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n-dimensional versions.

Definition (Eaton, 1981)
A random vector X = (X1, ...,Xn) is an n-dimensional version of a random
variable Y if there exists a function γ : IRn→ [0,∞), such that for every
a ∈ IRn the random variables

n∑
i=1

aiXi and γ(a)Y

are identically distributed.

To exclude trivial cases
1) γ(a) = 0 only if a = 0;

2) n ≥ 2;

3) P(Y = 0)< 1.

γ - the standard of X
γ is an even homogeneous of degree 1 non-negative (and equal to zero only at
zero) continuous function on IRn. This means that γ = ‖ · ‖K is the Minkowski
functional of some origin symmetric star body K in IRn.
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Eaton’s problems
1) Characterize all n-dimensional versions

2) Characterize all K for which ‖ · ‖K can appear as the standard of an
n-dimensional version
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Positive definite norm dependent functions

Fourier characterization of n-dimensional versions
A random vector is an n-dimensional version with the standard ‖ · ‖K if and
only if its characteristic functional has the form f (‖ · ‖K ), where K is an origin
symmetric star body in IRn and f is an even continuous non-constant function
on IR

Idea of Proof

φX (a) = Ee−i(a,X) = Ee−i‖a‖K Y = f (‖a‖K ),

where f = φY .

By Bochner’s theorem, this means that the function f (‖ · ‖K ) is positive
definite. Recall that a complex valued function f defined on IRn is called
positive definite on IRn if, for every finite sequence {xi}mi=1 in IRn and every
choice of complex numbers {ci}mi=1, we have

m∑
i=1

m∑
j=1

ci c̄j f (xi − xj )≥ 0.

Alexander Koldobsky Positive definite functions and stable random vectors.



Positive definite norm dependent functions

Fourier characterization of n-dimensional versions
A random vector is an n-dimensional version with the standard ‖ · ‖K if and
only if its characteristic functional has the form f (‖ · ‖K ), where K is an origin
symmetric star body in IRn and f is an even continuous non-constant function
on IR

Idea of Proof

φX (a) = Ee−i(a,X) = Ee−i‖a‖K Y = f (‖a‖K ),

where f = φY .

By Bochner’s theorem, this means that the function f (‖ · ‖K ) is positive
definite. Recall that a complex valued function f defined on IRn is called
positive definite on IRn if, for every finite sequence {xi}mi=1 in IRn and every
choice of complex numbers {ci}mi=1, we have

m∑
i=1

m∑
j=1

ci c̄j f (xi − xj )≥ 0.

Alexander Koldobsky Positive definite functions and stable random vectors.



Positive definite norm dependent functions

Fourier characterization of n-dimensional versions
A random vector is an n-dimensional version with the standard ‖ · ‖K if and
only if its characteristic functional has the form f (‖ · ‖K ), where K is an origin
symmetric star body in IRn and f is an even continuous non-constant function
on IR

Idea of Proof

φX (a) = Ee−i(a,X) = Ee−i‖a‖K Y = f (‖a‖K ),

where f = φY .

By Bochner’s theorem, this means that the function f (‖ · ‖K ) is positive
definite. Recall that a complex valued function f defined on IRn is called
positive definite on IRn if, for every finite sequence {xi}mi=1 in IRn and every
choice of complex numbers {ci}mi=1, we have

m∑
i=1

m∑
j=1

ci c̄j f (xi − xj )≥ 0.

Alexander Koldobsky Positive definite functions and stable random vectors.



Classes Φ(K )

Φ(K) the set of even continuous functions f : IR → IR for which f (‖ · ‖K ) is a
positive definite function on IRn.

In particular, ‖ · ‖K appears as the standard of an n-dimensional version if and
only if the class Φ(K) is non-trivial, i.e. contains at least one non-constant
function.
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History.

P.Levy (1920’s): stable processes

For any finite dimensional subspace (IRn,‖ · ‖) of Lq with 0< q ≤ 2, the
function g = exp(−‖ ·‖q) is positive definite on IRn, and any random vector
X = (X1, ...,Xn) in IRn, whose characteristic functional is g , is an n-dimensional
version.

The norm of any subspace of Lq, 0< q ≤ 2 is the standard of an n-dimensional
version.

I.J.Schoenberg (1938): embedding of metric spaces

Schoenberg’s problem (1938): for which 0< p ≤ 2 is the function exp(−‖ ·‖pq)
positive definite on IRn, where ‖x‖q is the norm the space `nq with 2< q ≤∞.
Answer (Misiewicz, 1989, for q =∞; K.,1991, for 2< q <∞): if n ≥ 3, not
positive definite for any p > 0, if n = 2, positive definite iff p ∈ (0,1].

