A stochastic formula for the entropy and applications

Joseph Lehec

Université Paris-Dauphine

Asymptotic Geometric Analysis Fields Institute Toronto, nov. 4th, 2010

1 Introduction: Borell's formula

2 Stochastic formula for the entropy

3 Applications

1 Introduction: Borell's formula

2 Stochastic formula for the entropy

3 Applications

Setting

B: a standard Brownian motion on \mathbb{R}^n starting from 0

P: be the corresponding heat semi-group

•
$$P_t f(x) = \mathbf{E} f(x + B(t))$$

$$\bullet \partial_t P_t f = \Delta P_t f / 2$$

Setting

B: a standard Brownian motion on \mathbb{R}^n starting from 0 P: be the corresponding heat semi-group

- $P_t f(x) = E f(x + B(t))$

Throughtout a drift is any process $(u(t))_{t\geq 0}$ adapted to the underlying filtration.

This filtration may be $\mathcal{F}_t = \sigma\big(B(s), s \in [0, t]\big)$ or larger.

Borell's formula

Let γ_n be the Gaussian measure on \mathbb{R}^n (law of B(1))

Borell's formula

Let γ_n be the Gaussian measure on \mathbb{R}^n (law of B(1))

Laplace transform

Let $f: \mathbb{R}^n \to \mathbb{R}$, we define $L(f) := \log \left(\int_{\mathbb{R}^n} e^f d\gamma_n \right)$.

Borell's formula

Let γ_n be the Gaussian measure on \mathbb{R}^n (law of B(1))

Laplace transform

Let $f: \mathbb{R}^n \to \mathbb{R}$, we define $L(f) := \log \left(\int_{\mathbb{R}^n} e^f d\gamma_n \right)$.

Borell's formula

For all function f on \mathbb{R}^n (mild conditions on f)

$$L(f) = \sup_{u} \left(E f \left(B(1) + \int_{0}^{1} u(s) ds \right) - \frac{1}{2} \int_{0}^{1} |u(s)|^{2} ds \right),$$

the supremum is over all drifts u.

Comments on Borell's formula

The formula is not due to Borell, though he should be credited for the idea of using it to prove functional inequalities such as

- Prékopa-Leindler inequality.
- Brascamp-Lieb inequality.

Entropy

Relative entropy

Let μ be a probability measure on \mathbb{R}^n .

Assume that μ has a density, and let $f = \mathrm{d}\mu/\mathrm{d}\gamma_n$.

$$H(\mu) = \int f \log(f) d\gamma_n = \int \log(f) d\mu.$$

Entropy

Relative entropy

Let μ be a probability measure on \mathbb{R}^n .

Assume that μ has a density, and let $f = d\mu/d\gamma_n$.

$$H(\mu) = \int f \log(f) d\gamma_n = \int \log(f) d\mu.$$

Remarks

- $H(\mu) \ge 0$
- $H(\mu) = 0 \Leftrightarrow \mu = \gamma_n$.

Entropy

Relative entropy

Let μ be a probability measure on \mathbb{R}^n .

Assume that μ has a density, and let $f = \mathrm{d}\mu/\mathrm{d}\gamma_n$.

$$H(\mu) = \int f \log(f) d\gamma_n = \int \log(f) d\mu.$$

Remarks

- $H(\mu) \ge 0$
- $H(\mu) = 0 \Leftrightarrow \mu = \gamma_n$.

Legendre duality

For all probability measure μ

$$H(\mu) = \sup_{f} \left(\int f d\mu - L(f) \right).$$

1 Introduction: Borell's formula

2 Stochastic formula for the entropy

3 Applications

The formula

Theorem

Let μ be a probability measure on \mathbb{R}^n with smooth positive density.

$$H(\mu) = \frac{1}{2} \inf \left(E \int_0^1 |u(s)|^2 ds \right).$$

Infimum on all drifts u such that $B(1) + \int_0^1 u(s) ds$ has law μ .

The formula

Theorem

Let μ be a probability measure on \mathbb{R}^n with smooth positive density.

$$H(\mu) = \frac{1}{2} \inf \left(E \int_0^1 |u(s)|^2 ds \right).$$

Infimum on all drifts u such that $B(1) + \int_0^1 u(s) ds$ has law μ .

