Positive definite functions and stable random vectors.

Alexander Koldobsky

University of Missouri-Columbia

Definition (Eaton, 1981)

A random vector $X=(X_1,...,X_n)$ is an *n-dimensional version* of a random variable Y if there exists a function $\gamma: I\!\!R^n \to [0,\infty)$, such that for every $a \in I\!\!R^n$ the random variables

$$\sum_{i=1}^{n} a_i X_i \quad and \quad \gamma(a) Y$$

are identically distributed.

Definition (Eaton, 1981)

A random vector $X=(X_1,...,X_n)$ is an *n-dimensional version* of a random variable Y if there exists a function $\gamma: I\!\!R^n \to [0,\infty)$, such that for every $a \in I\!\!R^n$ the random variables

$$\sum_{i=1}^{n} a_i X_i \quad and \quad \gamma(a) Y$$

are identically distributed.

To exclude trivial cases

- 1) $\gamma(a) = 0$ only if a = 0;
- 2) $n \ge 2$;
- 3) P(Y=0) < 1.

Definition (Eaton, 1981)

A random vector $X=(X_1,...,X_n)$ is an *n-dimensional version* of a random variable Y if there exists a function $\gamma: I\!\!R^n \to [0,\infty)$, such that for every $a \in I\!\!R^n$ the random variables

$$\sum_{i=1}^{n} a_i X_i \quad and \quad \gamma(a) Y$$

are identically distributed.

To exclude trivial cases

- 1) $\gamma(a) = 0$ only if a = 0;
- 2) $n \ge 2$;
- 3) P(Y=0) < 1.

γ - the standard of X

 γ is an even homogeneous of degree 1 non-negative (and equal to zero only at zero) continuous function on $I\!\!R^n$.

Definition (Eaton, 1981)

A random vector $X=(X_1,...,X_n)$ is an *n-dimensional version* of a random variable Y if there exists a function $\gamma: I\!\!R^n \to [0,\infty)$, such that for every $a \in I\!\!R^n$ the random variables

$$\sum_{i=1}^{n} a_i X_i \quad and \quad \gamma(a) Y$$

are identically distributed.

To exclude trivial cases

- 1) $\gamma(a) = 0$ only if a = 0;
- 2) $n \ge 2$;
- 3) P(Y=0) < 1.

γ - the standard of X

 γ is an even homogeneous of degree 1 non-negative (and equal to zero only at zero) continuous function on \mathbb{R}^n . This means that $\gamma = \|\cdot\|_K$ is the Minkowski functional of some origin symmetric star body K in \mathbb{R}^n .

Eaton's problems

1) Characterize all *n*-dimensional versions

Eaton's problems

- 1) Characterize all *n*-dimensional versions
- 2) Characterize all K for which $\|\cdot\|_K$ can appear as the standard of an n-dimensional version

Positive definite norm dependent functions

Fourier characterization of *n*-dimensional versions

A random vector is an n-dimensional version with the standard $\|\cdot\|_K$ if and only if its characteristic functional has the form $f(\|\cdot\|_K)$, where K is an origin symmetric star body in \mathbb{R}^n and f is an even continuous non-constant function on \mathbb{R}

Positive definite norm dependent functions

Fourier characterization of *n*-dimensional versions

A random vector is an n-dimensional version with the standard $\|\cdot\|_K$ if and only if its characteristic functional has the form $f(\|\cdot\|_K)$, where K is an origin symmetric star body in $I\!\!R^n$ and f is an even continuous non-constant function on $I\!\!R$

Idea of Proof

$$\phi_X(a) = \mathbb{E}e^{-i(a,X)} = \mathbb{E}e^{-i\|a\|_K Y} = f(\|a\|_K),$$

where $f = \phi_Y$.

Positive definite norm dependent functions

Fourier characterization of *n*-dimensional versions

A random vector is an n-dimensional version with the standard $\|\cdot\|_K$ if and only if its characteristic functional has the form $f(\|\cdot\|_K)$, where K is an origin symmetric star body in $I\!\!R^n$ and f is an even continuous non-constant function on $I\!\!R$

Idea of Proof

$$\phi_X(a) = \mathbb{E}e^{-i(a,X)} = \mathbb{E}e^{-i\|a\|_K Y} = f(\|a\|_K),$$

where $f = \phi_Y$.

By Bochner's theorem, this means that the function $f(\|\cdot\|_K)$ is positive definite. Recall that a complex valued function f defined on \mathbb{R}^n is called positive definite on \mathbb{R}^n if, for every finite sequence $\{x_i\}_{i=1}^m$ in \mathbb{R}^n and every choice of complex numbers $\{c_i\}_{i=1}^m$, we have

$$\sum_{i=1}^m \sum_{j=1}^m c_i \bar{c}_j f(x_i - x_j) \ge 0.$$

Classes $\Phi(K)$

 $\Phi(K)$ the set of even continuous functions $f: \mathbb{R} \to \mathbb{R}$ for which $f(\|\cdot\|_K)$ is a positive definite function on \mathbb{R}^n .

Classes $\Phi(K)$

 $\Phi(K)$ the set of even continuous functions $f: \mathbb{R} \to \mathbb{R}$ for which $f(\|\cdot\|_K)$ is a positive definite function on \mathbb{R}^n .

In particular, $\|\cdot\|_K$ appears as the standard of an n-dimensional version if and only if the class $\Phi(K)$ is non-trivial, i.e. contains at least one non-constant function.

P.Levy (1920's): stable processes

For any finite dimensional subspace $(I\!\!R^n,\|\cdot\|)$ of L_q with $0 < q \le 2$, the function $g = \exp(-\|\cdot\|^q)$ is positive definite on $I\!\!R^n$, and any random vector $X = (X_1,...,X_n)$ in $I\!\!R^n$, whose characteristic functional is g, is an n-dimensional version.