Connection with embeddings in Lp

Bretagnolle, Dacunha-Castelle, Krivine (1966): a normed space embeds
isometrically in Lq, 0< q ≤ 2 if and only if the function exp(−‖ ·‖q) is positive
definite.
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History continued.

Characterization of the classes Φ(K)

· Schoenberg: f ∈ Φ(`n2) iff

f (t) =

∫ ∞
0

Ωn(tr) dλ(r),

f ∈ Φ(`2) iff

f (t) =

∫ ∞
0

exp(−t2r2) dλ(r)

· Bretagnolle, Dacunha-Castelle, Krivine: same for Φ(`q), 0< q < 2, Φ(`q)
trivial if q > 2

· Cambanis, Keener, Simons: same for Φ(`n1)

· Richards, Gneiting: partial results for Φ(`nq), 0< q < 2

· Aharoni, Maurey, Mityagin: Φ(K) is trivial if

lim
n→∞

‖e1 + ...+ en‖/
√
n = 0

· Misiewicz: Φ(`n∞) is trivial if n ≥ 3

· Lisitsky, Zastavny (independently): same for Φ(`nq), q > 2.
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Lp-conjecture.

Remark
In all these examples Φ(K) non-trivial only for unit balls of subspaces of
Lp , 0< p ≤ 2.

Lp-conjecture (Misiewicz, 1987)
Φ(K) non-trivial if and only if K is the unit ball of a subspace of Lp , 0< p ≤ 2.

Supporting argument
It is so under additional condition that E|Y |p <∞. In fact,

E|(X ,a)|p = ‖a‖pK E|Y |p .
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L0-conjecture

L0-conjecture (Lisitsky, 1997)

If Φ(K) non-trivial, then (IRn,‖ ·‖K ) embeds in L0, i.e. there exist a finite Borel
measure µ on the sphere Sn−1 and a constant C ∈ IR so that, for every x ∈ IRn,

log‖x‖K =

∫
Sn−1

log |(x , ξ)|dµ(ξ) +C .

Embedding in L0 introduced in [Kalton, K., Yaskin, Yaskina, 2007]

Easy under additional condition E| log |Y ||<∞.
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Main result.

Main Theorem.
Let K be an origin symmetric star body in IRn, n ≥ 2 and suppose that there
exists an even non-constant continuous function f : IR 7→ IR such that f (‖ · ‖K )
is a positive definite function on IRn. Then the space (IRn,‖ ·‖K ) embeds in L0.

Corollary.
If a function γ is the standard of an n-dimensional version of a random
variable, then there exists an origin symmetric star body K in IRn such that
γ = ‖ · ‖K and the space (IRn,‖ · ‖K ) embeds in L0.
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Embedding in L0.

The place of L0 in the scale of Lp-spaces ([KKYY])
· Every finite dimensional subspace of Lp , 0< p ≤ 2 embeds in L0.

· If (IRn,‖ · ‖K ) embeds in L0, it also embeds in Lp for every −n < p < 0.

· There are many examples of normed spaces that embed in L0, but don’t
embed in any Lp , p ∈ (0,2). For example, the spaces `3q, q > 2 have this
property.

· Every three dimensional normed space embeds in L0.
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In dim ≥ 4 there are many examples of spaces that do not embed in L0

Second derivative test (SDT)

Let n ≥ 4 and let X = (IRn,‖ · ‖) be an n-dimensional normed space with
normalized basis e1, . . . ,en so that:
(i) For every fixed (x2, . . . ,xn) ∈ IRn−1 \{0},

‖x‖
′

x1 (0,x2, . . . ,xn) = ‖x‖
′′

x2
1
(0,x2, . . . ,xn) = 0

(ii) There exists a constant C so that, for every x1 ∈ IR and every
(x2, . . . ,xn) ∈ IRn−1 with ‖x2e2 + · · ·+ xnen‖= 1, one has

‖x‖
′′

x2
1
(x1,x2, . . . ,xn)≤ C .

(iii) Convergence in the limit

lim
x1→0

‖x‖
′′

x2
1
(x1,x2, . . . ,xn) = 0

is uniform w.r. to (x2, . . . ,xn) ∈ IRn−1 with ‖x2e2 + · · ·+ xnen‖= 1.

Then the space (IRn,‖ · ‖) does not embed in L0.

`nq, q > 2, n ≥ 4 have this property: |x1|q−2 = 0 when x1 = 0.
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Examples

q-sums
For normed spaces X and Y and q ∈ IR, q ≥ 1, the q-sum (X ⊕Y )q of X and
Y is defined as the space of pairs {(x ,y) : x ∈ X ,y ∈ Y } with the norm

‖(x ,y)‖=
(
‖x‖qX +‖y‖qY

)1/q
.