Besides

Let $f = d\mu/d\gamma_n$. The infimum is attained for some drift v which

- solves the SDE: $v(t) = \nabla \ln P_{1-t} f(B(t) + \int_0^t v(s) \, ds)$.
- is a martingale, in particular $\mathrm{E}\,v(t) = \mathrm{bar}(\mu)$ for all t.

$$\operatorname{bar}(\mu) := \int x \, d\mu(x).$$

• Let u be a drift such that $B(1) + \int_0^1 u(s) \, ds$ has law μ . Then

$$E\log(f)\Big(B(1) + \int_0^1 u(s) \, \mathrm{d}s\Big) = H(\mu).$$

• Let u be a drift such that $B(1) + \int_0^1 u(s) \ \mathrm{d}s$ has law μ . Then

$$E\log(f)\Big(B(1) + \int_0^1 u(s) \, \mathrm{d}s\Big) = H(\mu).$$

• Let $F(t,x) = \log(P_{1-t}f)(x)$ and

$$M^{u}(t) = F(t, B(t) + \int_{0}^{t} u(s) ds) - \int_{0}^{t} |u(s)|^{2}/2 ds$$

• Let u be a drift such that $B(1) + \int_0^1 u(s) \ \mathrm{d}s$ has law μ . Then

$$E \log(f) \Big(B(1) + \int_0^1 u(s) \, ds \Big) = H(\mu).$$

• Let $F(t,x) = \log(P_{1-t}f)(x)$ and

$$M^{u}(t) = F(t, B(t) + \int_{0}^{t} u(s) ds) - \int_{0}^{t} |u(s)|^{2}/2 ds$$

• Then $M^u(0) = \log(P_1 f)(0) = \log(\int f \, d\gamma_n) = 0.$

• Let u be a drift such that $B(1) + \int_0^1 u(s) \ \mathrm{d}s$ has law μ . Then

$$E \log(f) \Big(B(1) + \int_0^1 u(s) \, ds \Big) = H(\mu).$$

• Let $F(t,x) = \log(P_{1-t}f)(x)$ and

$$M^{u}(t) = F(t, B(t) + \int_{0}^{t} u(s) ds) - \int_{0}^{t} |u(s)|^{2}/2 ds$$

- Then $M^u(0) = \log(P_1 f)(0) = \log(\int f \, d\gamma_n) = 0.$
- And $E M^u(1) = H(X) E \int_0^1 |u(s)|^2 / 2 ds$.

• Let u be a drift such that $B(1) + \int_0^1 u(s) \ \mathrm{d}s$ has law μ . Then

$$E\log(f)\Big(B(1) + \int_0^1 u(s) \, ds\Big) = H(\mu).$$

• Let $F(t,x) = \log(P_{1-t}f)(x)$ and

$$M^{u}(t) = F(t, B(t) + \int_{0}^{t} u(s) ds) - \int_{0}^{t} |u(s)|^{2}/2 ds$$

- Then $M^u(0) = \log(P_1 f)(0) = \log(\int f \, d\gamma_n) = 0.$
- And $E M^u(1) = H(X) E \int_0^1 |u(s)|^2/2 ds$.
- If we prove that M^u is a super-martingale, then in particular $\operatorname{E} M^u(0) \geq \operatorname{E} M^u(1)$ and we are done.

•
$$F(t,x) = \log(P_{1-t}f)(x)$$
 yields $\partial_t F = -(\Delta F + |\nabla F|^2)/2$.

- $F(t,x) = \log(P_{1-t}f)(x)$ yields $\partial_t F = -(\Delta F + |\nabla F|^2)/2$.
- Recall that

$$M^{u}(t) = F(t, B(t) + \int_{0}^{t} u(s) \, ds) - \int_{0}^{t} |u(s)|^{2}/2 \, ds.$$

- $F(t,x) = \log(P_{1-t}f)(x)$ yields $\partial_t F = -(\Delta F + |\nabla F|^2)/2$.
- Recall that

$$M^{u}(t) = F(t, B(t) + \int_{0}^{t} u(s) ds) - \int_{0}^{t} |u(s)|^{2}/2 ds.$$

By Itô's formula (omitting variables)

$$dM^{u} = \partial_{t}F dt + \nabla F \cdot (dB + u dt) + \Delta F/2 dt - |u|^{2}/2 dt$$
$$= \nabla F \cdot dB - |\nabla F - u|^{2}/2 dt.$$

- $F(t,x) = \log(P_{1-t}f)(x)$ yields $\partial_t F = -(\Delta F + |\nabla F|^2)/2$.
- Recall that

$$M^{u}(t) = F(t, B(t) + \int_{0}^{t} u(s) ds) - \int_{0}^{t} |u(s)|^{2}/2 ds.$$

By Itô's formula (omitting variables)

$$dM^{u} = \partial_{t}F dt + \nabla F \cdot (dB + u dt) + \Delta F/2 dt - |u|^{2}/2 dt$$
$$= \nabla F \cdot dB - |\nabla F - u|^{2}/2 dt.$$

• So M^u is a super-martingale.

