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Definitions

(M, g) is n-dimensional compact manifold, n > 2.
Riemann curvature tensor is defined by
R(X7 Y)Z =VxVyZ—-VyVxZ— V[X,Y]Z; V-
Levi-Civita connection. In local coordinates:
Riii := (R(0i, 9j) 0k, 9))-
Ricci curvature: Ry = g" Rjy. In geodesic normal
coordinates, the volume element takes the form
dVg = [1 - (1/6)/-‘,'ijij + O(‘X|3)]dVEuclidean-
Scalar curvature: R = g* Ry.. Geometric meaning:
“excess volume:” as r — 0,
2

vol(By(xo, r)) = vol(Bgn(r)) |1 — E?(vai);) +0(rY| .
Sectional curvature: X, Y - two linearly independent
vector fields; sectional (=Gauss) curvature of the plane
XY spanned by X, Yy is
Kxy = (R(X, V)X, Y) /XTI Y12 = (X, Y)?].
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e Main Question: What is the probability that a random
metric g satisfies certain curvature bounds? In
particular, what is the probability that scalar curvature
R has constant sign on M?

e Use Laplacian to define random metrics in a conformal
class and to estimate that probability.

e Later, use conformally covariant operators to study
analogous questions for Branson’s Q-curvature.

Questions

e Techniques: conformal field theory; differential
geometry; spectral theory of elliptic operators.

e Theory of excursion sets and extrema of Gaussian
random fields on manifolds (Borell, Tsirelson,
Ibragimov, Sudakov, Adler, Taylor).
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Questions

Choose a reference metric gy; scalar curvature Ry has
constant sign. Our random metrics will be concentrated
close to gp.

Question: do such metrics exist in every conformal
class?

Dimension 2: Uniformization theorem shows that in
every conformal class there exists a unique metric of
constant Gauss curvature.

Dimension n > 3: Yamabe problem (Yamabe,
Trudinger, Aubin, Schoen): in every conformal class
there exist metric(s) of constant scalar curvature Ry (its
sign is uniquely determined). If Ry < 0, that metric is
unique.
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Questions

Q-curvature (Branson, Gover) arises in the study of
conformally covariant differential operators (Paneitz,
Fefferman, Graham, Jenne, Mason, Sparling et al).
Existence of metrics with constant Q-curvature in
conformal classes:

n = 4: Chang-Yang (1995) and Djadli-Malchiodi (2008),
true for generic conformal classes (Paneitz operator
should not have certain numbers as eigenvalues).
arbitrary even n: Ndiaye (2007), holds for generic
conformal classes.
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e (M, go) - compact, orientable. Consider metrics in

conformal class of gy of the form €2 - gy, a > 0; we
choose f to be a random (suitably regular) function on
M.

Ay - Laplacian of gg. Spectrum:

Dodj+Ajgj =0, 0=X <A1 < A2 <

We expand f in random Gaussian Fourier series in ¢;

as follows: f(x) = — " ajc;¢(x), where a; ~ A(0,1)
j=1

are i.i.d standard Gaussians, and ¢; are positive real
numbers. We assume that ¢; = F();), e.g. €Y or
A;°. We shall later require that ¢; = O();®) (‘random
Sobolev metrics”).

e The covariance function

ri(x, y) == E[f(x)f(y)] = Z cej(x)ej(y), for x,y € M.
For x € M, f(x) is mean zero Gaussian of variance

r(x, x) = i G2 (x)2.
j:
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h(x) := Aof(x) = >_ ajciAjpj(x), with covariance
j=1

e function ry(x, y) = 3 cZAZ6;(X)d;(¥)-
j=1
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h(x) := Aof(x) = >_ ajciAjpj(x), with covariance
j=1
Random f . ) 242
metrics unction rh(X,y) = Z Cj )\/ ¢](X)¢/(y)
J=1
e Standard Sobolev regularity properties of random
Fourier series, Weyl's law for Ag and Sobolev
embedding theorem imply

