(t, x)=\log \left(P_{1-t} f\right)(x)$ and

$$
M^{u}(t)=F\left(t, B(t)+\int_{0}^{t} u(s) \mathrm{d} s\right)-\int_{0}^{t}|u(s)|^{2} / 2 \mathrm{~d} s
$$

- Then $M^{u}(0)=\log \left(P_{1} f\right)(0)=\log \left(\int f \mathrm{~d} \gamma_{n}\right)=0$.
- And $\mathrm{E} M^{u}(1)=\mathrm{H}(X)-\mathrm{E} \int_{0}^{1}|u(s)|^{2} / 2 \mathrm{~d} s$.
- If we prove that M^{u} is a super-martingale, then in particular $\mathrm{E} M^{u}(0) \geq \mathrm{E} M^{u}(1)$ and we are done.

Proof: Upper bound (2)

- $F(t, x)=\log \left(P_{1-t} f\right)(x)$ yields $\partial_{t} F=-\left(\Delta F+|\nabla F|^{2}\right) / 2$.

Proof: Upper bound (2)

- $F(t, x)=\log \left(P_{1-t} f\right)(x)$ yields $\partial_{t} F=-\left(\Delta F+|\nabla F|^{2}\right) / 2$.
- Recall that

$$
M^{u}(t)=F\left(t, B(t)+\int_{0}^{t} u(s) \mathrm{d} s\right)-\int_{0}^{t}|u(s)|^{2} / 2 \mathrm{~d} s
$$

Proof: Upper bound (2)

- $F(t, x)=\log \left(P_{1-t} f\right)(x)$ yields $\partial_{t} F=-\left(\Delta F+|\nabla F|^{2}\right) / 2$.
- Recall that

$$
M^{u}(t)=F\left(t, B(t)+\int_{0}^{t} u(s) \mathrm{d} s\right)-\int_{0}^{t}|u(s)|^{2} / 2 \mathrm{~d} s
$$

- By Itô's formula (omitting variables)

$$
\begin{aligned}
\mathrm{d} M^{u} & =\partial_{t} F \mathrm{~d} t+\nabla F \cdot(\mathrm{~d} B+u \mathrm{~d} t)+\Delta F / 2 \mathrm{~d} t-|u|^{2} / 2 \mathrm{~d} t \\
& =\nabla F \cdot \mathrm{~d} B-|\nabla F-u|^{2} / 2 \mathrm{~d} t .
\end{aligned}
$$

Proof: Upper bound (2)

- $F(t, x)=\log \left(P_{1-t} f\right)(x)$ yields $\partial_{t} F=-\left(\Delta F+|\nabla F|^{2}\right) / 2$.
- Recall that

$$
M^{u}(t)=F\left(t, B(t)+\int_{0}^{t} u(s) \mathrm{d} s\right)-\int_{0}^{t}|u(s)|^{2} / 2 \mathrm{~d} s
$$

- By Itô's formula (omitting variables)

$$
\begin{aligned}
\mathrm{d} M^{u} & =\partial_{t} F \mathrm{~d} t+\nabla F \cdot(\mathrm{~d} B+u \mathrm{~d} t)+\Delta F / 2 \mathrm{~d} t-|u|^{2} / 2 \mathrm{~d} t \\
& =\nabla F \cdot \mathrm{~d} B-|\nabla F-u|^{2} / 2 \mathrm{~d} t .
\end{aligned}
$$

- So M^{u} is a super-martingale.

Proof: Equality case

- From the previous slide (omitting variables)

$$
\mathrm{d} M^{u}=\nabla F \cdot \mathrm{~d} B-|\nabla F-u|^{2} / 2 \mathrm{~d} t
$$

Proof: Equality case

- From the previous slide (omitting variables)

$$
\mathrm{d} M^{u}=\nabla F \cdot \mathrm{~d} B-|\nabla F-u|^{2} / 2 \mathrm{~d} t
$$

- Recalling variables, if v solves the SDE

$$
\begin{aligned}
v(t) & =\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right) \\
& =\nabla \log \left(P_{1-t} f\right)\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
\end{aligned}
$$

Proof: Equality case

- From the previous slide (omitting variables)

$$
\mathrm{d} M^{u}=\nabla F \cdot \mathrm{~d} B-|\nabla F-u|^{2} / 2 \mathrm{~d} t
$$

- Recalling variables, if v solves the SDE

$$
\begin{aligned}
v(t) & =\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right) \\
& =\nabla \log \left(P_{1-t} f\right)\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
\end{aligned}
$$

then M^{v} is a martingale and

$$
\mathrm{E} \log (f)\left(B(1)+\int_{0}^{1} v(s) \mathrm{d} s\right)=\mathrm{E} \int_{0}^{1}|v(s)|^{2} / 2 \mathrm{~d} s
$$

Proof: Equality case

- From the previous slide (omitting variables)

$$
\mathrm{d} M^{u}=\nabla F \cdot \mathrm{~d} B-|\nabla F-u|^{2} / 2 \mathrm{~d} t
$$

- Recalling variables, if v solves the SDE

$$
\begin{aligned}
v(t) & =\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right) \\
& =\nabla \log \left(P_{1-t} f\right)\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
\end{aligned}
$$

then M^{v} is a martingale and

$$
\mathrm{E} \log (f)\left(B(1)+\int_{0}^{1} v(s) \mathrm{d} s\right)=\mathrm{E} \int_{0}^{1}|v(s)|^{2} / 2 \mathrm{~d} s
$$

- It only remains to prove that $B(1)+\int_{0}^{1} v(s) \mathrm{d} s$ has law μ.

