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Limitations of classical calculus of variations
I Many basic elliptic PDEs can be written in the form

∂Φ(u) = p (1)

where Φ is a convex lower semi-continuous functional on
an infinite dimensional function space H. e.g.„ to solve{

−div(∂ϕ(∇u(x)) + F ′(u(x)) = p(x) on Ω ⊂ Rn,
u = 0 on ∂Ω.

where ϕ (resp., F) is convex on Rn (resp., R), it suffices to
minimize on H1

0(Ω) the convex functional

Φ(u) =

∫
Ω

{
ϕ(∇u(x)) + F(u(x)) − p(x)u(x)

}
dx .

This is a typical Euler-Lagrangian equation.

I But what about the following Dirichlet BVP?{
− div(T(∇u(x)) + F ′(u(x)) + Σn

i=1ai(x) ∂u
∂xi

= p(x) on Ω ,
u = 0 on ∂Ω.

where T is a vector field not derived from a potential?
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What I’m selling

I A variational formulation for many equations which are not
normally Euler-Lagrange.
We replace the usual energy functionals by suitable
selfdual Lagrangians on phase space.

I Describe how this approach is particularly well suited to
deal with

1. Existence and uniqueness
2. Inverse problems
3. Control theory problems
4. Homogenization of such equations.

I Indicate why all this should be developed on the
Wasserstein manifold.
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Basic example of selfdual variational calculus{
−∆u + |u|p−2u + Σn

i=1ai(x) ∂u
∂xi

= f on Ω ,
u = 0 on ∂Ω.

Assuming div(a) = 0 on Ω, then it suffices to minimize, on the
same H1

0(Ω), the new convex functional
I(u) = Ψ(u) + Ψ∗(a · ∇u), where

Ψ(u) =
1
2

∫
Ω

|∇u|2dx +
1
p

∫
Ω

|u|pdx +

∫
Ω

fudx

and ψ∗ is its Fenchel-Legendre transform. Note that

I(u) = Ψ(u) + Ψ∗(a · ∇u) − 〈u,a · ∇u〉 ≥ 0

since by Legendre duality: ψ(x) + ψ∗(p) − 〈x ,p〉 ≥ 0, and

ψ(x) + ψ∗(p) − 〈x ,p〉 = 0 iff p ∈ ∂ψ(x).

and so if I(u) = 0, then

a · ∇u = ∂Ψ(u) = −∆u + |u|p−1u + f



Key concept: Selfdual Lagrangians
1. Selfdual Lagrangians: L : X × X ∗ → R ∪ {+∞} is convex lsc
in both variables and

L ∗(p, x) = L(x ,p) for all (p, x) ∈ X ∗ × X .

In this case, L(x ,p) − 〈x ,p〉 ≥ 0 for every (x ,p) ∈ X × X ∗, and

L(x ,p) − 〈x ,p〉 = 0 if and only if (p, x) ∈ ∂L(x ,p)

2. Selfdual Vector Field: F : X → X ∗ such that there is L
selfdual Lagrangian with F = ∂̄L , i.e.,

F(x) = ∂̄L(x) : = {p ∈ X ∗; L(x ,p) − 〈x ,p〉 = 0}

= {p ∈ X ∗; (p, x) ∈ ∂L(x ,p)}.

3. The Completely Selfdual Equations.

p = ∂̄L(x) or (p, x) = ∂L(x ,p).



Basic examples of selfdual Lagrangians:
1. If ϕ is convex lower semi-continuous on X , then

L(x ,p) = ϕ(x) + ϕ∗(−p)

is a selfdual Lagrangian on X × X ∗ and ∂L(x) = ∂ϕ(x).

2. If Γ : X → X ∗ is skew-symmetric (i.e., Γ∗ = −Γ), then

L(x ,p) = ϕ(x) + ϕ∗(−Γx + p)

is a selfdual Lagrangian on X × X ∗ and ∂L = Γ + ∂ϕ
i.e., superposition of a dissipative and conservative vector
fields) is derived from a selfdual Lagrangian (potential!)