« Proposition 1: If ¢; = O()\; %), s > n/2, then f € C°
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Random
metrics

We shall later neecgoanother random field
h(x) := Aof(x) = >_ ajciAjpj(x), with covariance
j=1

o0

function ry(x,y) = 21 CEAZ5(X) ()
j:

Standard Sobolev regularity properties of random
Fourier series, Weyl's law for Ag and Sobolev
embedding theorem imply

Proposition 1: If ¢; = O(\;°),s > n/2, then f ¢ C°
as;if ;= O()\;°),s > n/2+1,then f € C* as.
Similarly, if ¢; = O(\;®), s > n/2 + 1, then

h=Dof € C%as;if = O(\;°), s > n/2+2, then
h= Aof € C? a.s.

Volume change: Let Vjy = vol(M, gp). If

g1 .= g1(a) = e gy, then dV; = e"/2dV,. One can
show that lim,_o E[vol(M, g1(a))] = V.



e Let gy = e gy. Then the scalar curvature Ry of the new
metric is given by

R = e Ry — a(n— 1)ngf - 21 14)(” —2) \Vof\z]
Rina
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class

Let gy = € go. Then the scalar curvature R; of the new
metric is given by

a(n—1)(n—2)
4

Ry =e ¥ |Ry — a(n—1)Af — \Vof\z]

(1)

Dimension two: (M, gy) - compact, orientable; go has
scalar curvature Ry. The gradient term vanishes in (1)
when n = 2:

Ry = e ¥R, — ah] (2)
Smoothness, dimension n: If
Ro € C%cj= O(\°),s > n/2+1then Ry € C¥as. If
Ro € C?,cj= O(\;°),s > n/2+2then Ry € C* as.
Key observation: If Ry # 0, then
Sgn(Ry) = Sgn(Ro)Sgn(1 — ah/Ry), where 1 — ah/Ry is
a "random wave”.



e We next want to estimate the probability of the event
{Sgn(R1) = Sgn(Ry)}. We restrict ourselves to surfaces
of genus v # 1, since on T2, ,, Ry = 0 by
Gauss-Bonnet theorem, hence R; has to change sign.
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e We next want to estimate the probability of the event
{Sgn(R1) = Sgn(Ry)}. We restrict ourselves to surfaces
of genus v # 1, since on T2, ,, Ry = 0 by
Gauss-Bonnet theorem, hence R; has to change sign.
¢ Recall that the reference metric gy is chosen so that
Vx, Ro(x) # 0. Denote by P4(a) the probability
Ry changes Prob{Sgn(Ry — ah) = Sgn(Ry)}, and by
- P>(a) = 1 — P;(a) the complementary probability
Prob{3x € M : 1 — ah(x)/Ry(x) < 0}. Let
[[1]] := SUp,eu (). Clearly,

Ps(a) = Prob{||h/Ro|| > 1/a} := Prob{||v|| > 1/a},
where v = h/Ry. We have

(X, y)
XY = B Rl



o We shall estimate P,(a) in the limit 2 — 0.
Geometrically, this implies that a.s. g(a) — go, S0
P>(a) — 0. We want to estimate the rate.

Using
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We shall estimate P(a) in the limit a — 0.
Geometrically, this implies that a.s. g(a) — go, S0
P>(a) — 0. We want to estimate the rate.

To prove the first estimate, valid for any surface but not
optimal, we shall use Borell-TIS inequality:

Proposition 2 (Borell, Tsirelson, Ibragimov, Sudakov,
1975-76): Let v be a centered Gaussian process, a.s.
bounded on M, and o2 := sup, E[v(x)?]. Then
E{||v||} < oo, and there exists a constant « depending
only on E{||v||} so that for 7 > E{||v||} we have

Prob{||v|| > 7} < e*7 /(o))

We assume that Ry € C°, s > 2, so by Proposition 1,
v € C%(M) a.s. and Proposition 2 applies. In our
situation, 7 =1/a— ccas a— 0, so

Po(a) < exp[Cz/a— 1/(2a%07).



e To estimate P,(a) from below choose xo € M where the
variance r,(x, x) attains its supremum o2. Clearly,
Prob(||v|| > 1/a) > Prob(v(xp) > 1/a).
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e To estimate P,(a) from below choose xo € M where the

variance r,(x, x) attains its supremum o2. Clearly,
Prob(||v|| > 1/a) > Prob(v(xp) > 1/a).