Proof: Equality case

- From the previous slide (omitting variables)

$$
\mathrm{d} M^{u}=\nabla F \cdot \mathrm{~d} B-|\nabla F-u|^{2} / 2 \mathrm{~d} t
$$

- Recalling variables, if v solves the SDE

$$
\begin{aligned}
v(t) & =\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right) \\
& =\nabla \log \left(P_{1-t} f\right)\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
\end{aligned}
$$

then M^{v} is a martingale and

$$
\mathrm{E} \log (f)\left(B(1)+\int_{0}^{1} v(s) \mathrm{d} s\right)=\mathrm{E} \int_{0}^{1}|v(s)|^{2} / 2 \mathrm{~d} s
$$

- It only remains to prove that $B(1)+\int_{0}^{1} v(s) \mathrm{d} s$ has law μ.
- This follows from Girsanov's formula.

Proof: Optimal drift is a martingale

- Optimal drift:

$$
v(t)=\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
$$

Proof: Optimal drift is a martingale

- Optimal drift:

$$
v(t)=\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right) .
$$

- By Itô's formula again

$$
\mathrm{d} v=\partial_{t} \nabla F \mathrm{~d} t+\nabla^{2} F(\mathrm{~d} B+v \mathrm{~d} t)+\Delta(\nabla F) / 2 \mathrm{~d} t
$$

Proof: Optimal drift is a martingale

- Optimal drift:

$$
v(t)=\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
$$

- By Itô's formula again

$$
\mathrm{d} v=\partial_{t} \nabla F \mathrm{~d} t+\nabla^{2} F(\mathrm{~d} B+v \mathrm{~d} t)+\Delta(\nabla F) / 2 \mathrm{~d} t
$$

- Recall that $\partial_{t} F=-\left(\Delta F+|\nabla F|^{2}\right) / 2$.

Proof: Optimal drift is a martingale

- Optimal drift:

$$
v(t)=\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
$$

- By Itô's formula again

$$
\mathrm{d} v=\partial_{t} \nabla F \mathrm{~d} t+\nabla^{2} F(\mathrm{~d} B+v \mathrm{~d} t)+\Delta(\nabla F) / 2 \mathrm{~d} t
$$

- Recall that $\partial_{t} F=-\left(\Delta F+|\nabla F|^{2}\right) / 2$.
- So

$$
\begin{aligned}
\partial_{t} \nabla F & =-\frac{1}{2}\left(\nabla(\Delta F)+\nabla\left(|\nabla F|^{2}\right)\right) \\
& =-\frac{1}{2} \Delta(\nabla F)-\nabla^{2} F(\nabla F)
\end{aligned}
$$

Proof: Optimal drift is a martingale

- Optimal drift:

$$
v(t)=\nabla F\left(t, B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
$$

- By Itô's formula again

$$
\mathrm{d} v=\partial_{t} \nabla F \mathrm{~d} t+\nabla^{2} F(\mathrm{~d} B+v \mathrm{~d} t)+\Delta(\nabla F) / 2 \mathrm{~d} t
$$

- Recall that $\partial_{t} F=-\left(\Delta F+|\nabla F|^{2}\right) / 2$.
- So

$$
\begin{aligned}
\partial_{t} \nabla F & =-\frac{1}{2}\left(\nabla(\Delta F)+\nabla\left(|\nabla F|^{2}\right)\right) \\
& =-\frac{1}{2} \Delta(\nabla F)-\nabla^{2} F(\nabla F)
\end{aligned}
$$

- Thus $\mathrm{d} v=\nabla^{2} F(\mathrm{~d} B)$ and v is a martingale.

Comments

- This proof is very similar to that of Borell

Comments

- This proof is very similar to that of Borell
- It is also reminiscent of works by Föllmer in the 80 s
(1) Introduction: Borell's formula
(2) Stochastic formula for the entropy
(3) Applications

Transportation cost inequality

Definition

Let μ and ν be probability measures on \mathbb{R}^{n}.

$$
\mathrm{W}_{2}(\mu, \nu)=\inf \left(\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}|x-y|^{2} \mathrm{~d} \pi(x, y)\right)^{1 / 2}
$$

Infimum on all probability measure π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ having marginals μ and ν.