• From the previous slide (omitting variables)

$$dM^u = \nabla F \cdot dB - |\nabla F - u|^2 / 2 dt$$

From the previous slide (omitting variables)

$$dM^u = \nabla F \cdot dB - |\nabla F - u|^2 / 2 dt$$

ullet Recalling variables, if v solves the SDE

$$v(t) = \nabla F\left(t, B(t) + \int_0^t v(s) \, ds\right)$$
$$= \nabla \log(P_{1-t}f) \left(B(t) + \int_0^t v(s) \, ds\right)$$

From the previous slide (omitting variables)

$$dM^u = \nabla F \cdot dB - |\nabla F - u|^2 / 2 dt$$

ullet Recalling variables, if v solves the SDE

$$v(t) = \nabla F\left(t, B(t) + \int_0^t v(s) \, ds\right)$$
$$= \nabla \log(P_{1-t}f) \left(B(t) + \int_0^t v(s) \, ds\right)$$

then M^v is a martingale and

$$E \log(f) \Big(B(1) + \int_0^1 v(s) \, ds \Big) = E \int_0^1 |v(s)|^2 / 2 \, ds.$$

• From the previous slide (omitting variables)

$$dM^u = \nabla F \cdot dB - |\nabla F - u|^2 / 2 dt$$

ullet Recalling variables, if v solves the SDE

$$v(t) = \nabla F\left(t, B(t) + \int_0^t v(s) \, ds\right)$$
$$= \nabla \log(P_{1-t}f) \left(B(t) + \int_0^t v(s) \, ds\right)$$

then M^v is a martingale and

$$E \log(f) \Big(B(1) + \int_0^1 v(s) ds \Big) = E \int_0^1 |v(s)|^2 / 2 ds.$$

• It only remains to prove that $B(1) + \int_0^1 v(s) ds$ has law μ .

From the previous slide (omitting variables)

$$dM^u = \nabla F \cdot dB - |\nabla F - u|^2 / 2 dt$$

ullet Recalling variables, if v solves the SDE

$$v(t) = \nabla F\left(t, B(t) + \int_0^t v(s) \, ds\right)$$
$$= \nabla \log(P_{1-t}f) \left(B(t) + \int_0^t v(s) \, ds\right)$$

then M^v is a martingale and

$$E \log(f) \Big(B(1) + \int_0^1 v(s) \, ds \Big) = E \int_0^1 |v(s)|^2 / 2 \, ds.$$

- It only remains to prove that $B(1) + \int_0^1 v(s) ds$ has law μ .
- This follows from Girsanov's formula.

• Optimal drift:

$$v(t) = \nabla F(t, B(t) + \int_0^t v(s) \, ds).$$

• Optimal drift:

$$v(t) = \nabla F(t, B(t) + \int_0^t v(s) \, ds).$$

• By Itô's formula again

$$dv = \partial_t \nabla F dt + \nabla^2 F (dB + v dt) + \Delta(\nabla F)/2 dt.$$

Optimal drift:

$$v(t) = \nabla F(t, B(t) + \int_0^t v(s) \, ds).$$

• By Itô's formula again

$$dv = \partial_t \nabla F dt + \nabla^2 F (dB + v dt) + \Delta(\nabla F)/2 dt.$$

• Recall that $\partial_t F = -(\Delta F + |\nabla F|^2)/2$.

Optimal drift:

$$v(t) = \nabla F(t, B(t) + \int_0^t v(s) ds).$$

By Itô's formula again

$$dv = \partial_t \nabla F dt + \nabla^2 F (dB + v dt) + \Delta(\nabla F)/2 dt.$$

- Recall that $\partial_t F = -(\Delta F + |\nabla F|^2)/2$.
- So

$$\partial_t \nabla F = -\frac{1}{2} \left(\nabla (\Delta F) + \nabla (|\nabla F|^2) \right)$$
$$= -\frac{1}{2} \Delta (\nabla F) - \nabla^2 F (\nabla F).$$

Optimal drift:

$$v(t) = \nabla F(t, B(t) + \int_0^t v(s) \, ds).$$

By Itô's formula again

$$dv = \partial_t \nabla F dt + \nabla^2 F (dB + v dt) + \Delta(\nabla F)/2 dt.$$

- Recall that $\partial_t F = -(\Delta F + |\nabla F|^2)/2$.
- So

$$\partial_t \nabla F = -\frac{1}{2} \left(\nabla (\Delta F) + \nabla (|\nabla F|^2) \right)$$
$$= -\frac{1}{2} \Delta (\nabla F) - \nabla^2 F (\nabla F).$$

• Thus $dv = \nabla^2 F(dB)$ and v is a martingale.