The random variable v(xp) is Gaussian with mean 0
and variance o,. Accordingly,

Prob(v(xp) > 1/a) = ¥(1/aoy), where we denote the
error function W(u) = 1= [* e #/2t. Combining the
estimates from above and below and using the
standard estimates for ¥, we get



o To estimate P»(a) from below choose xo € M where the
variance r,(x, x) attains its supremum ¢2. Clearly,
Prob(||v|| > 1/a) > Prob(v(xp) > 1/a).
e The random variable v(xp) is Gaussian with mean 0
and variance o,. Accordingly,
Prob(v(xp) > 1/a) = ¥(1/aoy), where we denote the
error function W(u) = 1= [* e #/2t. Combining the
Using estimates from above and below and using the
BoreliTIS standard estimates for ¥, we get

e Theorem 3: Assume that Ry € C, ¢ = O(Aj‘s), s> 2.
Then 3C; > 0, Co > 0 such that

(C1 a)e—1/(2a2cr€) < Pg(a) < ng/a—1/(23205)’

as a — 0. In particular lim,_q @ In Px(a) = where

rn(Xx,X)
O'V = SUPycm Ro(X)2 "

227




e Random analytic metrics. Choose the coefficients
¢ = e NT/2/);. Then a simple calculation shows that

r(x,x) =¢e"(x,x, T),

where e*(x, x, T) is the heat kernel, without the
constant term. Accordingly,

Real-analytic rV(X’X7 T) = e*(X7 X7 T)/(RO(X))Z
metrics



e Random analytic metrics. Choose the coefficients
¢ = e NT/2/);. Then a simple calculation shows that

r(x,x) =¢e"(x,x, T),

where e*(x, x, T) is the heat kernel, without the
constant term. Accordingly,

Real-analytic rV(X’X7 T) = e*(X, X7 T)/(RO(X))Z
metrics

e Small T asymptotics of e*(x, x, T) imply that as
T — 0,

’
(4rT)"2infyem(Ro(x))?

o2 ~




e Theorem 4.
Let go and g4 be two distinct reference metrics on M,
normalized to have equal area, such that Ry and R;
have constant sign, Ry = const and Ry # const. Then
dag > 0, Tp > 0 (that depend on gy, g1) such that for
any 0 < a< ag and forany 0 < t < Ty, we have
Pg(a, T, g1) > Pg(a, T, go)
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Real-analytic
metrics

e Theorem 4.

Let go and g4 be two distinct reference metrics on M,
normalized to have equal area, such that Ry and R;
have constant sign, Ry = const and Ry # const. Then
dag > 0, Tp > 0 (that depend on gy, g1) such that for
any 0 < a< ag and forany 0 < t < Ty, we have

Pg(a, T, g1) > Pg(a, T, go)

Proof: By Gauss-Bonnet, [,, RodVy = [, R1dV;. Since
vol(M, go) = vol(M, g1), and since by assumption

Ry = const and Ry # const, it follows that

bo := minyem(Ro(x))? > minyem(Ri(x))? == by.
Accordingly, as T — 0", we have

0.1 by,
0%(90, T) b

The result follows easily from Theorem 3.
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A1 - the smallest nonzero eigenvalue of —Ay. Let
m = m(\1) be the multiplicity of Ay, and let
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Real-analytic
metrics

Large T asymptotics:
A1 - the smallest nonzero eigenvalue of —Ay. Let
m = m(\1) be the multiplicity of Ay, and let

> $j(x)

F:=su . 3
SUP = Ro(x)? )