Transportation cost inequality

Definition

Let μ and ν be probability measures on \mathbb{R}^{n}.

$$
\mathrm{W}_{2}(\mu, \nu)=\inf \left(\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}|x-y|^{2} \mathrm{~d} \pi(x, y)\right)^{1 / 2}
$$

Infimum on all probability measure π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ having marginals μ and ν.

Transportation Inequality (Talagrand)

$$
\mathrm{W}_{2}\left(\mu, \gamma_{n}\right)^{2} \leq 2 \mathrm{H}(\mu)
$$

Proof

- Let B be a Brownian motion and u be a drift such that $X:=B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ.

Proof

- Let B be a Brownian motion and u be a drift such that $X:=B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ.
- Then $(X, B(1))$ is a coupling of $\left(\mu, \gamma_{n}\right)$ so

$$
\mathrm{W}_{2}\left(\mu, \gamma_{n}\right)^{2} \leq \mathrm{E}|X-B(1)|^{2} .
$$

Proof

- Let B be a Brownian motion and u be a drift such that $X:=B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ.
- Then $(X, B(1))$ is a coupling of $\left(\mu, \gamma_{n}\right)$ so

$$
\mathrm{W}_{2}\left(\mu, \gamma_{n}\right)^{2} \leq \mathrm{E}|X-B(1)|^{2}
$$

- By Jensen

$$
\mathrm{E}|X-B(1)|^{2}=\mathrm{E}\left|\int_{0}^{1} u(s) \mathrm{d} s\right|^{2} \leq \mathrm{E} \int_{0}^{1}|u(s)|^{2} \mathrm{~d} s
$$

Proof

- Let B be a Brownian motion and u be a drift such that $X:=B(1)+\int_{0}^{1} u(s) \mathrm{d} s$ has law μ.
- Then $(X, B(1))$ is a coupling of $\left(\mu, \gamma_{n}\right)$ so

$$
\mathrm{W}_{2}\left(\mu, \gamma_{n}\right)^{2} \leq \mathrm{E}|X-B(1)|^{2}
$$

- By Jensen

$$
\mathrm{E}|X-B(1)|^{2}=\mathrm{E}\left|\int_{0}^{1} u(s) \mathrm{d} s\right|^{2} \leq \mathrm{E} \int_{0}^{1}|u(s)|^{2} \mathrm{~d} s
$$

- Taking infimum on u we get $\mathrm{W}_{2}\left(\mu, \gamma_{n}\right)^{2} \leq 2 \mathrm{H}(\mu)$.

Log-Sobolev inequality

Fisher Information

Let μ be an absolutely continuous probability measure on \mathbb{R}^{n}.
Let $f=\mathrm{d} \mu / \mathrm{d} \gamma_{n}$.

$$
\mathrm{I}(\mu)=\int_{\mathbb{R}^{n}} \frac{|\nabla f|^{2}}{f} \mathrm{~d} \gamma_{n}=\int_{\mathbb{R}^{n}}|\nabla \log (f)|^{2} \mathrm{~d} \mu
$$

Log-Sobolev inequality

Fisher Information

Let μ be an absolutely continuous probability measure on \mathbb{R}^{n}.
Let $f=\mathrm{d} \mu / \mathrm{d} \gamma_{n}$.

$$
\mathrm{I}(\mu)=\int_{\mathbb{R}^{n}} \frac{|\nabla f|^{2}}{f} \mathrm{~d} \gamma_{n}=\int_{\mathbb{R}^{n}}|\nabla \log (f)|^{2} \mathrm{~d} \mu
$$

Logarithmic Sobolev inequality (Gross)

$$
\mathrm{H}(\mu) \leq \frac{1}{2} \mathrm{I}(\mu)
$$

Proof

- Let $f=\mathrm{d} \mu / \mathrm{d} \gamma$. Optimal drift for μ :

$$
v(t)=\nabla \log \left(P_{1-t} f\right)\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
$$

Proof

- Let $f=\mathrm{d} \mu / \mathrm{d} \gamma$. Optimal drift for μ :

$$
v(t)=\nabla \log \left(P_{1-t} f\right)\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
$$

- Since $B(1)+\int_{0}^{1} v(s) \mathrm{d} s$ has law μ

$$
\mathrm{E}|v(1)|^{2}=\mathrm{E}\left|\nabla \log (f)\left(B(1)+\int_{0}^{1} v(s) \mathrm{d} s\right)\right|^{2}=\mathrm{I}(\mu)
$$

Proof

- Let $f=\mathrm{d} \mu / \mathrm{d} \gamma$. Optimal drift for μ :

$$
v(t)=\nabla \log \left(P_{1-t} f\right)\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
$$

- Since $B(1)+\int_{0}^{1} v(s) \mathrm{d} s$ has law μ

$$
\mathrm{E}|v(1)|^{2}=\mathrm{E}\left|\nabla \log (f)\left(B(1)+\int_{0}^{1} v(s) \mathrm{d} s\right)\right|^{2}=\mathrm{I}(\mu)
$$

- v martingale $\Rightarrow|v|^{2}$ sub-martingale.