If dim X ≥ 3, q > 2, then the q-sum (X ⊕Y )q satisfies SDT.

Orlicz spaces
Orlicz function M is a non-decreasing convex function on [0,∞) such that
M(0) = 0 and M(t)> 0 for every t > 0. The norm ‖ · ‖M of the n-dimensional
Orlicz space `nM is defined implicitly by the equality

n∑
k=1

M(|xk |/‖x‖M) = 1, x ∈ IRn \{0}.

Orlicz spaces `nM with n ≥ 4 and M
′′

(0) = 0 satisfy SDT.
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Distributions

The proof of the main theorem is based on the Fourier transform of
distributions.

S(IRn) the space of infinitely differentiable rapidly decreasing functions on IRn

(Schwartz test functions), S
′
(IRn) the space of distributions over S(IRn).

If f is locally integrable with power growth at infinity, then

〈f ,φ〉=

∫
IRn

f (x)φ(x) dx .

The Fourier transform of a distribution f is defined by

〈f̂ ,φ〉= 〈f , φ̂〉

We say that a distribution is negative outside of the origin in IRn if 〈f ,φ〉 ≤ 0
for any φ≥ 0 with compact support outside of the origin.
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Fourier characterization of embedding in L0

Theorem ([KKYY])

Let K be an origin symmetric star body in IRn. The space (IRn,‖ · ‖K ) embeds
in L0 if and only if the Fourier transform of log‖x‖K is a negative distribution
outside of the origin in IRn.

Idea of Proof

log‖x‖K =

∫
Sn−1

log |(x , ξ)|dµ(ξ) +C .

Let φ be a non-negative even test function with support outside of the origin.

〈(log‖x‖)∧ ,φ〉= 〈log‖x‖, φ̂(x)〉 need to prove ≤ 0

=

∫
Sn−1

∫
Rn

log |(x , ξ)|φ̂(x) dx dµ(ξ) +C
∫

Rn
φ̂(x)dx

=

∫
Sn−1
〈log |t|,

∫
(x ,ξ)=t

φ̂(x) dx〉 dµ(ξ)

=−(2π)n
∫

Sn−1

∫
R
|t|−1φ(tξ) dt dµ(ξ)≤ 0.
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Proof of the Main Theorem: Part 1

Main Theorem.
Let K be an origin symmetric star body in IRn, n ≥ 2 and suppose that there
exists an even non-constant continuous function f : IR 7→ IR such that f (‖ · ‖K )
is a positive definite function on IRn. Then the space (IRn,‖ ·‖K ) embeds in L0.

|f (t)| ≤ f (0) = 1
Assume f (0) = 1. By Bochner’s theorem, µ̂= f (‖ · ‖) for some probability
measure µ on IRn.

Given: ∫
IRn

f (t‖x‖)φ̂(x) dx = 〈(f (t‖ · ‖))∧ ,φ(x)〉 ≥ 0, ∀t > 0

Need to prove:
For every φ≥ 0 supported in IRn \{0}

〈(log‖x‖)∧ ,φ〉=

∫
IRn

log‖x‖φ̂(x) dx ≤ 0.
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Proof of the Main Theorem: Part 2

Function g(ε), ε ∈ (0,1/2)

g(ε) =

∫
IRn

(∫ 1

0
t−1+εf (t‖x‖)dt +

∫ ∞
1

t−1−εf (t‖x‖)dt

)
φ̂(x)dx

(....) bounded by 2/ε. By the Fubini theorem, g(ε)≥ 0, ∀ε.

g(ε) =

∫
IRn

(
‖x‖−ε

∫ ‖x‖
0

t−1+εf (t) dt +‖x‖ε
∫ ∞
‖x‖

t−1−εf (t) dt

)
φ̂(x)dx

=

∫
IRn

‖x‖−ε−1
ε

(
ε

∫ ‖x‖
0

t−1+εf (t) dt

)
φ̂(x)dx

+

∫
IRn

‖x‖ε−1
ε

(
ε

∫ ∞
‖x‖

t−1−εf (t) dt

)
φ̂(x)dx

+

∫
IRn

(∫ ‖x‖
0

t−1+εf (t) dt +

∫ ∞
‖x‖

t−1−εf (t) dt

)
φ̂(x)dx

= u(ε) + v(ε) +w(ε).
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Proof of the Main Theorem: Part 3

We are going to prove:

lim
ε→0

w(ε) = 0;

lim
ε→0

u(ε) =−
∫

IRn
log‖x‖φ̂(x)dx ;

There exist a sequence εk → 0 and a number c < 1 such that

lim
k→∞

v(εk ) = c
∫

IRn
log‖x‖φ̂(x) dx .