One can show that

Theorem 5. Let gp and g; be two metrics (of equal
area) on a compact surface M, such that Ry and R4
have constant sign, and such that A\1(go) > A (91)-
Then there exist ap > 0 and 0 < Ty < o (that depend
on go, 91), such that for all a < ag and T > T, we have
P2(aa T; gO) < P2(aa T; g1)



e To summarize: Small T = metrics with Ry = const
extremal.
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e To summarize: Small T = metrics with Ry = const
extremal.

e Large T = metrics with the largest A1 extremal.

e Genus 0: (S?, round) extremal for both small T and
large T (Hersch). Conjecture: extremal for all T.

e Genus v > 2: Small T = hyperbolic metrics extremal.

e Large T: By a 1974 theorem of S.T. Yau, hyperbolic
Real-analytic metrics never maximize Aq in their conformal class.

metrics

e Genus 2: Metrics maximizing A¢ for surfaces of genus 2
of fixed area are branched coverings of the round S? (J,
Levitin, Nigam, Nadirashvili, Polterovich).

e Question: Which metrics are extremal for intermediate
T?



¢ We next indicate how to obtain a better estimate for
P,(a) for M = S2. Recall that there is a unique
conformal class [go] on S?, where gy is the round
metric, which we normalize to have Ry = 1.
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 The isometry group acts transitively on (S?, go), so the
random fields f(x), h(x), v(x) are isotropic and in
particular have constant variance. That allows us to
apply results of Adler and Taylor and obtain more
precise asymptotic estimates for P»(a).

Using A-T



¢ We next indicate how to obtain a better estimate for
P,(a) for M = S2. Recall that there is a unique
conformal class [go] on S?, where gy is the round
metric, which we normalize to have Ry = 1.

 The isometry group acts transitively on (S?, go), so the
random fields f(x), h(x), v(x) are isotropic and in
particular have constant variance. That allows us to
apply results of Adler and Taylor and obtain more
precise asymptotic estimates for P»(a).

¢ Note that for surfaces of genus v > 2 (where Ry < 0),
the variance r,(x, x) is not constant, so the results of
A-T do not apply.
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Using A-T

We next indicate how to obtain a better estimate for
P,(a) for M = S2. Recall that there is a unique
conformal class [go] on S?, where gy is the round
metric, which we normalize to have Ry = 1.

The isometry group acts transitively on (S?, go), so the
random fields f(x), h(x), v(x) are isotropic and in
particular have constant variance. That allows us to
apply results of Adler and Taylor and obtain more
precise asymptotic estimates for P»(a).

Note that for surfaces of genus v > 2 (where Ry < 0),
the variance r,(x, x) is not constant, so the results of
A-T do not apply.

Also, the assumptions on h are more restrictive: to
apply A-T we need v € C?(S?) a.s; to apply Borell-TIS,
we only need v € C%(S?) a.s.
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e Since Ag on (S?, go) is highly degenerate, we
normalize our random Fourier series differently.

e &m - space of spherical harmonics of degree m,
dimension Ny, = 2m + 1; the corresponding eigenvalue
is Em = m(m+1). Let By = {nmk}r", be an
orthonormal basis of &g,.
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is Em = m(m+1). Let By = {nmk}r", be an
orthonormal basis of &,

o Let f(x \/’82 E . Em r mk77mk( ) Whereamk

are standard Gau33|an i.i.d. and cm > 0 are (suitably
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e Since Ag on (S?, go) is highly degenerate, we

normalize our random Fourier series differently.

Em - space of spherical harmonics of degree m,
dimension Ny, = 2m + 1; the corresponding eigenvalue
is Em = m(m+1). Let By = {nmk}r", be an
orthonormal basis of &,