Proof

- Let $f=\mathrm{d} \mu / \mathrm{d} \gamma$. Optimal drift for μ :

$$
v(t)=\nabla \log \left(P_{1-t} f\right)\left(B(t)+\int_{0}^{t} v(s) \mathrm{d} s\right)
$$

- Since $B(1)+\int_{0}^{1} v(s) \mathrm{d} s$ has law μ

$$
\mathrm{E}|v(1)|^{2}=\mathrm{E}\left|\nabla \log (f)\left(B(1)+\int_{0}^{1} v(s) \mathrm{d} s\right)\right|^{2}=\mathrm{I}(\mu)
$$

- v martingale $\Rightarrow|v|^{2}$ sub-martingale.
- Hence

$$
\mathrm{H}(\mu)=\frac{1}{2} \int_{0}^{1} \mathrm{E}|v(s)|^{2} \mathrm{~d} s \leq \frac{1}{2} \mathrm{E}|v(1)|^{2}=\frac{1}{2} \mathrm{I}(\mu)
$$

Shannon's inequality

Definition

X a random vector on \mathbb{R}^{n} having density f with respect to the Lebesgue measure

$$
\mathrm{S}(X)=\int f \log (f) \mathrm{d} x=\mathrm{E} \log (f)(X)
$$

Shannon's inequality

Definition

X a random vector on \mathbb{R}^{n} having density f with respect to the Lebesgue measure

$$
\mathrm{S}(X)=\int f \log (f) \mathrm{d} x=\mathrm{E} \log (f)(X)
$$

Remark

$$
\mathrm{S}(X)=\mathrm{H}(X)-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \mathrm{E}|X|^{2}
$$

Shannon's inequality

Definition

X a random vector on \mathbb{R}^{n} having density f with respect to the Lebesgue measure

$$
\mathrm{S}(X)=\int f \log (f) \mathrm{d} x=\mathrm{E} \log (f)(X)
$$

Remark

$$
\mathrm{S}(X)=\mathrm{H}(X)-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \mathrm{E}|X|^{2} .
$$

Shannon's Inequality
X, Y independant random vectors, $\lambda \in(0,1)$

$$
\mathrm{S}(\sqrt{1-\lambda} X+\sqrt{\lambda} Y) \leq(1-\lambda) \mathrm{S}(X)+\lambda \mathrm{S}(Y)
$$

Proof (1)

Let B be a Brownian motion and u be a drift satisfying

- $B(1)+\int_{0}^{1} u(s) \mathrm{d} s=X$ in law.
- $\mathrm{H}(X)=\mathrm{E} \int_{0}^{1}|u(s)|^{2} / 2 \mathrm{~d} s$.
- $\mathrm{E} u(s)=\mathrm{E} X$ for all s.

Proof (1)

Let B be a Brownian motion and u be a drift satisfying

- $B(1)+\int_{0}^{1} u(s) \mathrm{d} s=X$ in law.
- $\mathrm{H}(X)=\mathrm{E} \int_{0}^{1}|u(s)|^{2} / 2 \mathrm{~d} s$.
- $\mathrm{E} u(s)=\mathrm{E} X$ for all s.

Let C be a Brownian motion independant of B and v be a drift satisfying

- $C(1)+\int_{0}^{1} v(s) \mathrm{d} s=Y$ in law.
- $\mathrm{H}(Y)=\mathrm{E} \int_{0}^{1}|v(s)|^{2} / 2 \mathrm{~d} s$.
- $\mathrm{E} v(s)=\mathrm{E} Y$ for all s.

Proof (2)

- Let $W=\sqrt{1-\lambda} B+\sqrt{\lambda} C$ and $w=\sqrt{1-\lambda} u+\sqrt{\lambda} v$.

Proof (2)

- Let $W=\sqrt{1-\lambda} B+\sqrt{\lambda} C$ and $w=\sqrt{1-\lambda} u+\sqrt{\lambda} v$.
- Then W is a standard Brownian motion and

$$
W+\int_{0}^{1} w(s) \mathrm{d} s \stackrel{(\text { law })}{=} \sqrt{1-\lambda} X+\sqrt{\lambda} Y
$$

Proof (2)

- Let $W=\sqrt{1-\lambda} B+\sqrt{\lambda} C$ and $w=\sqrt{1-\lambda} u+\sqrt{\lambda} v$.
- Then W is a standard Brownian motion and

$$
W+\int_{0}^{1} w(s) \mathrm{d} s \stackrel{(\text { law })}{=} \sqrt{1-\lambda} X+\sqrt{\lambda} Y
$$

- Hence $\mathrm{H}(\sqrt{1-\lambda} X+\sqrt{\lambda} Y) \leq \mathrm{E} \int_{0}^{1}|w(s)|^{2} / 2 \mathrm{~d} s$.