Comments

• This proof is very similar to that of Borell

Comments

- This proof is very similar to that of Borell
- It is also reminiscent of works by Föllmer in the 80s

1 Introduction: Borell's formula

2 Stochastic formula for the entropy

3 Applications

Transportation cost inequality

Definition

Let μ and ν be probability measures on \mathbb{R}^n .

$$W_2(\mu,\nu) = \inf \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} |x - y|^2 d\pi(x,y) \right)^{1/2}.$$

Infimum on all probability measure π on $\mathbb{R}^n \times \mathbb{R}^n$ having marginals μ and ν .

Transportation cost inequality

Definition

Let μ and ν be probability measures on \mathbb{R}^n .

$$W_2(\mu,\nu) = \inf \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} |x - y|^2 d\pi(x,y) \right)^{1/2}.$$

Infimum on all probability measure π on $\mathbb{R}^n \times \mathbb{R}^n$ having marginals μ and ν .

Transportation Inequality (Talagrand)

$$W_2(\mu, \gamma_n)^2 \le 2 H(\mu).$$

• Let B be a Brownian motion and u be a drift such that $X:=B(1)+\int_0^1 u(s)~\mathrm{d} s$ has law $\mu.$

- Let B be a Brownian motion and u be a drift such that $X := B(1) + \int_0^1 u(s) \ \mathrm{d}s$ has law μ .
- Then (X,B(1)) is a coupling of (μ,γ_n) so

$$W_2(\mu, \gamma_n)^2 \le E|X - B(1)|^2.$$

- Let B be a Brownian motion and u be a drift such that $X := B(1) + \int_0^1 u(s) \ \mathrm{d}s$ has law μ .
- Then (X,B(1)) is a coupling of (μ,γ_n) so

$$W_2(\mu, \gamma_n)^2 \le E|X - B(1)|^2.$$

By Jensen

$$|E|X - B(1)|^2 = E|\int_0^1 u(s) |ds|^2 \le E\int_0^1 |u(s)|^2 |ds|$$

- Let B be a Brownian motion and u be a drift such that $X:=B(1)+\int_0^1 u(s)~\mathrm{d} s$ has law $\mu.$
- Then (X,B(1)) is a coupling of (μ,γ_n) so

$$W_2(\mu, \gamma_n)^2 \le E|X - B(1)|^2.$$

By Jensen

$$E|X - B(1)|^2 = E|\int_0^1 u(s) ds|^2 \le E\int_0^1 |u(s)|^2 ds$$

• Taking infimum on u we get $W_2(\mu, \gamma_n)^2 \leq 2 H(\mu)$.

Log-Sobolev inequality

Fisher Information

Let μ be an absolutely continuous probability measure on \mathbb{R}^n . Let $f=\mathrm{d}\mu/\mathrm{d}\gamma_n$.

$$I(\mu) = \int_{\mathbb{R}^n} \frac{|\nabla f|^2}{f} d\gamma_n = \int_{\mathbb{R}^n} |\nabla \log(f)|^2 d\mu$$

Log-Sobolev inequality

Fisher Information

Let μ be an absolutely continuous probability measure on \mathbb{R}^n . Let $f = \mathrm{d}\mu/\mathrm{d}\gamma_n$.

$$I(\mu) = \int_{\mathbb{R}^n} \frac{|\nabla f|^2}{f} d\gamma_n = \int_{\mathbb{R}^n} |\nabla \log(f)|^2 d\mu$$

Logarithmic Sobolev inequality (Gross)

$$H(\mu) \le \frac{1}{2} I(\mu).$$

• Let $f = d\mu/d\gamma$. Optimal drift for μ :

$$v(t) = \nabla \log(P_{1-t}f)(B(t) + \int_0^t v(s) \, \mathrm{d}s).$$

• Let $f = d\mu/d\gamma$. Optimal drift for μ :

$$v(t) = \nabla \log(P_{1-t}f)(B(t) + \int_0^t v(s) \, \mathrm{d}s).$$

• Since $B(1) + \int_0^1 v(s) ds$ has law μ

$$|E|v(1)|^2 = E|\nabla \log(f)(B(1) + \int_0^1 v(s) ds)|^2 = I(\mu).$$

• Let $f = d\mu/d\gamma$. Optimal drift for μ :

$$v(t) = \nabla \log(P_{1-t}f)(B(t) + \int_0^t v(s) \, \mathrm{d}s).$$

• Since $B(1) + \int_0^1 v(s) \, \mathrm{d}s$ has law μ

$$E|v(1)|^2 = E|\nabla \log(f)(B(1) + \int_0^1 v(s) ds)|^2 = I(\mu).$$

• v martingale $\Rightarrow |v|^2$ sub-martingale.