P.Levy (1920's): stable processes

For any finite dimensional subspace $(I\!\!R^n,\|\cdot\|)$ of L_q with $0 < q \le 2$, the function $g = \exp(-\|\cdot\|^q)$ is positive definite on $I\!\!R^n$, and any random vector $X = (X_1,...,X_n)$ in $I\!\!R^n$, whose characteristic functional is g, is an n-dimensional version.

The norm of any subspace of $L_q,\ 0 < q \leq 2$ is the standard of an n-dimensional version.

P.Levy (1920's): stable processes

For any finite dimensional subspace ($I\!\!R^n, \|\cdot\|$) of L_q with $0 < q \le 2$, the function $g = \exp(-\|\cdot\|^q)$ is positive definite on $I\!\!R^n$, and any random vector $X = (X_1, ..., X_n)$ in $I\!\!R^n$, whose characteristic functional is g, is an n-dimensional version.

The norm of any subspace of L_q , $0 < q \le 2$ is the standard of an n-dimensional version.

I.J.Schoenberg (1938): embedding of metric spaces

Schoenberg's problem (1938): for which $0 is the function <math>\exp(-\|\cdot\|_q^p)$ positive definite on \mathbb{R}^n , where $\|x\|_q$ is the norm the space ℓ_q^n with $2 < q \le \infty$.

P.Levy (1920's): stable processes

For any finite dimensional subspace $(I\!\!R^n,\|\cdot\|)$ of L_q with $0< q\le 2$, the function $g=\exp(-\|\cdot\|^q)$ is positive definite on $I\!\!R^n$, and any random vector $X=(X_1,...,X_n)$ in $I\!\!R^n$, whose characteristic functional is g, is an n-dimensional version.

The norm of any subspace of L_q , $0 < q \le 2$ is the standard of an n-dimensional version.

I.J.Schoenberg (1938): embedding of metric spaces

Schoenberg's problem (1938): for which $0 is the function <math>\exp(-\|\cdot\|_q^p)$ positive definite on \mathbb{R}^n , where $\|x\|_q$ is the norm the space ℓ_q^n with $2 < q \le \infty$.

Answer (Misiewicz, 1989, for $q = \infty$; K.,1991, for $2 < q < \infty$): if $n \ge 3$, not positive definite for any p > 0, if n = 2, positive definite iff $p \in (0,1]$.

P.Levy (1920's): stable processes

For any finite dimensional subspace $(\mathbb{R}^n, \|\cdot\|)$ of L_q with $0 < q \le 2$, the function $g = \exp(-\|\cdot\|^q)$ is positive definite on \mathbb{R}^n , and any random vector $X = (X_1, ..., X_n)$ in \mathbb{R}^n , whose characteristic functional is g, is an n-dimensional version

The norm of any subspace of L_q , $0 < q \le 2$ is the standard of an *n*-dimensional version.

I.J.Schoenberg (1938): embedding of metric spaces

Schoenberg's problem (1938): for which $0 is the function <math>\exp(-\|\cdot\|_a^p)$ positive definite on \mathbb{R}^n , where $\|x\|_q$ is the norm the space ℓ_q^n with $2 < q \le \infty$.

Answer (Misiewicz, 1989, for $q = \infty$; K.,1991, for $2 < q < \infty$): if $n \ge 3$, not positive definite for any p > 0, if n = 2, positive definite iff $p \in (0,1]$.

Connection with embeddings in L_p

Bretagnolle, Dacunha-Castelle, Krivine (1966): a normed space embeds isometrically in L_q , $0 < q \le 2$ if and only if the function $\exp(-\|\cdot\|^q)$ is positive definite.

History continued.

Characterization of the classes $\Phi(K)$

· Schoenberg: $f \in \Phi(\ell_2^n)$ iff

$$f(t) = \int_0^\infty \Omega_n(tr) \ d\lambda(r),$$

 $f \in \Phi(\ell_2)$ iff

$$f(t) = \int_0^\infty \exp(-t^2 r^2) \ d\lambda(r)$$

- · Bretagnolle, Dacunha-Castelle, Krivine: same for $\Phi(\ell_q),\ 0 < q < 2,\ \Phi(\ell_q)$ trivial if q>2
- Cambanis, Keener, Simons: same for $\Phi(\ell_1^n)$
- · Richards, Gneiting: partial results for $\Phi(\ell_q^n)$, 0 < q < 2
- · Aharoni, Maurey, Mityagin: $\Phi(K)$ is trivial if

$$\lim_{n\to\infty}\|e_1+...+e_n\|/\sqrt{n}=0$$

- · Misiewicz: $\Phi(\ell_{\infty}^n)$ is trivial if $n \ge 3$
- · Lisitsky, Zastavny (independently): same for $\Phi(\ell_q^n), \ q>2$.

L_p -conjecture.

Remark

In all these examples $\Phi(K)$ non-trivial only for unit balls of subspaces of $L_p,\ 0< p\leq 2.$

L_p -conjecture.

Remark

In all these examples $\Phi(K)$ non-trivial only for unit balls of subspaces of L_p , 0 .

L_p -conjecture (Misiewicz, 1987)

 $\Phi(K)$ non-trivial if and only if K is the unit ball of a subspace of $L_p,\ 0 .$

L_p -conjecture.

Remark

In all these examples $\Phi(K)$ non-trivial only for unit balls of subspaces of L_p , 0 .