Proof (2)

- Let $W=\sqrt{1-\lambda} B+\sqrt{\lambda} C$ and $w=\sqrt{1-\lambda} u+\sqrt{\lambda} v$.
- Then W is a standard Brownian motion and

$$
W+\int_{0}^{1} w(s) \mathrm{d} s \stackrel{(\text { law })}{=} \sqrt{1-\lambda} X+\sqrt{\lambda} Y
$$

- Hence $\mathrm{H}(\sqrt{1-\lambda} X+\sqrt{\lambda} Y) \leq \mathrm{E} \int_{0}^{1}|w(s)|^{2} / 2 \mathrm{~d} s$.
- $\mathrm{E}|w(s)|^{2}=(1-\lambda)|u(s)|^{2}+\lambda|v(s)|^{2}+2 \sqrt{\lambda(1-\lambda)} \mathrm{E}(X) \cdot \mathrm{E}(Y)$.

Proof (2)

- Let $W=\sqrt{1-\lambda} B+\sqrt{\lambda} C$ and $w=\sqrt{1-\lambda} u+\sqrt{\lambda} v$.
- Then W is a standard Brownian motion and

$$
W+\int_{0}^{1} w(s) \mathrm{d} s \stackrel{(\text { law })}{=} \sqrt{1-\lambda} X+\sqrt{\lambda} Y
$$

- Hence $\mathrm{H}(\sqrt{1-\lambda} X+\sqrt{\lambda} Y) \leq \mathrm{E} \int_{0}^{1}|w(s)|^{2} / 2 \mathrm{~d} s$.
- $\mathrm{E}|w(s)|^{2}=(1-\lambda)|u(s)|^{2}+\lambda|v(s)|^{2}+2 \sqrt{\lambda(1-\lambda)} \mathrm{E}(X) \cdot \mathrm{E}(Y)$.
- Therefore

$$
\begin{aligned}
\mathrm{H}(\sqrt{1-\lambda} X+\sqrt{\lambda} Y) & \leq(1-\lambda) \mathrm{H}(X)+\lambda \mathrm{H}(Y) \\
& +\sqrt{\lambda(1-\lambda)} \mathrm{E}(X) \cdot \mathrm{E}(Y)
\end{aligned}
$$

which is the result.

Brascamp-Lieb inequality

Brascamp-Lieb inequality

Frame condition

Let E be a Euclidean space, E_{1}, \ldots, E_{m} subspaces, c_{1}, \ldots, c_{m} positive numbers, satisfying

$$
\sum_{i=1}^{m} c_{i} P_{i}=\operatorname{id}_{E}
$$

where P_{i} is the orthogonal projection with range E_{i}.

Brascamp-Lieb inequality

Frame condition

Let E be a Euclidean space, E_{1}, \ldots, E_{m} subspaces, c_{1}, \ldots, c_{m} positive numbers, satisfying

$$
\sum_{i=1}^{m} c_{i} P_{i}=\operatorname{id}_{E}
$$

where P_{i} is the orthogonal projection with range E_{i}.

Brascamp-Lieb Inequality

Under the frame condition, for all $f_{i}: E_{i} \rightarrow \mathbb{R}$,

$$
\int_{E} \mathrm{e}^{\sum c_{i} f_{i}\left(P_{i} x\right)} \mathrm{d} \gamma_{E}(x) \leq \prod_{i=1}^{m}\left(\int_{E_{i}} \mathrm{e}^{f_{i}} \mathrm{~d} \gamma_{E_{i}}\right)^{c_{i}}
$$

$\gamma_{E}:$ Gaussian measure on E.

Comments on BL inequality

$$
\int_{E} \mathrm{e}^{\sum c_{i} f_{i}\left(P_{i} x\right)} \mathrm{d} \gamma_{E}(x) \leq \prod_{i=1}^{m}\left(\int_{E_{i}} \mathrm{e}^{f_{i}} \mathrm{~d} \gamma_{E_{i}}\right)^{c_{i}}
$$

Remarks

- If $c_{i}=1$ and the spaces E_{i} form an orthogonal decomposition of E there is equality (this is just Fubini).
- When $E_{i}=E$ for all i and $\sum c_{i}=1$ this is just Hölder.
- Remains true with Lebesgue measures instead of Gaussian measures.

Comments on BL inequality

$$
\int_{E} \mathrm{e}^{\sum c_{i} f_{i}\left(P_{i} x\right)} \mathrm{d} \gamma_{E}(x) \leq \prod_{i=1}^{m}\left(\int_{E_{i}} \mathrm{e}^{f_{i}} \mathrm{~d} \gamma_{E_{i}}\right)^{c_{i}}
$$

Remarks

- If $c_{i}=1$ and the spaces E_{i} form an orthogonal decomposition of E there is equality (this is just Fubini).
- When $E_{i}=E$ for all i and $\sum c_{i}=1$ this is just Hölder.
- Remains true with Lebesgue measures instead of Gaussian measures.