Let f(x \/’82 E E r mk77mk( ), where am k

are standard Gau33|an i.i.d. and cm > 0 are (suitably

decaying) constants satisfying Z cm=1.
m=1

— h— Vem
It follows that v = h = /|S?| m;j ) R amkNmk(X), It
has unit variance, and covariance is given by
(X, y) = E[h(x)h(y)] = Z cmPm(cos(d(x, y))),
where Py, is the Legendre polynomlal



e In the new normalization, if ¢, = O(M~%),s > 7, then
h(x) € C?(S?) as.
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e Theorem 6: Notation as above, let
Cm=0O(mS),s>7.LetC= V% > m>1 CmEm. Then
there exists « > 1, s.t. in the limit a — 0, P,(a) satisfies
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In the new normalization, if ¢, = O(M~%),s > 7, then
h(x) € C?(S?) a.s.
Applying results of A-T, we can prove

Theorem 6: Notation as above, let
Cm=0O(mS),s>7.LetC= V% > m>1 CmEm. Then
there exists « > 1, s.t. in the limit a — 0, P,(a) satisfies

P(a)—Eex _ 1 +iex 1
28) = 9P| T2z Vor P 22

+o (exp(—ziaz))

Note that we now have an asymptotic expression for
Pg(a).

Using A-T



e We next estimate the probability of the event
{lIR1 — Rol|ls < u},u > 0; we shall do that for
g1 = €¥go, in the limit a — 0. The result below hold for
any compact orientable surface, including T?.
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e We next estimate the probability of the event
{lIR1 — Rol|ls < u},u > 0; we shall do that for
g1 = €¥go, in the limit a — 0. The result below hold for
any compact orientable surface, including T?.

e To state the result, we define a new random field w on
M:
w = Aof + Ryf = h+ Rof.

We denote its covariance function by ry(x, y), and we
= define 02 = sup,cp fw(x, X). Note that on flat T2,
Ry = 0 and therefore w = h.



e We can now state
Theorem 7: Assume that the random metric is chosen
so that the random fields f, h, w are a.s. C°. Leta — 0
and u — 0 so that (u/a) — co. Then

U2

log Prob(||R1 — Rgllee > U) ~ ———5-.
g Prob(||Ry — Ry ) 22202
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so that the random fields f, h, w are a.s. C°. Leta — 0
and u — 0 so that (u/a) — co. Then

U2

log Prob(||R1 — Rgllee > U) ~ ———5-.
g Prob(||Ry — Ry ) 22202

e The proof uses Borell-TIS inequality. The condition
(u/a) — oo ensures that the application of Borell-TIS
gives an asymptotic result for
L> bounds log Prob(||Ri — Rpl|eo > U).



e We can now state
Theorem 7: Assume that the random metric is chosen
so that the random fields f, h, w are a.s. C°. Leta — 0
and u — 0 so that (u/a) — co. Then

U2

log Prob(||R1 — Rgllee > U) ~ ———5-.
g Prob(||Ry — Ry ) 22202

e The proof uses Borell-TIS inequality. The condition
(u/a) — oo ensures that the application of Borell-TIS
gives an asymptotic result for
L> bounds log Prob(||Ri — Rpl|eo > U).

e The condition u — 0 is needed to estimate (from
above) the probability of certain exceptional events
(when [|f||s or || h||« are “too large”).



e We now explain the difficulties that arise when trying to
extend Theorems 3, 4, 5 to dimension n > 2.
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¢ Main difficulty: the gradient term
—a?(n—1)(n—2)|Vof?/4 in the formula (1)

Rie™ = Ro — a(n— 1)of — &(n— 1)(n — 2)| Vol ]2/4

no longer vanishes. Accordingly, the random field Ry e?
is no longer Gaussian, making its study more difficult.
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e We now explain the difficulties that arise when trying to
extend Theorems 3, 4, 5 to dimension n > 2.