L_p -conjecture (Misiewicz, 1987)

 $\Phi(K)$ non-trivial if and only if K is the unit ball of a subspace of $L_p,\ 0 .$

Supporting argument

It is so under additional condition that $\mathbb{E}|Y|^p < \infty$. In fact,

$$\mathbb{E}|(X,a)|^p = ||a||_K^p \mathbb{E}|Y|^p.$$

*L*₀-conjecture

L_0 -conjecture (Lisitsky, 1997)

If $\Phi(K)$ non-trivial, then $(I\!\!R^n,\|\cdot\|_K)$ embeds in L_0 , i.e. there exist a finite Borel measure μ on the sphere S^{n-1} and a constant $C\in I\!\!R$ so that, for every $x\in I\!\!R^n$,

$$\log ||x||_{\mathcal{K}} = \int_{S^{n-1}} \log |(x,\xi)| d\mu(\xi) + C.$$

*L*₀-conjecture

L_0 -conjecture (Lisitsky, 1997)

If $\Phi(K)$ non-trivial, then $(I\!\!R^n,\|\cdot\|_K)$ embeds in L_0 , i.e. there exist a finite Borel measure μ on the sphere S^{n-1} and a constant $C\in I\!\!R$ so that, for every $x\in I\!\!R^n$,

$$\log ||x||_{\mathcal{K}} = \int_{S^{n-1}} \log |(x,\xi)| d\mu(\xi) + C.$$

Embedding in L₀ introduced in [Kalton, K., Yaskin, Yaskina, 2007]

*L*₀-conjecture

L_0 -conjecture (Lisitsky, 1997)

If $\Phi(K)$ non-trivial, then $(I\!\!R^n,\|\cdot\|_K)$ embeds in L_0 , i.e. there exist a finite Borel measure μ on the sphere S^{n-1} and a constant $C\in I\!\!R$ so that, for every $x\in I\!\!R^n$,

$$\log ||x||_{\mathcal{K}} = \int_{S^{n-1}} \log |(x,\xi)| d\mu(\xi) + C.$$

Embedding in L_0 introduced in [Kalton, K., Yaskin, Yaskina, 2007]

Easy under additional condition $\mathbb{E}|\log |Y|| < \infty$.

Main result.

Main Theorem.

Let K be an origin symmetric star body in $I\!\!R^n$, $n \ge 2$ and suppose that there exists an even non-constant continuous function $f: I\!\!R \mapsto I\!\!R$ such that $f(\|\cdot\|_K)$ is a positive definite function on $I\!\!R^n$. Then the space $(I\!\!R^n, \|\cdot\|_K)$ embeds in L_0 .

Main result.

Main Theorem.

Let K be an origin symmetric star body in $I\!\!R^n$, $n \ge 2$ and suppose that there exists an even non-constant continuous function $f:I\!\!R\mapsto I\!\!R$ such that $f(\|\cdot\|_K)$ is a positive definite function on $I\!\!R^n$. Then the space $(I\!\!R^n,\|\cdot\|_K)$ embeds in L_0 .

Corollary.

If a function γ is the standard of an n-dimensional version of a random variable, then there exists an origin symmetric star body K in $I\!\!R^n$ such that $\gamma = \|\cdot\|_K$ and the space $(I\!\!R^n, \|\cdot\|_K)$ embeds in L_0 .

The place of L_0 in the scale of L_p -spaces ([KKYY])

· Every finite dimensional subspace of L_p , $0 embeds in <math>L_0$.

The place of L_0 in the scale of L_p -spaces ([KKYY])

- · Every finite dimensional subspace of L_p , $0 embeds in <math>L_0$.
- · If $(I\!\!R^n, \|\cdot\|_K)$ embeds in L_0 , it also embeds in L_p for every -n .

The place of L_0 in the scale of L_p -spaces ([KKYY])

- · Every finite dimensional subspace of L_p , $0 embeds in <math>L_0$.
- · If $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 , it also embeds in L_p for every -n .
- · There are many examples of normed spaces that embed in L_0 , but don't embed in any L_p , $p \in (0,2)$. For example, the spaces ℓ_q^3 , q > 2 have this property.

The place of L_0 in the scale of L_p -spaces ([KKYY])

- · Every finite dimensional subspace of L_p , $0 embeds in <math>L_0$.
- · If $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 , it also embeds in L_p for every -n .
- There are many examples of normed spaces that embed in L_0 , but don't embed in any L_p , $p \in (0,2)$. For example, the spaces ℓ_q^3 , q > 2 have this property.
- · Every three dimensional **normed** space embeds in L_0 .

In $dim \ge 4$ there are many examples of spaces that do not embed in L_0

Second derivative test (SDT)

Let $n \ge 4$ and let $X = (\mathbb{R}^n, \|\cdot\|)$ be an n-dimensional **normed** space with normalized basis e_1, \ldots, e_n so that:

(i) For every fixed $(x_2, \ldots, x_n) \in \mathbb{R}^{n-1} \setminus \{0\},\$

$$\|x\|_{x_1}^{'}(0,x_2,\ldots,x_n) = \|x\|_{x_1^{2}}^{"}(0,x_2,\ldots,x_n) = 0$$

(ii) There exists a constant C so that, for every $x_1 \in \mathbb{R}$ and every $(x_2,\ldots,x_n) \in \mathbb{R}^{n-1}$ with $||x_2e_2+\cdots+x_ne_n||=1$, one has

$$||x||_{x_1^2}^{"}(x_1,x_2,\ldots,x_n) \leq C.$$

(iii) Convergence in the limit

$$\lim_{x_1\to 0}\|x\|_{x_1^2}^{"}(x_1,x_2,\ldots,x_n)=0$$

is uniform w.r. to $(x_2,...,x_n) \in \mathbb{R}^{n-1}$ with $||x_2e_2 + ... + x_ne_n|| = 1$.

Then the space $(\mathbb{R}^n, \|\cdot\|)$ does not embed in L_0 .