• Let $f = d\mu/d\gamma$. Optimal drift for μ :

$$v(t) = \nabla \log(P_{1-t}f)(B(t) + \int_0^t v(s) \, \mathrm{d}s).$$

• Since $B(1) + \int_0^1 v(s) ds$ has law μ

$$E|v(1)|^2 = E|\nabla \log(f)(B(1) + \int_0^1 v(s) ds)|^2 = I(\mu).$$

- v martingale $\Rightarrow |v|^2$ sub-martingale.
- Hence

$$H(\mu) = \frac{1}{2} \int_0^1 E|v(s)|^2 ds \le \frac{1}{2} E|v(1)|^2 = \frac{1}{2} I(\mu).$$

Shannon's inequality

Definition

X a random vector on \mathbb{R}^n having density f with respect to the Lebesgue measure

$$S(X) = \int f \log(f) dx = E \log(f)(X).$$

Shannon's inequality

Definition

X a random vector on \mathbb{R}^n having density f with respect to the Lebesgue measure

$$S(X) = \int f \log(f) dx = E \log(f)(X).$$

Remark

$$S(X) = H(X) - \frac{n}{2}\log(2\pi) - \frac{1}{2}E|X|^2.$$

Shannon's inequality

Definition

X a random vector on \mathbb{R}^n having density f with respect to the Lebesgue measure

$$S(X) = \int f \log(f) dx = E \log(f)(X).$$

Remark

$$S(X) = H(X) - \frac{n}{2}\log(2\pi) - \frac{1}{2}E|X|^2.$$

Shannon's Inequality

X,Y independant random vectors, $\lambda \in (0,1)$

$$S(\sqrt{1-\lambda}X + \sqrt{\lambda}Y) \le (1-\lambda)S(X) + \lambda S(Y).$$

Proof (1)

Let B be a Brownian motion and u be a drift satisfying

- $B(1) + \int_0^1 u(s) ds = X$ in law.
- $H(X) = E \int_0^1 |u(s)|^2 / 2 ds$.
- $\operatorname{E} u(s) = \operatorname{E} X$ for all s.

Proof (1)

Let B be a Brownian motion and u be a drift satisfying

- $B(1) + \int_0^1 u(s) ds = X$ in law.
- $H(X) = E \int_0^1 |u(s)|^2 / 2 ds$.
- $\mathrm{E}\,u(s) = \mathrm{E}\,X$ for all s.

Let C be a Brownian motion independant of B and v be a drift satisfying

- $C(1) + \int_0^1 v(s) ds = Y$ in law.
- $H(Y) = E \int_0^1 |v(s)|^2 / 2 ds$.
- $\mathrm{E}\,v(s) = \mathrm{E}\,Y$ for all s.

• Let $W = \sqrt{1 - \lambda} B + \sqrt{\lambda} C$ and $w = \sqrt{1 - \lambda} u + \sqrt{\lambda} v$.

- Let $W = \sqrt{1-\lambda}B + \sqrt{\lambda}C$ and $w = \sqrt{1-\lambda}u + \sqrt{\lambda}v$.
- ullet Then W is a standard Brownian motion and

$$W + \int_0^1 w(s) ds \stackrel{\text{(law)}}{=} \sqrt{1 - \lambda} X + \sqrt{\lambda} Y.$$

- Let $W = \sqrt{1-\lambda}B + \sqrt{\lambda}C$ and $w = \sqrt{1-\lambda}u + \sqrt{\lambda}v$.
- ullet Then W is a standard Brownian motion and

$$W + \int_0^1 w(s) ds \stackrel{\text{(law)}}{=} \sqrt{1 - \lambda} X + \sqrt{\lambda} Y.$$

• Hence $H(\sqrt{1-\lambda}X + \sqrt{\lambda}Y) \le E \int_0^1 |w(s)|^2/2 ds$.

- Let $W = \sqrt{1 \lambda}B + \sqrt{\lambda}C$ and $w = \sqrt{1 \lambda}u + \sqrt{\lambda}v$.
- ullet Then W is a standard Brownian motion and

$$W + \int_0^1 w(s) ds \stackrel{\text{(law)}}{=} \sqrt{1 - \lambda} X + \sqrt{\lambda} Y.$$

- Hence $H(\sqrt{1-\lambda}X + \sqrt{\lambda}Y) \le E \int_0^1 |w(s)|^2/2 ds$.
- $\bullet \ \mathrm{E}|w(s)|^2 = (1-\lambda)|u(s)|^2 + \lambda |v(s)|^2 + 2\sqrt{\lambda(1-\lambda)}\,\mathrm{E}(X)\cdot\mathrm{E}(Y).$