¢ Main difficulty: the gradient term
—a?(n—1)(n—2)|Vof?/4 in the formula (1)

Rie™ = Ro — a(n— 1)of — &(n— 1)(n — 2)| Vol ]2/4

no longer vanishes. Accordingly, the random field Ry e?
is no longer Gaussian, making its study more difficult.

e We obtain the following (weaker) generalization of

S—
pIEEEn Theorem 3.



e M" n> 3 - compact. Assume that the scalar curvature
Ry € CO of gy has constant sign. Let g = e gy, and let
¢; satisfy ¢; = O(\; %), s > n/2 + 1, so that Ry € C% as.
Letv = (Aof)/Ro = h/Ry. As usual, we let
02 = sUp,ep Iv(X, x). If Ry > 0, let

i ElVof(X)P]
R
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e M" n> 3 - compact. Assume that the scalar curvature
Ry € CO of gy has constant sign. Let g = e gy, and let
¢; satisfy ¢; = O(\; %), s > n/2 + 1, so that Ry € C% as.
Letv = (Aof)/Ro = h/Ry. As usual, we let
02 = sUp,ep Iv(X, x). If Ry > 0, let

E[[Vof(x)]

o2 = SU
2 xel\el RO(X)
e Theorem 8:
Assume that Vx € M. Ry(x) < 0. Then there exists
a > 0 so that

Paa) =0 (o (5 -~ sr iz )
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e M" n> 3 - compact. Assume that the scalar curvature
Ry € CO of gy has constant sign. Let g = e gy, and let
¢; satisfy ¢; = O(\; %), s > n/2 + 1, so that Ry € C% as.
Letv = (Aof)/Ro = h/Ry. As usual, we let
02 = sUp,ep Iv(X, x). If Ry > 0, let

i ElVof(X)P]
R

e Theorem 8:
Assume that Vx € M. Ry(x) < 0. Then there exists
a > 0 so that

Paa) =0 (o (5 -~ sr iz )

e Assume that Vx € M. Ry(x) > 0. Then there exists
8 > 0 so that

Px(a) = O (exp <§ - ai)) ,



e where
2+ Kk — VK +4k
B= .
oon(n—1)(n—2)

and )
o 4o5(n—1)

~oan(n—-2)




¢ In dimension n > 3, after a conformal change of
variables, Laplacian acquires a gradient term. Problem:
construct (possibly higher order) elliptic operators so
that after a conformal change of variables, the gradient
term vanishes.
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e Example: n = 4; Paneitz operator

Py = A5 +6](2/3)Ryg — 2Ricg]d.
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¢ In dimension n > 3, after a conformal change of
variables, Laplacian acquires a gradient term. Problem:
construct (possibly higher order) elliptic operators so
that after a conformal change of variables, the gradient
term vanishes.

e Example: n = 4; Paneitz operator
Py = A5 +6](2/3)Ryg — 2Ricg]d.

e General theory of such conformally covariant operators:
Fefferman, Graham, Zworski, Jenne, Mason, Sparling,
Chang, Yang et al.

Conformally
covariant
operators



e M - compact, orientable manifold of even dimension
n > 4. Consider conformally covariant elliptic operator
P of order n.
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e M - compact, orientable manifold of even dimension
n > 4. Consider conformally covariant elliptic operator
P of order n.

e P = A"2 4 Jower order terms. P is self-adjoint
(Graham, Zworski, Fefferman). Under a conformal
transformation of metric g = e®“g, the operator P
changes as follows: P = e~™ P. No lower order terms!

Conformally
covariant
operators



e M - compact, orientable manifold of even dimension
n > 4. Consider conformally covariant elliptic operator
P of order n.

e P = A"2 4 Jower order terms. P is self-adjoint
(Graham, Zworski, Fefferman). Under a conformal
transformation of metric g = e®“g, the operator P
changes as follows: P = e~™ P. No lower order terms!

e There exist lower order operators with similar
properties (GJMS operators of Graham- Jenne-
Mason- Sparling). For even n, P has the largest
possible order (dimension critical).
Conformally

covariant
operators



e M has even dimension n. Q-curvature for n = 4 was
defined by Paneitz:

1 .