In $dim \ge 4$ there are many examples of spaces that do not embed in L_0

Second derivative test (SDT)

Let $n \ge 4$ and let $X = (\mathbb{R}^n, \|\cdot\|)$ be an n-dimensional **normed** space with normalized basis e_1, \ldots, e_n so that:

(i) For every fixed $(x_2, ..., x_n) \in \mathbb{R}^{n-1} \setminus \{0\},$

$$\|x\|_{x_1}^{'}(0,x_2,\ldots,x_n) = \|x\|_{x_1^{2}}^{"}(0,x_2,\ldots,x_n) = 0$$

(ii) There exists a constant C so that, for every $x_1 \in \mathbb{R}$ and every $(x_2, \ldots, x_n) \in \mathbb{R}^{n-1}$ with $||x_2e_2 + \cdots + x_ne_n|| = 1$, one has

$$||x||_{x_1^2}^{"}(x_1,x_2,\ldots,x_n) \leq C.$$

(iii) Convergence in the limit

$$\lim_{x_1\to 0}\|x\|_{x_1^2}^{"}(x_1,x_2,\ldots,x_n)=0$$

is uniform w.r. to $(x_2,...,x_n) \in I\!\!R^{n-1}$ with $||x_2e_2+\cdots+x_ne_n||=1$.

Then the space $(\mathbb{R}^n, \|\cdot\|)$ does not embed in L_0 .

 ℓ_q^n , q > 2, $n \ge 4$ have this property: $|x_1|^{q-2} = 0$ when $x_1 = 0$.

q-sums

For normed spaces X and Y and $q \in IR$, $q \ge 1$, the q-sum $(X \oplus Y)_q$ of X and Y is defined as the space of pairs $\{(x,y): x \in X, y \in Y\}$ with the norm

$$\|(x,y)\| = (\|x\|_X^q + \|y\|_Y^q)^{1/q}.$$

q-sums

For normed spaces X and Y and $q \in IR$, $q \ge 1$, the q-sum $(X \oplus Y)_q$ of X and Y is defined as the space of pairs $\{(x,y): x \in X, y \in Y\}$ with the norm

$$||(x,y)|| = (||x||_X^q + ||y||_Y^q)^{1/q}.$$

If dim $X \ge 3$, q > 2, then the q-sum $(X \oplus Y)_q$ satisfies SDT.

q-sums

For normed spaces X and Y and $q \in IR$, $q \ge 1$, the q-sum $(X \oplus Y)_q$ of X and Y is defined as the space of pairs $\{(x,y): x \in X, y \in Y\}$ with the norm

$$||(x,y)|| = (||x||_X^q + ||y||_Y^q)^{1/q}.$$

If dim $X \ge 3$, q > 2, then the q-sum $(X \oplus Y)_q$ satisfies SDT.

Orlicz spaces

Orlicz function M is a non-decreasing convex function on $[0,\infty)$ such that M(0)=0 and M(t)>0 for every t>0. The norm $\|\cdot\|_M$ of the n-dimensional Orlicz space ℓ_M^n is defined implicitly by the equality

$$\sum_{k=1}^{n} M(|x_k|/\|x\|_M) = 1, \ x \in \mathbb{R}^n \setminus \{0\}.$$

q-sums

For normed spaces X and Y and $q \in IR$, $q \ge 1$, the q-sum $(X \oplus Y)_q$ of X and Y is defined as the space of pairs $\{(x,y): x \in X, y \in Y\}$ with the norm

$$||(x,y)|| = (||x||_X^q + ||y||_Y^q)^{1/q}.$$

If dim $X \ge 3$, q > 2, then the q-sum $(X \oplus Y)_q$ satisfies SDT.

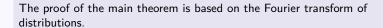
Orlicz spaces

Orlicz function M is a non-decreasing convex function on $[0,\infty)$ such that M(0)=0 and M(t)>0 for every t>0. The norm $\|\cdot\|_M$ of the n-dimensional Orlicz space ℓ_M^n is defined implicitly by the equality

$$\sum_{k=1}^{n} M(|x_{k}|/\|x\|_{M}) = 1, \ x \in \mathbb{R}^{n} \setminus \{0\}.$$

Orlicz spaces ℓ_M^n with $n \ge 4$ and $M^{''}(0) = 0$ satisfy SDT.

The proof of the main theorem is based on the Fourier transform of distributions.



 $\mathcal{S}(\mathbb{R}^n)$ the space of infinitely differentiable rapidly decreasing functions on \mathbb{R}^n (Schwartz test functions), $\mathcal{S}^{'}(\mathbb{R}^n)$ the space of distributions over $\mathcal{S}(\mathbb{R}^n)$.

The proof of the main theorem is based on the Fourier transform of distributions.

 $\mathcal{S}(\mathbb{R}^n)$ the space of infinitely differentiable rapidly decreasing functions on \mathbb{R}^n (Schwartz test functions), $\mathcal{S}^{'}(\mathbb{R}^n)$ the space of distributions over $\mathcal{S}(\mathbb{R}^n)$.

If f is locally integrable with power growth at infinity, then

$$\langle f, \phi \rangle = \int_{\mathbb{R}^n} f(x) \phi(x) \ dx.$$

The proof of the main theorem is based on the Fourier transform of distributions.

 $\mathcal{S}(\mathbb{R}^n)$ the space of infinitely differentiable rapidly decreasing functions on \mathbb{R}^n (Schwartz test functions), $\mathcal{S}^{'}(\mathbb{R}^n)$ the space of distributions over $\mathcal{S}(\mathbb{R}^n)$.

If f is locally integrable with power growth at infinity, then

$$\langle f, \phi \rangle = \int_{\mathbb{R}^n} f(x) \phi(x) \ dx.$$

The Fourier transform of a distribution f is defined by

$$\langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle$$

The proof of the main theorem is based on the Fourier transform of distributions.

 $\mathcal{S}(\mathbb{R}^n)$ the space of infinitely differentiable rapidly decreasing functions on \mathbb{R}^n (Schwartz test functions), $\mathcal{S}^{'}(\mathbb{R}^n)$ the space of distributions over $\mathcal{S}(\mathbb{R}^n)$.