3. Solving p ∈ ∂L(x) = Γ(x) + ∂ϕ(x) amounts to showing that
0 is the infimum of

Ip(x) = L(x ,p) − 〈x ,p〉 = ϕ(x) + ϕ∗(−Γx + p) − 〈x ,p〉.
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Important:
I ∂̄L is NOT necessarily a differential, yet it is derived from a

potential in the sense that a solution can be obtained by
minimizing I(x) = L(x ,p) − 〈x ,p〉 and by showing that
infx∈X I(x) = 0 equal to zero!

Theorem
Let L be a selfdual Lagrangian on a reflexive Banach space
X × X ∗, let p ∈ X ∗ be such that (0,p) ∈ Dom(L). If the functional
Ip(x) = L(x ,p) − 〈x ,p〉 is coercive on X, then there exists u ∈ X
such that

Ip(u) = min
u∈X

Ip(u) = 0 and p ∈ ∂̄L(u).



Unexpected surprise: All maximal monotone operators
are selfdual vector fields and vice-versa

(i) Let L be a proper selfdual Lagrangian L on a reflexive
Banach space X × X ∗, then the vector field x → ∂̄L(x) is
maximal monotone.
(ii) Conversely, if β : D(β) ⊂ X → 2X ∗ is a maximal monotone
operator with a non-empty domain, then there exists a selfdual
Lagrangian Lβ on X × X ∗ such that β = ∂̄Lβ.

Not surprising –in retrospect– but many advantages:
I Maximal monotone operators can be reduced to convex

analysis in phase space.

I Equations involving MM vector fields are variational.
I Analogue of Rockafellar’s theorem for cyclically monotone

operators.
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Solving variationally non-potential equations
Variational resolution of two typical equations involving a
maximal monotone vector field β : X → X ∗.
First associate to β a selfdual Lagrangian L : X × X ∗ → R such
that β = ∂̄Lβ.
(1) Solving p ∈ β(u) amounts to minimizing on X the functional

Ip(u) = Lβ(u,p) − 〈u,p〉.

(2) Solving −div(β(∇u(x))) = p(x) on Ω, u = 0 on ∂Ω,
amounts to minimizing on H1

0(Ω) the functional

Ip(u) := inf
f∈L2(Ω;RN)
−div(f)=p

∫
Ω

[
Lβ
(
∇u(x), f(x)

)
− 〈u(x),p(x)〉RN

]
dx

Because Ip(u) = L(u,p) − 〈u,p〉 where

L(u,p) := inf{
∫

Ω

L
(
x ,∇u(x), f(x)

)
dx; f ∈ L2(Ω;RN),−div(f) = p},

is a selfdual Lagrangian Lagrangian on H1
0(Ω) × H−1(Ω)



Nonlinear inverse problems

Given u0 ∈ H1
0(Ω), find a vector field β in a given class of

maximal monotone maps C such that u0 is a solution of

−div(β(∇u(x)) = p(x), u = 0 on ∂Ω (2)

Least square approach: Minimize∫
Ω

|u(x) − u0(x)|2dx

over all u ∈ H1
0(Ω), β ∈ C, such that −div(β(∇u)) = p on Ω.

The constraint set is not easily tractable.



Penalized least square
Let L = {L selfdual on Rn

× Rn; ∂̄L = β for some β ∈ C}.
For each ε > 0, minimize the functional

Pε(L ,u, f) =

∫
Ω

|u(x) − u0(x)|2dx

+
1
ε

∫
Ω

{
L
(
∇u, f

)
− p(x)u(x)

}
dx

on the class T :=
{
(L ,u, f) ∈ L × H1

0(Ω) × L2(Ω); div f = p
}

I Pε is convex and lsc in all variables.
I If L is a convex “compact" class of selfdual Lagrangians,

there exists a minimizer (Lε,uε, fε) ∈ T
I If ε is small enough, the non-negative penalization has to

be small at (Lε,uε, fε), and a weak cluster point (L0,u0, f0)
is a solution with β0 := ∂̄L0 being the optimal maximal
monotone operator, since the penalty term has to be zero.