Q-curvature



e M has even dimension n. Q-curvature for n = 4 was
defined by Paneitz:

1

Qg:—ﬁ

(2gRg — A2+ 3IRicgP?) .

e n > 6: Q-curvature - local scalar invariant associated to
the operator P,. It was introduced by T. Branson;
alternative constructions were provided Fefferman,
Graham, Hirachi using the ambient metric construction.
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e M has even dimension n. Q-curvature for n = 4 was
defined by Paneitz:

1

Qg:—ﬁ

(2gRg — A2+ 3IRicgP?) .

e n > 6: Q-curvature - local scalar invariant associated to
the operator P,. It was introduced by T. Branson;
alternative constructions were provided Fefferman,
Graham, Hirachi using the ambient metric construction.

e Studied by Branson, Gover, Orsted, Fefferman,
Graham, Zworski, Chang, Yang, Djadli, Malchiodi et al

Q-curvature



e Important properties of Q-curvature: it is equal to
1/(2(n— 1))A"2R modulo nonlinear terms in
curvature. Under a conformal transformation of
variables § = €*’g on M", the Q-curvature transforms
as follows: )

Pw+ Q= Qe™. (4)

Integral of the Q-curvature is conformally invariant.
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e Important properties of Q-curvature: it is equal to
1/(2(n— 1))A"2R modulo nonlinear terms in
curvature. Under a conformal transformation of
variables § = €*’g on M", the Q-curvature transforms
as follows: y

Pw+ Q= Qe™. (4)

Integral of the Q-curvature is conformally invariant.

¢ Uniformization theorem (existence of metrics with
constant Q-curvature in conformal classes): n = 4:
Chang and Yang, Djadli and Malchiodi; n > 6: Ndiaye.

Q-curvature



e Proposition 9: (M, g) compact, n > 4 even, Assume
that M satisfies the following “generic” assumptions:
i) n=4:ker P, ={const}, and
[, QdV #8r?k,k =1,2,...
i) n> 6: ker P, = {const}, and
[y QAdV # (n—1)lwpk, k =1,2,..., where
(n—1)lwp =[5, QdV, the integral of Q-curvature for the
round S".
Then there exists a metric gq on M in the conformal
class of g with constant Q-curvature. If
n=4, [, QdV < 8r2, P, > 0 and ker P4 = {const},
then gq is unique.
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e Proposition 9: (M, g) compact, n > 4 even, Assume
that M satisfies the following “generic” assumptions:
i) n=4:ker P, ={const}, and
[, QdV # 872k, k =1,2,...
i) n> 6: ker P, = {const}, and
[y QAdV # (n—1)lwpk, k =1,2,..., where
(n—1)lwp =[5, QdV, the integral of Q-curvature for the
round S".
Then there exists a metric gq on M in the conformal
class of g with constant Q-curvature. If
n=4, [, QdV < 8r2, P, > 0 and ker P4 = {const},
then gq is unique.

e If g has positive R and M # S*, then the assumption
Jy QdV < 8n? is satisfied; if in addition [;, Q > 0, then
the assumptions P4 > 0 and ker P, = {const} are also
satisfied.

Q-curvature



e |t is possible to generalize Theorems 3, 7 for
Q-curvature:




e |t is possible to generalize Theorems 3, 7 for
Q-curvature:
e Strategy:

i) Consider (M, go) such that @y has constant sign;

ii) Consider the conformal perturbation g; = €?@ g, where
ais a positive number; expand f in a series of
eigenfunctions of P,

iii) Use the transformation formula (4) for Q-curvature (no
gradient terms!) to study the new Q-curvature Q; of g;.

Q-curvature



¢ Improve estimates for the scalar curvature in higher
dimensions.
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Conclusion

Improve estimates for the scalar curvature in higher
dimensions.

Consider “rough” metrics that arise in 2D quantum
gravity.

Study the case when a —» 0.

Study Ricci and sectional curvatures in high
dimensions.

Consider the space of all metrics, not just those in a
conformal class.

Study differential geometry of random metrics, e.g.
distance between two points, diameter etc.

Study geodesic and frame flows and their ergodicity;
existence of conjugate points; entropy etc.

A: small eigenvalues, heat kernel asymptotics.
Eigenfunctions: prove for “generic” metrics results that
seem difficult (or wrong!) for all metrics.

Prove quantitative estimates (spectral gaps, level
spacing).