If f is locally integrable with power growth at infinity, then

$$\langle f, \phi \rangle = \int_{\mathbb{R}^n} f(x) \phi(x) \ dx.$$

The Fourier transform of a distribution f is defined by

$$\langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle$$

We say that a distribution is negative outside of the origin in \mathbb{R}^n if $\langle f, \phi \rangle \leq 0$ for any $\phi \geq 0$ with compact support outside of the origin.

Fourier characterization of embedding in L_0

Theorem ([KKYY])

Let K be an origin symmetric star body in \mathbb{R}^n . The space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 if and only if the Fourier transform of $\log \|x\|_K$ is a negative distribution outside of the origin in \mathbb{R}^n .

Fourier characterization of embedding in L_0

Theorem ([KKYY])

Let K be an origin symmetric star body in \mathbb{R}^n . The space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 if and only if the Fourier transform of $\log \|x\|_K$ is a negative distribution outside of the origin in \mathbb{R}^n .

Idea of Proof

$$\log ||x||_{\mathcal{K}} = \int_{S^{n-1}} \log |(x,\xi)| d\mu(\xi) + C.$$

Let ϕ be a non-negative even test function with support outside of the origin.

$$\begin{split} &\langle (\log\|x\|)^{\wedge}, \phi \rangle = \langle \log\|x\|, \hat{\phi}(x) \rangle \quad \textit{need to prove} \leq 0 \\ &= \int_{S^{n-1}} \int_{\mathbb{R}^n} \log|(x,\xi)| \hat{\phi}(x) \ dx \ d\mu(\xi) + C \int_{\mathbb{R}^n} \hat{\phi}(x) dx \\ &= \int_{S^{n-1}} \langle \log|t|, \int_{(x,\xi)=t} \hat{\phi}(x) \ dx \rangle \ d\mu(\xi) \\ &= -(2\pi)^n \int_{S^{n-1}} \int_{\mathbb{R}} |t|^{-1} \phi(t\xi) \ dt \ d\mu(\xi) \leq 0. \quad \Box \end{split}$$

Main Theorem.

Let K be an origin symmetric star body in \mathbb{R}^n , $n \ge 2$ and suppose that there exists an even non-constant continuous function $f: \mathbb{R} \mapsto \mathbb{R}$ such that $f(\|\cdot\|_K)$ is a positive definite function on \mathbb{R}^n . Then the space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 .

Main Theorem.

Let K be an origin symmetric star body in $I\!\!R^n$, $n \ge 2$ and suppose that there exists an even non-constant continuous function $f: I\!\!R \mapsto I\!\!R$ such that $f(\|\cdot\|_K)$ is a positive definite function on $I\!\!R^n$. Then the space $(I\!\!R^n, \|\cdot\|_K)$ embeds in L_0 .

$|f(t)| \le f(0) = 1$

Assume f(0) = 1. By Bochner's theorem, $\hat{\mu} = f(\|\cdot\|)$ for some probability measure μ on \mathbb{R}^n .

Main Theorem.

Let K be an origin symmetric star body in \mathbb{R}^n , $n \ge 2$ and suppose that there exists an even non-constant continuous function $f: \mathbb{R} \mapsto \mathbb{R}$ such that $f(\|\cdot\|_K)$ is a positive definite function on \mathbb{R}^n . Then the space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 .

$|f(t)| \le f(0) = 1$

Assume f(0)=1. By Bochner's theorem, $\hat{\mu}=f(\|\cdot\|)$ for some probability measure μ on $I\!\!R^n$.

Given:

$$\int_{\mathbb{R}^n} f(t||x||) \hat{\phi}(x) \ dx = \langle (f(t||\cdot||))^{\wedge}, \phi(x) \rangle \ge 0, \quad \forall t > 0$$

Main Theorem.

Let K be an origin symmetric star body in \mathbb{R}^n , $n \ge 2$ and suppose that there exists an even non-constant continuous function $f: \mathbb{R} \mapsto \mathbb{R}$ such that $f(\|\cdot\|_K)$ is a positive definite function on \mathbb{R}^n . Then the space $(\mathbb{R}^n, \|\cdot\|_K)$ embeds in L_0 .

$|f(t)| \le f(0) = 1$

Assume f(0) = 1. By Bochner's theorem, $\hat{\mu} = f(\|\cdot\|)$ for some probability measure μ on \mathbb{R}^n .

Given:

$$\int_{\mathbb{R}^n} f(t||x||)\hat{\phi}(x) \ dx = \langle (f(t||\cdot||))^{\wedge}, \phi(x) \rangle \ge 0, \quad \forall t > 0$$

Need to prove:

For every $\phi \ge 0$ supported in $\mathbb{R}^n \setminus \{0\}$

$$\langle (\log ||x||)^{\wedge}, \phi \rangle = \int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) dx \leq 0.$$

Function $g(\varepsilon)$, $\varepsilon \in (0,1/2)$

$$g(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_0^1 t^{-1+\varepsilon} f(t||x||) dt + \int_1^\infty t^{-1-\varepsilon} f(t||x||) dt \right) \hat{\phi}(x) dx$$

Function $g(\varepsilon)$, $\varepsilon \in (0,1/2)$

$$g(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_0^1 t^{-1+\varepsilon} f(t||x||) dt + \int_1^\infty t^{-1-\varepsilon} f(t||x||) dt \right) \hat{\phi}(x) dx$$

$$g(\varepsilon) = \int_{\mathbb{R}^n} \left(\|x\|^{-\varepsilon} \int_0^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \|x\|^{\varepsilon} \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