- Let $W = \sqrt{1 \lambda}B + \sqrt{\lambda}C$ and $w = \sqrt{1 \lambda}u + \sqrt{\lambda}v$.
- ullet Then W is a standard Brownian motion and

$$W + \int_0^1 w(s) ds \stackrel{\text{(law)}}{=} \sqrt{1 - \lambda} X + \sqrt{\lambda} Y.$$

- Hence $H(\sqrt{1-\lambda}X + \sqrt{\lambda}Y) \le E \int_0^1 |w(s)|^2/2 ds$.
- $\mathrm{E}|w(s)|^2 = (1-\lambda)|u(s)|^2 + \lambda|v(s)|^2 + 2\sqrt{\lambda(1-\lambda)}\,\mathrm{E}(X)\cdot\mathrm{E}(Y).$
- Therefore

$$H(\sqrt{1-\lambda}X + \sqrt{\lambda}Y) \le (1-\lambda)H(X) + \lambda H(Y) + \sqrt{\lambda(1-\lambda)}E(X) \cdot E(Y)$$

which is the result.

Brascamp-Lieb inequality

Brascamp-Lieb inequality

Frame condition

Let E be a Euclidean space, E_1, \ldots, E_m subspaces, c_1, \ldots, c_m positive numbers, satisfying

$$\sum_{i=1}^{m} c_i P_i = \mathrm{id}_E$$

where P_i is the orthogonal projection with range E_i .

Brascamp-Lieb inequality

Frame condition

Let E be a Euclidean space, E_1, \ldots, E_m subspaces, c_1, \ldots, c_m positive numbers, satisfying

$$\sum_{i=1}^{m} c_i P_i = \mathrm{id}_E$$

where P_i is the orthogonal projection with range E_i .

Brascamp-Lieb Inequality

Under the frame condition, for all $f_i : E_i \to \mathbb{R}$,

$$\int_{E} e^{\sum c_{i} f_{i}(P_{i}x)} d\gamma_{E}(x) \leq \prod_{i=1}^{m} \left(\int_{E_{i}} e^{f_{i}} d\gamma_{E_{i}} \right)^{c_{i}}$$

 γ_E : Gaussian measure on E.

Comments on BL inequality

$$\int_{E} e^{\sum c_{i} f_{i}(P_{i}x)} d\gamma_{E}(x) \leq \prod_{i=1}^{m} \left(\int_{E_{i}} e^{f_{i}} d\gamma_{E_{i}} \right)^{c_{i}}$$

Remarks

- If $c_i = 1$ and the spaces E_i form an orthogonal decomposition of E there is equality (this is just Fubini).
- When $E_i = E$ for all i and $\sum c_i = 1$ this is just Hölder.
- Remains true with Lebesgue measures instead of Gaussian measures.

Comments on BL inequality

$$\int_{E} e^{\sum c_{i} f_{i}(P_{i}x)} d\gamma_{E}(x) \leq \prod_{i=1}^{m} \left(\int_{E_{i}} e^{f_{i}} d\gamma_{E_{i}} \right)^{c_{i}}$$

Remarks

- If $c_i = 1$ and the spaces E_i form an orthogonal decomposition of E there is equality (this is just Fubini).
- When $E_i = E$ for all i and $\sum c_i = 1$ this is just Hölder.
- Remains true with Lebesgue measures instead of Gaussian measures.

Applications

- Connection with Young's convolution inequality.
- Hypercontractivity of the Ornstein-Uhlenbeck semi-group.
- Other geometric applications

Dual version

Dual formulation of the BL inequality (Carlen-Cordero)

Under the frame condition, for all random vector X on E

$$H(X) \ge \sum_{i=1}^{m} c_i H(P_i X)$$

Dual version

Dual formulation of the BL inequality (Carlen-Cordero)

Under the frame condition, for all random vector X on E

$$H(X) \ge \sum_{i=1}^{m} c_i H(P_i X)$$

The equivalence follows from the Legendre duality

$$H(\mu) = \sup_{f} \left(\int f \, d\mu - L(f) \right)$$

- B a Brownian motion.
- u a drift satisfying $B(1) + \int_0^1 u(s) \ \mathrm{d}s = X$ in law.