Applications

- Connection with Young's convolution inequality.
- Hypercontractivity of the Ornstein-Uhlenbeck semi-group.
- Other geometric applications

Dual version

Dual formulation of the BL inequality (Carlen-Cordero)
Under the frame condition, for all random vector X on E

$$
\mathrm{H}(X) \geq \sum_{i=1}^{m} c_{i} \mathrm{H}\left(P_{i} X\right)
$$

Dual version

Dual formulation of the BL inequality (Carlen-Cordero)
Under the frame condition, for all random vector X on E

$$
\mathrm{H}(X) \geq \sum_{i=1}^{m} c_{i} \mathrm{H}\left(P_{i} X\right)
$$

The equivalence follows from the Legendre duality

$$
\mathrm{H}(\mu)=\sup _{f}\left(\int f \mathrm{~d} \mu-\mathrm{L}(f)\right)
$$

Proof of Dual BL

- B a Brownian motion.
- u a drift satisfying $B(1)+\int_{0}^{1} u(s) \mathrm{d} s=X$ in law.

Proof of Dual BL

- B a Brownian motion.
- u a drift satisfying $B(1)+\int_{0}^{1} u(s) \mathrm{d} s=X$ in law.
- then $P_{i} B$ is a Brownian motion on E_{i}
- and $P_{i} B+\int_{0}^{1} P_{i} u(s) \mathrm{d} s=P_{i} X$ in law

Proof of Dual BL

- B a Brownian motion.
- u a drift satisfying $B(1)+\int_{0}^{1} u(s) \mathrm{d} s=X$ in law.
- then $P_{i} B$ is a Brownian motion on E_{i}
- and $P_{i} B+\int_{0}^{1} P_{i} u(s) \mathrm{d} s=P_{i} X$ in law
- Thus $\mathrm{H}\left(P_{i} X\right) \leq \mathrm{E} \int_{0}^{1}\left|P_{i} u(s)\right|^{2} / 2 \mathrm{~d} s$

Proof of Dual BL

- B a Brownian motion.
- u a drift satisfying $B(1)+\int_{0}^{1} u(s) \mathrm{d} s=X$ in law.
- then $P_{i} B$ is a Brownian motion on E_{i}
- and $P_{i} B+\int_{0}^{1} P_{i} u(s) \mathrm{d} s=P_{i} X$ in law
- Thus $\mathrm{H}\left(P_{i} X\right) \leq \mathrm{E} \int_{0}^{1}\left|P_{i} u(s)\right|^{2} / 2 \mathrm{~d} s$
- Using the frame condition

$$
\begin{aligned}
\sum c_{i} \mathrm{H}\left(P_{i} X\right) & \leq \mathrm{E} \int_{0}^{1} \sum c_{i}\left|P_{i} u(s)\right|^{2} / 2 \mathrm{~d} s \\
& =\mathrm{E} \int_{0}^{1}|u(s)|^{2} / 2 \mathrm{~d} s
\end{aligned}
$$

- Taking infimum on u yields the result.

Reversed Brascamp-Lieb inequality

Reversed Brascamp-Lieb Inequality (Barthe)

Under the frame condition, for all $h: E \rightarrow \mathbb{R}$ and $f_{i}: E_{i} \rightarrow \mathbb{R}$ satisying

$$
\forall\left(x_{1}, \ldots, x_{m}\right) \in E_{1} \times \cdots \times E_{m}, \quad h\left(\sum_{i=1}^{m} c_{i} x_{i}\right) \geq \sum_{i=1}^{m} c_{i} f_{i}\left(x_{i}\right)
$$

Reversed Brascamp-Lieb inequality

Reversed Brascamp-Lieb Inequality (Barthe)

Under the frame condition, for all $h: E \rightarrow \mathbb{R}$ and $f_{i}: E_{i} \rightarrow \mathbb{R}$ satisying

$$
\forall\left(x_{1}, \ldots, x_{m}\right) \in E_{1} \times \cdots \times E_{m}, \quad h\left(\sum_{i=1}^{m} c_{i} x_{i}\right) \geq \sum_{i=1}^{m} c_{i} f_{i}\left(x_{i}\right)
$$

we have

$$
\int_{E} \mathrm{e}^{h} \mathrm{~d} \gamma_{E} \geq \prod_{i=1}^{m}\left(\int_{E_{i}} \mathrm{e}^{f_{i}} \mathrm{~d} \gamma_{E_{i}}\right)^{c_{i}}
$$

Reversed Brascamp-Lieb inequality

Reversed Brascamp-Lieb Inequality (Barthe)

Under the frame condition, for all $h: E \rightarrow \mathbb{R}$ and $f_{i}: E_{i} \rightarrow \mathbb{R}$ satisying

$$
\forall\left(x_{1}, \ldots, x_{m}\right) \in E_{1} \times \cdots \times E_{m}, \quad h\left(\sum_{i=1}^{m} c_{i} x_{i}\right) \geq \sum_{i=1}^{m} c_{i} f_{i}\left(x_{i}\right)
$$

we have

$$
\int_{E} \mathrm{e}^{h} \mathrm{~d} \gamma_{E} \geq \prod_{i=1}^{m}\left(\int_{E_{i}} \mathrm{e}^{f_{i}} \mathrm{~d} \gamma_{E_{i}}\right)^{c_{i}}
$$

Remark

When $m=2, E_{1}=E_{2}=E, c_{1}+c_{2}=1$ this yields the log concavity of the Gaussian measure. Related to the Brunn-Minkowski inequality.