Function $g(\varepsilon), \ \varepsilon \in (0,1/2)$

$$g(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_0^1 t^{-1+\varepsilon} f(t||x||) dt + \int_1^\infty t^{-1-\varepsilon} f(t||x||) dt \right) \hat{\phi}(x) dx$$

$$g(\varepsilon) = \int_{\mathbb{R}^{n}} \left(\|x\|^{-\varepsilon} \int_{0}^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \|x\|^{\varepsilon} \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$= \int_{\mathbb{R}^{n}} \frac{\|x\|^{-\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{0}^{\|x\|} t^{-1+\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$+ \int_{\mathbb{R}^{n}} \frac{\|x\|^{\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$+ \int_{\mathbb{R}^{n}} \left(\int_{0}^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

Function $g(\varepsilon), \ \varepsilon \in (0,1/2)$

$$g(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_0^1 t^{-1+\varepsilon} f(t||x||) dt + \int_1^\infty t^{-1-\varepsilon} f(t||x||) dt \right) \hat{\phi}(x) dx$$

$$g(\varepsilon) = \int_{\mathbf{R}^{n}} \left(\|x\|^{-\varepsilon} \int_{0}^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \|x\|^{\varepsilon} \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$= \int_{\mathbf{R}^{n}} \frac{\|x\|^{-\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{0}^{\|x\|} t^{-1+\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$+ \int_{\mathbf{R}^{n}} \frac{\|x\|^{\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$+ \int_{\mathbf{R}^{n}} \left(\int_{0}^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$= u(\varepsilon) + v(\varepsilon) + w(\varepsilon).$$

We are going to prove:

$$\lim_{\varepsilon\to 0} w(\varepsilon) = 0;$$

We are going to prove:

$$\lim_{\varepsilon\to 0} w(\varepsilon) = 0;$$

$$\lim_{\varepsilon \to 0} u(\varepsilon) = -\int_{\mathbf{R}^n} \log ||x|| \hat{\phi}(x) dx;$$

We are going to prove:

$$\lim_{\varepsilon\to 0} w(\varepsilon) = 0;$$

$$\lim_{\varepsilon \to 0} u(\varepsilon) = -\int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) dx;$$

There exist a sequence $\varepsilon_k \to 0$ and a number c < 1 such that

$$\lim_{k\to\infty} v(\varepsilon_k) = c \int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) \ dx.$$

We are going to prove:

$$\lim_{\varepsilon\to 0} w(\varepsilon) = 0;$$

$$\lim_{\varepsilon \to 0} u(\varepsilon) = -\int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) dx;$$

There exist a sequence $\varepsilon_k \to 0$ and a number c < 1 such that

$$\lim_{k\to\infty} v(\varepsilon_k) = c \int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) \ dx.$$

Then,

$$0 \leq \lim_{k \to \infty} g(\varepsilon_k) = \lim_{k \to \infty} (u + v + w)(\varepsilon_k) = (-1 + c) \int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) dx,$$

We are going to prove:

$$\lim_{\varepsilon\to 0} w(\varepsilon) = 0;$$

$$\lim_{\varepsilon \to 0} u(\varepsilon) = -\int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) dx;$$

There exist a sequence $\varepsilon_k \to 0$ and a number c < 1 such that

$$\lim_{k\to\infty} v(\varepsilon_k) = c \int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) \ dx.$$

Then,

$$0 \leq \lim_{k \to \infty} g(\varepsilon_k) = \lim_{k \to \infty} (u + v + w)(\varepsilon_k) = (-1 + c) \int_{\mathbb{R}^n} \log ||x|| \hat{\phi}(x) dx,$$

which implies

$$\int_{\mathbb{R}^n} \log \|x\| \hat{\phi}(x) dx \leq 0. \quad \Box$$

$$\lim_{\varepsilon\to 0} w(\varepsilon) = 0$$

$$w(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_0^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$\lim_{\varepsilon\to 0} w(\varepsilon) = 0$

$$w(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_0^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

Since ϕ is supported outside of the origin, we have $\int_{\mathbb{R}^n} \hat{\phi}(x) dx = 0$ and

$$\int_{I\!\!R^n} \left(\int_0^a t^{-1+\varepsilon} f(t) \ dt + \int_a^\infty t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx = 0, \quad \text{where } a>0.$$

$\lim_{\varepsilon\to 0} w(\varepsilon) = 0$

$$w(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_0^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

Since ϕ is supported outside of the origin, we have $\int_{\mathbb{R}^n} \hat{\phi}(x) dx = 0$ and

$$\int_{{I\!\!R}^n} \left(\int_0^a t^{-1+\varepsilon} f(t) \ dt + \int_a^\infty t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx = 0, \quad \text{where } a>0.$$

$$w(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_a^{\|x\|} \left(t^{-1+\varepsilon} - t^{-1-\varepsilon} \right) f(t) \ dt \right) \hat{\phi}(x) dx$$

$\lim_{\varepsilon\to 0} w(\varepsilon) = 0$

$$w(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_0^{\|x\|} t^{-1+\varepsilon} f(t) \ dt + \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

Since ϕ is supported outside of the origin, we have $\int_{{\cal R}^n} \hat{\phi}(x) dx = 0$ and

$$\int_{I\!\!R^n} \left(\int_0^a t^{-1+\varepsilon} f(t) \ dt + \int_a^\infty t^{-1-\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx = 0, \quad \text{where } a>0.$$

$$w(\varepsilon) = \int_{\mathbb{R}^n} \left(\int_a^{\|x\|} \left(t^{-1+\varepsilon} - t^{-1-\varepsilon} \right) f(t) \ dt \right) \hat{\phi}(x) dx$$

$$|w(\varepsilon)| \le 2\varepsilon \int_{\mathbb{R}^n} |\|x\| - a\| (1 + a^{-3/2} + \|x\|^{-3/2}) (|\ln a| + |\ln \|x\|) |\hat{\phi}(x)| dx.$$

K star body, so $c|x|_2 \le ||x|| \le d|x|_2$, and $||x||^{-3/2}$ is locally integrable in \mathbb{R}^n , $n \ge 2$.