Optimal control: Cheapest temperature source control
for a desired temperature profile

Consider the heat equation

ut(x , t) −∆u(x , t) = f(x , t) in Ω × [0,1]
u(x , t) = 0 on ∂Ω × [0,1]
u(x ,0) = g(x) in Ω

(3)

Let u0(x , t), with u0(x ,0) = g(x) be a desired temperature
profile to be achieved over Ω along [0,1].
Need to control the temperature by specifying the heat source f
over the domain Ω, assume the cost of maintaining such
temperature is given by C(f) =

∫ 1
0 ‖f‖

2
2 dt .

We want to minimize the cost of f and achieve the closest
possible behaviour to the profile u0, i.e., we want to minimize∫ 1

0

∫
Ω

(|u(x , t) − u0(x , t)|2 + |f(x , t)|2)dx dt

among all possible solutions u of (3) for some f .



Selfdual variational formulation of heat equation

For a given f , Equation (3) is solved by minimizing

Jf (u) =
1
2

∫ 1

0

∫
Ω

(
|∇u(t , x)|2 +

∣∣∣∣∇(−∆)−1
(
f(x) − u̇(t , x)

)∣∣∣∣2 − 2f(x)u(t , x)
)

dx dt

+

∫
Ω

|g(x)|2 dx − 2
∫

Ω

u(0, x)g(x) dx +
1
2

∫
Ω

(|u(0, x)|2 + |u(1, x)|2) dx .

over A2[[0,T ]; H1
0(Ω)].

The control problem amounts to minimize for each ε > 0,∫ 1

0

∫
Ω

(|u(x , t) − u0(x , t)|2 + |f(x , t)|2)dx dt +
1
ε

Jf (u)

over A2[[0,T ]; H1
0(Ω)] × L2([0,T ] × Ω), to find (uε, fε), then let ε

go to zero.



A basic homogenization problem

We consider the conductivity equation with a given heat source
u∗n in a heterogenous medium defined by the
non-homogeneous conductivity vector field β.

τn(x) ∈ β( x
εn
,∇un(x)) x ∈ Ω,

−div(τn(x)) = u∗n(x) x ∈ Ω,
un(x) = 0 x ∈ ∂Ω,

(4)

where Ω is a bounded domain of RN, and β : Ω ×RN
→ RN is a

measurable map on Ω ×RN such that:
I β(x , ·) is maximal monotone on RN for almost all x ∈ Ω

I β(., ξ) is Q-periodic for an open non-degenerate
parallelogram Q in Rn.

This problem has been investigated in recent years by many
authors: Francfort, Murat, Tartar, Damlamian, Meunier, Van
Shaftingen, Braides, Chiado Piat, Dal Maso, Defranscheshi.



Representation of a family of maximal monotone fields

{
τ(x) ∈ β(x ,∇u(x)) a.e. x ∈ Ω,

−div(τ(x)) = p(x) a.e. x ∈ Ω.

The class MΩ,p(RN) introduced by Chiado Piat, Dal Maso,
Defranscheshi consists of all possibly multi-valued functions
β : Ω ×RN

→ RN with closed values, which satisfy:
(i) β is measurable with respect to L(Ω) × B(RN) and B(RN)
where L(Ω) is is the σ-field of all measurable subsets of Ω and
B(RN) is the σ-field of all Borel subsets of RN .
(ii) For a.e. x ∈ Ω, the map β(x , .) : RN

→ RN is maximal
monotone.
(iii) There exist non-negative constants m1,m2, c1 and c2 such
that for every ξ ∈ RN and η ∈ β(ξ),

〈ξ, η〉RN ≥ max
{

c1

p
|ξ|p −m1,

c2

q
|η|q −m2

}
, (5)



Selfdual Lagrangians associated to maximal
monotone operators

(1) If β ∈ MΩ,p(RN) for p > 1, then there exists a
state-dependent selfdual Lagrangian L : Ω ×RN

×RN
→ R

such that β(x , .) = ∂̄L(x , .) for a.e. x ∈ Ω, and for all a,b ∈ RN,

(∗) C0(|a |p + |b |q − n0(x)) ≤ L(x ,a,b) ≤ C1(|a |p + |b |q + n1(x))

where C0 and C1 are two positive constants and n0,n1 ∈ L1(Ω).