- B a Brownian motion.
- u a drift satisfying $B(1) + \int_0^1 u(s) ds = X$ in law.
- ullet then P_iB is a Brownian motion on E_i
- \bullet and $P_iB+\int_0^1P_iu(s)~\mathrm{d}s=P_iX$ in law

- B a Brownian motion.
- u a drift satisfying $B(1) + \int_0^1 u(s) ds = X$ in law.
- ullet then P_iB is a Brownian motion on E_i
- and $P_iB + \int_0^1 P_iu(s) ds = P_iX$ in law
- Thus $H(P_iX) \le E \int_0^1 |P_iu(s)|^2/2 ds$

- B a Brownian motion.
- u a drift satisfying $B(1) + \int_0^1 u(s) ds = X$ in law.
- ullet then P_iB is a Brownian motion on E_i
- and $P_iB + \int_0^1 P_iu(s) ds = P_iX$ in law
- Thus $H(P_i X) \le E \int_0^1 |P_i u(s)|^2 / 2 ds$
- Using the frame condition

$$\sum c_i H(P_i X) \le E \int_0^1 \sum c_i |P_i u(s)|^2 / 2 ds$$
$$= E \int_0^1 |u(s)|^2 / 2 ds.$$

• Taking infimum on u yields the result.

Reversed Brascamp-Lieb inequality

Reversed Brascamp-Lieb Inequality (Barthe)

Under the frame condition, for all $h \colon E \to \mathbb{R}$ and $f_i \colon E_i \to \mathbb{R}$ satisfying

$$\forall (x_1, \dots, x_m) \in E_1 \times \dots \times E_m, \quad h\left(\sum_{i=1}^m c_i x_i\right) \ge \sum_{i=1}^m c_i f_i(x_i)$$

Reversed Brascamp-Lieb inequality

Reversed Brascamp-Lieb Inequality (Barthe)

Under the frame condition, for all $h \colon E \to \mathbb{R}$ and $f_i \colon E_i \to \mathbb{R}$ satisfying

$$\forall (x_1,\ldots,x_m) \in E_1 \times \cdots \times E_m, \quad h(\sum_{i=1}^m c_i x_i) \ge \sum_{i=1}^m c_i f_i(x_i)$$

we have

$$\int_{E} e^{h} d\gamma_{E} \ge \prod_{i=1}^{m} \left(\int_{E_{i}} e^{f_{i}} d\gamma_{E_{i}} \right)^{c_{i}}$$

Reversed Brascamp-Lieb inequality

Reversed Brascamp-Lieb Inequality (Barthe)

Under the frame condition, for all $h \colon E \to \mathbb{R}$ and $f_i \colon E_i \to \mathbb{R}$ satisfying

$$\forall (x_1, \dots, x_m) \in E_1 \times \dots \times E_m, \quad h\left(\sum_{i=1}^m c_i x_i\right) \ge \sum_{i=1}^m c_i f_i(x_i)$$

we have

$$\int_{E} e^{h} d\gamma_{E} \ge \prod_{i=1}^{m} \left(\int_{E_{i}} e^{f_{i}} d\gamma_{E_{i}} \right)^{c_{i}}$$

Remark

When m=2, $E_1=E_2=E$, $c_1+c_2=1$ this yields the log concavity of the Gaussian measure.

Related to the Brunn-Minkowski inequality.

Dual version of RBL

Under the frame condition, for all random vectors X_1,\ldots,X_m on E_1,\ldots,E_m respectively,

Dual version of RBL

Under the frame condition, for all random vectors X_1,\ldots,X_m on E_1,\ldots,E_m respectively, there exists Y_1,\ldots,Y_m satisfying $Y_i=X_i$ in law for all i and

Dual version of RBL

Under the frame condition, for all random vectors X_1,\ldots,X_m on E_1,\ldots,E_m respectively, there exists Y_1,\ldots,Y_m satisfying $Y_i=X_i$ in law for all i and

$$\mathrm{H}\Big(\sum_{i=1}^m c_i Y_i\Big) \leq \sum_{i=1}^m c_i \, \mathrm{H}(X_i).$$

Dual version of RBL

Under the frame condition, for all random vectors X_1,\ldots,X_m on E_1,\ldots,E_m respectively, there exists Y_1,\ldots,Y_m satisfying $Y_i=X_i$ in law for all i and

$$H\left(\sum_{i=1}^{m} c_i Y_i\right) \le \sum_{i=1}^{m} c_i H(X_i).$$

Proof that this implies RBL:

Dual version of RBL

Under the frame condition, for all random vectors X_1,\ldots,X_m on E_1,\ldots,E_m respectively, there exists Y_1,\ldots,Y_m satisfying $Y_i=X_i$ in law for all i and

$$H\left(\sum_{i=1}^{m} c_i Y_i\right) \le \sum_{i=1}^{m} c_i H(X_i).$$

Proof that this implies RBL:

- Let f_1, \ldots, f_m, h satisfy the hypothesis of RBL.
- Let X_1, \ldots, X_m be random vectors on E_1, \ldots, E_m and Y_1, \ldots, Y_m be as above.