Lemma

Let h be a bounded integrable continuous at 0 function on $[0,A],\ A>0.$ Then

$$\lim_{\varepsilon \to 0} \varepsilon \int_0^A t^{-1+\varepsilon} h(t) dt = \lim_{\varepsilon \to 0} \varepsilon \int_0^\varepsilon t^{-1+\varepsilon} h(t) dt = h(0).$$

Lemma

Let h be a bounded integrable continuous at 0 function on $[0,A],\ A>0$. Then

$$\lim_{\varepsilon \to 0} \varepsilon \int_0^A t^{-1+\varepsilon} h(t) dt = \lim_{\varepsilon \to 0} \varepsilon \int_0^\varepsilon t^{-1+\varepsilon} h(t) dt = h(0).$$

$\lim_{\varepsilon \to 0} u(\varepsilon)$

$$u(\varepsilon) = \int_{\mathbb{R}^n} \frac{\|x\|^{-\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_0^{\|x\|} t^{-1+\varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$
$$\to - \int_{\mathbb{R}^n} \log \|x\| \hat{\phi}(x) \ dx.$$

What is the problem with v?

 $\overline{\lim_{arepsilon o 0} v(arepsilon)}$

$$v(\varepsilon) = \int_{\mathbb{R}^n} \frac{\|x\|^{\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{\|x\|}^{\infty} t^{-1 - \varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

What is the problem with v?

 $\lim_{\varepsilon \to 0} v(\varepsilon)$

$$v(\varepsilon) = \int_{\mathbb{R}^n} \frac{\|x\|^{\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{\|x\|}^{\infty} t^{-1 - \varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$\varepsilon \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\|x\|^{-1}} t^{-1+\varepsilon} f(1/t) dt$$

and f(1/t) may be discontinuous at zero (example cos(1/t)).

What is the problem with v?

$\lim_{\varepsilon \to 0} v(\varepsilon)$

$$v(\varepsilon) = \int_{\mathbb{R}^n} \frac{\|x\|^{\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{\|x\|}^{\infty} t^{-1 - \varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$\varepsilon \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\|x\|^{-1}} t^{-1+\varepsilon} f(1/t) dt$$

and f(1/t) may be discontinuous at zero (example $\cos(1/t)$).

$$\psi(\varepsilon) = \varepsilon \int_{1/\varepsilon}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\varepsilon} t^{-1+\varepsilon} f(1/t) dt,$$

What is the problem with v?

$\lim_{\varepsilon \to 0} v(\varepsilon)$

$$v(\varepsilon) = \int_{\mathbb{R}^n} \frac{\|x\|^{\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{\|x\|}^{\infty} t^{-1 - \varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$\varepsilon \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\|x\|^{-1}} t^{-1+\varepsilon} f(1/t) dt$$

and f(1/t) may be discontinuous at zero (example cos(1/t)).

$$\psi(\varepsilon) = \varepsilon \int_{1/\varepsilon}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\varepsilon} t^{-1+\varepsilon} f(1/t) dt,$$

Want to prove that there exists a sequence $\varepsilon_k \to 0$ and c < 1 such that $\psi(\varepsilon_k) \to c$. Then $v(\varepsilon_k) \to c \int_{\mathbf{R}^n} \log \|x\| \hat{\phi}(x) dx$.

What is the problem with v?

$\lim_{\varepsilon\to 0} v(\varepsilon)$

$$v(\varepsilon) = \int_{\mathbb{R}^n} \frac{\|x\|^{\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{\|x\|}^{\infty} t^{-1 - \varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$\varepsilon \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\|x\|^{-1}} t^{-1+\varepsilon} f(1/t) dt$$

and f(1/t) may be discontinuous at zero (example cos(1/t)).

$$\psi(\varepsilon) = \varepsilon \int_{1/\varepsilon}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\varepsilon} t^{-1+\varepsilon} f(1/t) dt,$$

Want to prove that there exists a sequence $\varepsilon_k \to 0$ and c < 1 such that $\psi(\varepsilon_k) \to c$. Then $v(\varepsilon_k) \to c \int_{\mathbf{R}^n} \log \|x\| \hat{\phi}(x) dx$.

Since $|\psi(\varepsilon)| \leq \varepsilon^{\varepsilon}$, the alternative is that $\lim_{\varepsilon \to 0} \psi(\varepsilon) = 1$.

What is the problem with v?

$\lim_{\varepsilon\to 0} v(\varepsilon)$

$$v(\varepsilon) = \int_{\mathbb{R}^n} \frac{\|x\|^{\varepsilon} - 1}{\varepsilon} \left(\varepsilon \int_{\|x\|}^{\infty} t^{-1 - \varepsilon} f(t) \ dt \right) \hat{\phi}(x) dx$$

$$\varepsilon \int_{\|x\|}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\|x\|^{-1}} t^{-1+\varepsilon} f(1/t) dt$$

and f(1/t) may be discontinuous at zero (example cos(1/t)).

$$\psi(\varepsilon) = \varepsilon \int_{1/\varepsilon}^{\infty} t^{-1-\varepsilon} f(t) dt = \varepsilon \int_{0}^{\varepsilon} t^{-1+\varepsilon} f(1/t) dt,$$

Want to prove that there exists a sequence $\varepsilon_k \to 0$ and c < 1 such that $\psi(\varepsilon_k) \to c$. Then $v(\varepsilon_k) \to c \int_{\mathbb{R}^n} \log \|x\| \hat{\phi}(x) dx$.

Since $|\psi(\varepsilon)| \leq \varepsilon^{\varepsilon}$, the alternative is that $\lim_{\varepsilon \to 0} \psi(\varepsilon) = 1$. Suppose that $\lim_{\varepsilon \to 0} \psi(\varepsilon) = 1$.