(2) Conversely, if L : Ω ×RN
×RN

→ R is a state-dependent
selfdual Lagrangian satisfying (**), then ∂̄L(x , .) ∈ MΩ,p(RN).



Lifting Self-dual Lagrangians from Rn
× Rn to

W1,p
0 (Ω) ×W−1,q(Ω)

Suppose L is a state-dependent selfdual Lagrangian on
Ω ×RN

×RN such that for all a,b ∈ RN,

(∗∗) C0(|a |p + |b |q −n0(x)) ≤ L(x ,a,b) ≤ C1(|a |p + |b |q +n1(x))

where C0,C1 > 0 and n0,n1 ∈ L1(Ω). Then the Lagrangian
defined on W1,p

0 (Ω) ×W−1,q(Ω) by

F(u,u∗) := inf{
∫

Ω

L
(
x ,∇u(x), f(x)

)
dx; f ∈ Lq(Ω;RN),−div(f) = u∗},

is selfdual W1,p
0 (Ω) ×W−1,q(Ω).



Variational resolution of the main equation

Let β ∈ MΩ,p(RN) for some p > 1, then for every u∗ ∈W−1,q(Ω)

with 1
p + 1

q = 1, there exist ū ∈W1,p
0 (Ω) and f̄(x) ∈ Lq(Ω;RN)

such that {
f̄ ∈ β(x ,∇ū(x)) a.e. x ∈ Ω

−div(f̄) = u∗.
(6)

It is obtained by minimizing the functional

I(u) := inf
f∈Lq(Ω;RN)
−div(f)=u∗

∫
Ω

[
L
(
x ,∇u(x), f(x)

)
− 〈u(x),u∗(x)〉RN

]
dx

on W1,p(Ω), where L is a state-dependent selfdual Lagrangian
on Ω ×RN

×RN associated to β in such a way that
∂̄L(x , ·) = β(x , ·) for a.e x ∈ Ω.



Variational formula for the homogenized field
Given a family β in MΩ,p(RN) that is Q-periodic for an open
non-degenerate parallelogram Q in Rn, its homogenization
βhom can now be given by a variational formula in terms of a
homogenized selfdual Lagrangian Lhom.
Theorem: If β ∈ MΩ,p(RN) is Q-periodic and L is a state
dependent selfdual Lagrangian on Ω ×RN

×RN such that
β(x , .) = ∂̄L(x , .). Then βhom is given by βhom = ∂̄Lhom where
Lhom is the selfdual Lagrangian

Lhom(ξ, η) = min
ϕ∈W1,p

#
(Q)

g∈Lq
#

(Q;RN)

1
|Q |

∫
Q

L
(
x , ξ+ ∇ϕ(x), η+ g(x)

)
dx .

W1,p
#

(Q) = {u ∈W1,p(Q);

∫
Q

u(x) dx = 0 and u is Q−periodic}.

Lq
#

(Q ;RN) :=
{
g ∈ Lq(Q ;RN);

∫
Q
〈g(y),∇ϕ(y)〉dy = 0,∀ϕ ∈W1,p

#
(Q)
}
.



Mosco and Γ-convergence of selfdual functionals
Let Fn and F be functionals on a reflexive Banach space X . The
sequence {Fn} is said to Γ-converge (resp., Mosco-converge) to
F , if the following two conditions are satisfied:

1. For any sequence {un} ⊂ X such that un → u strongly
(resp., un ⇀ u weakly) in X to some u ∈ X , one has

F(u) ≤ lim inf
n→∞

Fn(un).