Then,

0≤ lim
k→∞

g(εk ) = lim
k→∞

(u+ v +w)(εk ) = (−1+ c)

∫
IRn

log‖x‖φ̂(x)dx ,

which implies ∫
IRn

log‖x‖φ̂(x)dx ≤ 0.
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Proof of the Main Theorem: Part 4

limε→0w(ε) = 0

w(ε) =

∫
IRn

(∫ ‖x‖
0

t−1+εf (t) dt +

∫ ∞
‖x‖

t−1−εf (t) dt

)
φ̂(x)dx

Since φ is supported outside of the origin, we have
∫

IRn φ̂(x)dx = 0 and∫
IRn

(∫ a

0
t−1+εf (t) dt +

∫ ∞
a

t−1−εf (t) dt
)
φ̂(x)dx = 0, where a> 0.

w(ε) =

∫
IRn

(∫ ‖x‖
a

(
t−1+ε− t−1−ε

)
f (t) dt

)
φ̂(x)dx

|w(ε)| ≤ 2ε
∫

IRn
|‖x‖−a| (1+a−3/2 +‖x‖−3/2)(| lna|+ | ln‖x‖)|φ̂(x)|dx .

K star body, so c|x |2 ≤ ‖x‖ ≤ d |x |2, and ‖x‖−3/2 is locally integrable in
IRn, n ≥ 2.
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Proof of the Main Theorem: Part 5

Lemma
Let h be a bounded integrable continuous at 0 function on [0,A], A> 0. Then

lim
ε→0

ε

∫ A

0
t−1+εh(t)dt = lim

ε→0
ε

∫ ε

0
t−1+εh(t)dt = h(0).

limε→0 u(ε)

u(ε) =

∫
IRn

‖x‖−ε−1
ε

(
ε

∫ ‖x‖
0

t−1+εf (t) dt

)
φ̂(x)dx

→−
∫

IRn
log‖x‖φ̂(x) dx .
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Proof of the Main Theorem: Part 6

What is the problem with v?

limε→0 v(ε)

v(ε) =

∫
IRn

‖x‖ε−1
ε

(
ε

∫ ∞
‖x‖

t−1−εf (t) dt

)
φ̂(x)dx

ε

∫ ∞
‖x‖

t−1−εf (t) dt = ε

∫ ‖x‖−1

0
t−1+εf (1/t)dt

and f (1/t) may be discontinuous at zero (example cos(1/t)).

ψ(ε) = ε

∫ ∞
1/ε

t−1−εf (t)dt = ε

∫ ε

0
t−1+εf (1/t)dt,
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End of Proof

Lemma (Vakhania, Tarieladze, Chobanyan)

If µ is a probability measure on IRn and γ is the standard Gaussian measure on
IRn, then for every t > 0

µ{x ∈ IRn : |x |2 > 1/t} ≤ 3
∫

IRn
(1− µ̂(ty))dγ(y),

where | · |2 is the Euclidean norm on IRn.

Contradiction to Hypothesis limε→0ψ(ε) = 1.
Let µ be the measure satisfying µ̂= f (‖ · ‖). Integrating by t we get

ε

∫ ∞
1/ε

t−1−εµ{x ∈ IRn : |x |2 > 1/t}dt = ε

∫ ε

0
t−1+εµ{x ∈ IRn : |x |2 > t}dt

≤
∫

IRn

(
ε

∫ ∞
1/ε

t−1−ε(1− f (t‖y‖))dt

)
dγ(y).

As ε→ 0, the left-hand side converges to µ(IRn \{0}). The right-hand side
converges to 0. We get µ(IRn \{0}) = 0, which means that f is a constant
function - contradiction.
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Proof of Lemma

Need to prove

µ{x ∈ IRn : |x |2 > 1/t} ≤ 3
∫

IRn
(1− µ̂(ty))dγ(y)

Proof
µ,ν-probability measures, 0< u < 1∫

µ̂ dν =

∫
ν̂ dµ

∫
(1− µ̂)dν =

∫
(1− ν̂)dµ≥ (1−u) µ{x : ν̂(x)< u}

Let ν = γ - standard Gaussian measure on IRn, then ν̂(x) = e−|x |
2
2 . Put

u = e−1. ∫
(1− µ̂)dγ ≥ (1− e−1) µ{x : |x |2 > 1}

Now dilate µ and use 1/(1− e−1)< 3.
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