End of Proof

Lemma (Vakhania, Tarieladze, Chobanyan)

If μ is a probability measure on ${I\!\!R}^n$ and γ is the standard Gaussian measure on ${I\!\!R}^n,$ then for every t>0

$$\mu\{x \in \mathbb{R}^n : |x|_2 > 1/t\} \le 3 \int_{\mathbb{R}^n} (1 - \hat{\mu}(ty)) d\gamma(y),$$

where $|\cdot|_2$ is the Euclidean norm on \mathbb{R}^n .

Lemma (Vakhania, Tarieladze, Chobanyan)

If μ is a probability measure on $I\!\!R^n$ and γ is the standard Gaussian measure on $I\!\!R^n$, then for every t>0

$$\mu\{x\in I\!\!R^n:\ |x|_2>1/t\}\leq 3\int_{I\!\!R^n} (1-\hat{\mu}(ty))\,d\gamma(y),$$

where $|\cdot|_2$ is the Euclidean norm on \mathbb{R}^n .

Contradiction to Hypothesis $\lim_{\varepsilon \to 0} \psi(\varepsilon) = 1$.

Let μ be the measure satisfying $\hat{\mu} = f(\|\cdot\|)$. Integrating by t we get

$$\varepsilon \int_{1/\varepsilon}^{\infty} t^{-1-\varepsilon} \mu\{x \in I\!\!R^n: \ |x|_2 > 1/t\} dt = \varepsilon \int_0^\varepsilon t^{-1+\varepsilon} \mu\{x \in I\!\!R^n: \ |x|_2 > t\} dt$$

$$\leq \int_{I\!\!R^n} \left(arepsilon \int_{1/arepsilon}^{\infty} t^{-1-arepsilon} (1-f(t\|y\|)) dt
ight) d\gamma(y).$$

End of Proof

Lemma (Vakhania, Tarieladze, Chobanyan)

If μ is a probability measure on $I\!\!R^n$ and γ is the standard Gaussian measure on $I\!\!R^n$, then for every t>0

$$\mu\{x\in I\!\!R^n:\ |x|_2>1/t\}\leq 3\int_{I\!\!R^n} (1-\hat{\mu}(ty))\,d\gamma(y),$$

where $|\cdot|_2$ is the Euclidean norm on \mathbb{R}^n .

Contradiction to Hypothesis $\lim_{\varepsilon \to 0} \psi(\varepsilon) = 1$.

Let μ be the measure satisfying $\hat{\mu} = f(\|\cdot\|)$. Integrating by t we get

$$\varepsilon \int_{1/\varepsilon}^{\infty} t^{-1-\varepsilon} \mu\{x \in I\!\!R^n: \ |x|_2 > 1/t\} dt = \varepsilon \int_0^\varepsilon t^{-1+\varepsilon} \mu\{x \in I\!\!R^n: \ |x|_2 > t\} dt$$

$$\leq \int_{\mathbb{R}^n} \left(\varepsilon \int_{1/\varepsilon}^{\infty} t^{-1-\varepsilon} (1-f(t\|y\|)) dt \right) d\gamma(y).$$

As $\varepsilon \to 0$, the left-hand side converges to $\mu(\mathbb{R}^n \setminus \{0\})$. The right-hand side converges to 0. We get $\mu(\mathbb{R}^n \setminus \{0\}) = 0$, which means that f is a constant function - contradiction.

Proof of Lemma

Need to prove

$$\mu\{x \in \mathbb{R}^n : |x|_2 > 1/t\} \le 3 \int_{\mathbb{R}^n} (1 - \hat{\mu}(ty)) d\gamma(y)$$

Proof of Lemma

Need to prove

$$\mu\{x \in \mathbb{R}^n : |x|_2 > 1/t\} \le 3 \int_{\mathbb{R}^n} (1 - \hat{\mu}(ty)) d\gamma(y)$$

Proof

 μ, ν -probability measures, 0 < u < 1

$$\int \hat{\mu} \ d\nu = \int \hat{\nu} \ d\mu$$

Proof of Lemma

Need to prove

$$\mu\{x \in \mathbb{R}^n : |x|_2 > 1/t\} \le 3 \int_{\mathbb{R}^n} (1 - \hat{\mu}(ty)) d\gamma(y)$$

Proof

 μ, ν -probability measures, 0 < u < 1

$$\int \hat{\mu} \ d\nu = \int \hat{\nu} \ d\mu$$

$$\int (1-\hat{\mu})d\nu = \int (1-\hat{\nu})d\mu \ge (1-u) \ \mu\{x: \ \hat{\nu}(x) < u\}$$

Let $\nu = \gamma$ - standard Gaussian measure on \mathbb{R}^n , then $\hat{\nu}(x) = e^{-|x|_2^2}$. Put $u = e^{-1}$.

$$\int (1-\hat{\mu})d\gamma \ge (1-e^{-1}) \ \mu\{x: \ |x|_2 > 1\}$$

Need to prove

$$\mu\{x \in \mathbb{R}^n: |x|_2 > 1/t\} \le 3 \int_{\mathbb{R}^n} (1 - \hat{\mu}(ty)) d\gamma(y)$$

Proof

 μ, ν -probability measures, 0 < u < 1

$$\int \hat{\mu} \ d\nu = \int \hat{\nu} \ d\mu$$

$$\int (1-\hat{\mu})d\nu = \int (1-\hat{\nu})d\mu \ge (1-u) \ \mu\{x: \ \hat{\nu}(x) < u\}$$

Let $\nu = \gamma$ - standard Gaussian measure on \mathbb{R}^n , then $\hat{\nu}(x) = e^{-|x|_2^2}$. Put $u = e^{-1}$.

$$\int (1-\hat{\mu})d\gamma \ge (1-e^{-1}) \ \mu\{x: \ |x|_2 > 1\}$$

Now dilate μ and use $1/(1-e^{-1}) < 3$.