Entropic RBL inequality

Dual version of RBL

Under the frame condition, for all random vectors X_{1}, \ldots, X_{m} on E_{1}, \ldots, E_{m} respectively,

Entropic RBL inequality

Dual version of RBL

Under the frame condition, for all random vectors X_{1}, \ldots, X_{m} on E_{1}, \ldots, E_{m} respectively, there exists Y_{1}, \ldots, Y_{m} satisfying $Y_{i}=X_{i}$ in law for all i and

Entropic RBL inequality

Dual version of RBL

Under the frame condition, for all random vectors X_{1}, \ldots, X_{m} on E_{1}, \ldots, E_{m} respectively, there exists Y_{1}, \ldots, Y_{m} satisfying $Y_{i}=X_{i}$ in law for all i and

$$
\mathrm{H}\left(\sum_{i=1}^{m} c_{i} Y_{i}\right) \leq \sum_{i=1}^{m} c_{i} \mathrm{H}\left(X_{i}\right)
$$

Entropic RBL inequality

Dual version of RBL

Under the frame condition, for all random vectors X_{1}, \ldots, X_{m} on E_{1}, \ldots, E_{m} respectively, there exists Y_{1}, \ldots, Y_{m} satisfying $Y_{i}=X_{i}$ in law for all i and

$$
\mathrm{H}\left(\sum_{i=1}^{m} c_{i} Y_{i}\right) \leq \sum_{i=1}^{m} c_{i} \mathrm{H}\left(X_{i}\right)
$$

Proof that this implies RBL:

Entropic RBL inequality

Dual version of RBL

Under the frame condition, for all random vectors X_{1}, \ldots, X_{m} on E_{1}, \ldots, E_{m} respectively, there exists Y_{1}, \ldots, Y_{m} satisfying $Y_{i}=X_{i}$ in law for all i and

$$
\mathrm{H}\left(\sum_{i=1}^{m} c_{i} Y_{i}\right) \leq \sum_{i=1}^{m} c_{i} \mathrm{H}\left(X_{i}\right)
$$

Proof that this implies RBL:

- Let f_{1}, \ldots, f_{m}, h satisfy the hypothesis of RBL.
- Let X_{1}, \ldots, X_{m} be random vectors on E_{1}, \ldots, E_{m} and Y_{1}, \ldots, Y_{m} be as above.

Entropic RBL implies RBL

- $\sum c_{i} f_{i}\left(x_{i}\right) \leq h\left(\sum c_{i} x_{i}\right)$ for all $\left(x_{1}, \ldots, x_{m}\right) \in E_{1} \times \cdots \times E_{m}$.
- $Y_{i}=X_{i}$ in law for $i=1, \ldots, m$.
- $\mathrm{H}\left(\sum c_{i} Y_{i}\right) \leq \sum c_{i} \mathrm{H}\left(X_{i}\right)$.

Entropic RBL implies RBL

- $\sum c_{i} f_{i}\left(x_{i}\right) \leq h\left(\sum c_{i} x_{i}\right)$ for all $\left(x_{1}, \ldots, x_{m}\right) \in E_{1} \times \cdots \times E_{m}$.
- $Y_{i}=X_{i}$ in law for $i=1, \ldots, m$.
- $\mathrm{H}\left(\sum c_{i} Y_{i}\right) \leq \sum c_{i} \mathrm{H}\left(X_{i}\right)$.
- Then

$$
\begin{aligned}
\sum c_{i}\left(\mathrm{E} f_{i}\left(X_{i}\right)-\mathrm{H}\left(X_{i}\right)\right) & =\mathrm{E}\left(\sum c_{i} f_{i}\left(Y_{i}\right)\right)-\sum c_{i} \mathrm{H}\left(X_{i}\right) \\
& \leq \mathrm{E} h\left(\sum c_{i} Y_{i}\right)-\mathrm{H}\left(\sum c_{i} Y_{i}\right)
\end{aligned}
$$