Entropic RBL implies RBL

- $\sum c_i f_i(x_i) \le h(\sum c_i x_i)$ for all $(x_1, \dots, x_m) \in E_1 \times \dots \times E_m$.
- $Y_i = X_i$ in law for $i = 1, \dots, m$.
- $H(\sum c_i Y_i) \leq \sum c_i H(X_i)$.

Entropic RBL implies RBL

- $\sum c_i f_i(x_i) \le h(\sum c_i x_i)$ for all $(x_1, \dots, x_m) \in E_1 \times \dots \times E_m$.
- $Y_i = X_i$ in law for $i = 1, \dots, m$.
- $H(\sum c_i Y_i) \leq \sum c_i H(X_i)$.
- Then

$$\sum c_i \left(\operatorname{E} f_i(X_i) - \operatorname{H}(X_i) \right) = \operatorname{E} \left(\sum c_i f_i(Y_i) \right) - \sum c_i \operatorname{H}(X_i)$$

$$\leq \operatorname{E} h \left(\sum c_i Y_i \right) - \operatorname{H} \left(\sum c_i Y_i \right).$$

Entropic RBL implies RBL

- $\sum c_i f_i(x_i) \le h(\sum c_i x_i)$ for all $(x_1, \dots, x_m) \in E_1 \times \dots \times E_m$.
- $Y_i = X_i$ in law for $i = 1, \dots, m$.
- $H(\sum c_i Y_i) \leq \sum c_i H(X_i)$.
- Then

$$\sum c_i \left(\operatorname{E} f_i(X_i) - \operatorname{H}(X_i) \right) = \operatorname{E} \left(\sum c_i f_i(Y_i) \right) - \sum c_i \operatorname{H}(X_i)$$

$$\leq \operatorname{E} h \left(\sum c_i Y_i \right) - \operatorname{H} \left(\sum c_i Y_i \right).$$

• Using $\log \left(\int e^f d\gamma \right) = \sup_X \left(\operatorname{E} f(X) - \operatorname{H}(X) \right)$ we obtain

$$\prod_{i=1}^{m} \left(\int_{E_i} e^{f_i} d\gamma_{E_i} \right)^{c_i} \le \int_{E} e^h d\gamma_{E}.$$

Let X_1, \ldots, X_m be random vectors on E_1, \ldots, E_m . Let B be a Brownian motion.

Let X_1, \ldots, X_m be random vectors on E_1, \ldots, E_m . Let B be a Brownian motion.

• Since P_iB is a Brownian motion on E_i , there exists a drift u_i satisfying $P_iB(1) + \int_0^1 u_i(s) \ \mathrm{d}s = X_i$ in law and

$$H(X_i) = E \int_0^1 |u_i(s)|^2 / 2 ds.$$

Let X_1, \ldots, X_m be random vectors on E_1, \ldots, E_m . Let B be a Brownian motion.

• Since P_iB is a Brownian motion on E_i , there exists a drift u_i satisfying $P_iB(1)+\int_0^1 u_i(s)~\mathrm{d}s=X_i$ in law and

$$H(X_i) = E \int_0^1 |u_i(s)|^2 / 2 ds.$$

• Let $Y_i = P_i B(1) + \int_0^1 u_i(s) ds$.

Let X_1, \ldots, X_m be random vectors on E_1, \ldots, E_m . Let B be a Brownian motion.

• Since P_iB is a Brownian motion on E_i , there exists a drift u_i satisfying $P_iB(1) + \int_0^1 u_i(s) \ \mathrm{d}s = X_i$ in law and

$$H(X_i) = E \int_0^1 |u_i(s)|^2 / 2 ds.$$

- Let $Y_i = P_i B(1) + \int_0^1 u_i(s) ds$.
- The frame condition yields $\sum c_i Y_i = B(1) + \int_0^1 \sum c_i u_i(s) \ ds$.

Let X_1, \ldots, X_m be random vectors on E_1, \ldots, E_m . Let B be a Brownian motion.

• Since P_iB is a Brownian motion on E_i , there exists a drift u_i satisfying $P_iB(1) + \int_0^1 u_i(s) \ \mathrm{d}s = X_i$ in law and

$$H(X_i) = E \int_0^1 |u_i(s)|^2 / 2 ds.$$

- Let $Y_i = P_i B(1) + \int_0^1 u_i(s) \, ds$.
- The frame condition yields $\sum c_i Y_i = B(1) + \int_0^1 \sum c_i u_i(s) \ ds$.
- Hence (using the frame condition again)

$$H(\sum c_i Y_i) \le E \int_0^1 |\sum c_i u_i(s)|^2 / 2 ds$$

$$\le \sum c_i E \int_0^1 |u_i(s)|^2 / 2 ds$$

$$= \sum c_i H(X_i).$$