2. For any u ∈ X , there exists a sequence {un} ⊂ X such that
un → u strongly in X and

lim
n→∞

Fn(un) = F(u).

The following is a fundamental property of Mosco-convergence.
Let Fn,F be convex lower semi-continuous functionals, then
{Fn} Mosco-converge to F if and only their Fenchel-Legendre
duals {F ∗n} Mosco-converge to F ∗.



This implies the agreable fact that Mosco and Γ-convergence
are actually equivalent for a sequence of selfdual Lagrangians
{Ln}, as long as the limiting Lagrangian L is itself selfdual.

Theorem
Let {Ln} be a family of selfdual Lagrangians on X × X ∗, where X
is a reflexive Banach space, and let L be a Lagrangian on
X × X ∗. The following statements are then equivalent:

1. {Ln} Mosco-converges to L.
2. L is selfdual and {Ln} Γ-converges to F.
3. L is selfdual and for any (u,u∗) ∈ X × X ∗, there exists a

sequence (un,u∗n) converging strongly to (u,u∗) in X × X ∗

such that
lim sup

n
Ln(un,u∗n) ≤ L(u,u∗).



Graph Convergence

Considering a sequence of sets {An} in X , the corresponding
sequential lower and upper limit sets are respectively given by

LiX
(
An
)
= {u ∈ X : ∃un → u, un ∈ An},

LsX

(
An
)
= {u ∈ X : ∃k (n)→∞, ∃un(k) → u, un(k) ∈ Ak }.

In other words, Limit vs. cluster points.
Clearly, LiX (An) ⊆ LsX (An).
A sequence of subsets {An} of X is said to converge to A ⊂ X ,
in the sense of Kuratowski-Painlevé, if

LsX (An) = A = LiX (An).

This definition, when X is replaced by the phase space X × X ∗

and when the subsets An are graphs of maps from X to X ∗, is
also refered to as graph-convergence.



Continuity of L → ∂̄L for Γ to Graph convergence

One of the most attractive properties of Mosco convergence is
the fact that for convex functions it implies the graph
convergence (or Kuratowski-Painlevé convergence) of their
corresponding subdifferentials.
A similar result holds for self-dual Lagrangian (and
Γ-convergence).

Theorem
Let X be a reflexive Banach space and suppose {Ln} is a family
of selfdual Lagrangians on X × X ∗.
If L : X × X ∗ → R ∪ {+∞} is a selfdual Lagrangian that is a
Γ-limit of {Ln}, then the graph of ∂̄Ln converge to the graph of ∂̄L
in the sense of Kuratowski-Painlevé.



Variational approach to gradient flows (Brezis-Ekeland,1976){
−v̇(t) ∈ ∂ϕ(v(t)) a.e. on [0,T ],

v(0) = v0.

ϕ convex l.s.c on Hilbert space H. (e.g., ϕ(u) = 1
2

∫
Ω
|∇u(x)|2dx)

Minimize

I(u) =

∫ T

0
[ϕ(u(t)) + ϕ∗(−u̇(t))] dt+

1
2
|u(0)|2−2〈u(0), v0〉+|v0|

2+
1
2
|u(T)|2

I(u) =

∫ T

0
L(t ,u(t), u̇(t))dt + `(u(0),u(T)) Selfdual form!

Using that
∫ T

0 〈u(t), u̇(t)〉dt = 1
2 |u(T)|2 − 1

2 |u(0)|2,

I(u) =

∫ T

0

[
ϕ(u(t)) + ϕ∗(−u̇(t)) + 〈u(t), u̇(t)〉

]
dt + |u(0) − v0|

2
≥ 0,

The important factor is that with selfduality we can prove
inf I(u) = I(ū) = 0, then we are done by Legendre duality.



Analogue on Wasserstein space!!!!!????