Entropic RBL implies RBL

- $\sum c_{i} f_{i}\left(x_{i}\right) \leq h\left(\sum c_{i} x_{i}\right)$ for all $\left(x_{1}, \ldots, x_{m}\right) \in E_{1} \times \cdots \times E_{m}$.
- $Y_{i}=X_{i}$ in law for $i=1, \ldots, m$.
- $\mathrm{H}\left(\sum c_{i} Y_{i}\right) \leq \sum c_{i} \mathrm{H}\left(X_{i}\right)$.
- Then

$$
\begin{aligned}
\sum c_{i}\left(\mathrm{E} f_{i}\left(X_{i}\right)-\mathrm{H}\left(X_{i}\right)\right) & =\mathrm{E}\left(\sum c_{i} f_{i}\left(Y_{i}\right)\right)-\sum c_{i} \mathrm{H}\left(X_{i}\right) \\
& \leq \mathrm{E} h\left(\sum c_{i} Y_{i}\right)-\mathrm{H}\left(\sum c_{i} Y_{i}\right)
\end{aligned}
$$

- Using $\log \left(\int \mathrm{e}^{f} \mathrm{~d} \gamma\right)=\sup _{X}(\mathrm{E} f(X)-\mathrm{H}(X))$ we obtain

$$
\prod_{i=1}^{m}\left(\int_{E_{i}} \mathrm{e}^{f_{i}} \mathrm{~d} \gamma_{E_{i}}\right)^{c_{i}} \leq \int_{E} \mathrm{e}^{h} \mathrm{~d} \gamma_{E}
$$

Proof of Entropic RBL

Let X_{1}, \ldots, X_{m} be random vectors on E_{1}, \ldots, E_{m}.
Let B be a Brownian motion.

Proof of Entropic RBL

Let X_{1}, \ldots, X_{m} be random vectors on E_{1}, \ldots, E_{m}.
Let B be a Brownian motion.

- Since $P_{i} B$ is a Brownian motion on E_{i}, there exists a drift u_{i} satisfying $P_{i} B(1)+\int_{0}^{1} u_{i}(s) \mathrm{d} s=X_{i}$ in law and

$$
\mathrm{H}\left(X_{i}\right)=\mathrm{E} \int_{0}^{1}\left|u_{i}(s)\right|^{2} / 2 \mathrm{~d} s
$$

Proof of Entropic RBL

Let X_{1}, \ldots, X_{m} be random vectors on E_{1}, \ldots, E_{m}.
Let B be a Brownian motion.

- Since $P_{i} B$ is a Brownian motion on E_{i}, there exists a drift u_{i} satisfying $P_{i} B(1)+\int_{0}^{1} u_{i}(s) \mathrm{d} s=X_{i}$ in law and

$$
\mathrm{H}\left(X_{i}\right)=\mathrm{E} \int_{0}^{1}\left|u_{i}(s)\right|^{2} / 2 \mathrm{~d} s
$$

- Let $Y_{i}=P_{i} B(1)+\int_{0}^{1} u_{i}(s) \mathrm{d} s$.

Proof of Entropic RBL

Let X_{1}, \ldots, X_{m} be random vectors on E_{1}, \ldots, E_{m}.
Let B be a Brownian motion.

- Since $P_{i} B$ is a Brownian motion on E_{i}, there exists a drift u_{i} satisfying $P_{i} B(1)+\int_{0}^{1} u_{i}(s) \mathrm{d} s=X_{i}$ in law and

$$
\mathrm{H}\left(X_{i}\right)=\mathrm{E} \int_{0}^{1}\left|u_{i}(s)\right|^{2} / 2 \mathrm{~d} s
$$

- Let $Y_{i}=P_{i} B(1)+\int_{0}^{1} u_{i}(s) \mathrm{d} s$.
- The frame condition yields $\sum c_{i} Y_{i}=B(1)+\int_{0}^{1} \sum c_{i} u_{i}(s) \mathrm{d} s$.

Proof of Entropic RBL

Let X_{1}, \ldots, X_{m} be random vectors on E_{1}, \ldots, E_{m}.
Let B be a Brownian motion.

- Since $P_{i} B$ is a Brownian motion on E_{i}, there exists a drift u_{i} satisfying $P_{i} B(1)+\int_{0}^{1} u_{i}(s) \mathrm{d} s=X_{i}$ in law and

$$
\mathrm{H}\left(X_{i}\right)=\mathrm{E} \int_{0}^{1}\left|u_{i}(s)\right|^{2} / 2 \mathrm{~d} s
$$

- Let $Y_{i}=P_{i} B(1)+\int_{0}^{1} u_{i}(s) \mathrm{d} s$.
- The frame condition yields $\sum c_{i} Y_{i}=B(1)+\int_{0}^{1} \sum c_{i} u_{i}(s) \mathrm{d} s$.
- Hence (using the frame condition again)

$$
\begin{aligned}
\mathrm{H}\left(\sum c_{i} Y_{i}\right) & \leq \mathrm{E} \int_{0}^{1}\left|\sum c_{i} u_{i}(s)\right|^{2} / 2 \mathrm{~d} s \\
& \leq \sum c_{i} \mathrm{E} \int_{0}^{1}\left|u_{i}(s)\right|^{2} / 2 \mathrm{~d} s \\
& =\sum c_{i} \mathrm{H}\left(X_{i}\right)
\end{aligned}
$$

