Homogenization, inverse problems and optimal control via selfdual variational calculus

N. Ghoussoub University of British Columbia, Vancouver, Canada

Fields Institute

November 2010

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Limitations of classical calculus of variations

Many basic elliptic PDEs can be written in the form

$$\partial \Phi(u) = p \tag{1}$$

(日) (日) (日) (日) (日) (日) (日)

where  $\Phi$  is a convex lower semi-continuous functional on an infinite dimensional function space *H*. e.g., to solve

where  $\varphi$  (resp., *F*) is convex on **R**<sup>*n*</sup> (resp., **R**), it suffices to minimize on  $H_0^1(\Omega)$  the convex functional

$$\Phi(u) = \int_{\Omega} \left\{ \varphi(\nabla u(x)) + F(u(x)) - p(x)u(x) \right\} dx.$$

This is a typical Euler-Lagrangian equation.

### Limitations of classical calculus of variations

Many basic elliptic PDEs can be written in the form

$$\partial \Phi(u) = p \tag{1}$$

where  $\Phi$  is a convex lower semi-continuous functional on an infinite dimensional function space *H*. e.g., to solve

$$\begin{aligned} \int -\operatorname{div}(\partial \varphi(\nabla u(x)) + F'(u(x)) &= p(x) \text{ on } \Omega \subset \mathbb{R}^n, \\ u &= 0 \text{ on } \partial \Omega. \end{aligned}$$

where  $\varphi$  (resp., *F*) is convex on **R**<sup>*n*</sup> (resp., **R**), it suffices to minimize on  $H_0^1(\Omega)$  the convex functional

$$\Phi(u) = \int_{\Omega} \left\{ \varphi(\nabla u(x)) + F(u(x)) - p(x)u(x) \right\} dx.$$

This is a typical Euler-Lagrangian equation.

But what about the following Dirichlet BVP?

$$\begin{cases} -\operatorname{div}(T(\nabla u(x)) + F'(u(x)) + \sum_{i=1}^{n} a_i(x) \frac{\partial u}{\partial x_i} = p(x) \text{ on } \Omega, \\ u = 0 \text{ on } \partial \Omega. \end{cases}$$

where T is a vector field not derived from a potential?

### What I'm selling

 A variational formulation for many equations which are not normally Euler-Lagrange.
 We replace the usual energy functionals by suitable selfdual Lagrangians on phase space.

(ロ) (同) (三) (三) (三) (○) (○)

## What I'm selling

- A variational formulation for many equations which are not normally Euler-Lagrange.
   We replace the usual energy functionals by suitable selfdual Lagrangians on phase space.
- Describe how this approach is particularly well suited to deal with

(日) (日) (日) (日) (日) (日) (日)

- 1. Existence and uniqueness
- 2. Inverse problems
- 3. Control theory problems
- 4. Homogenization of such equations.

## What I'm selling

- A variational formulation for many equations which are not normally Euler-Lagrange.
   We replace the usual energy functionals by suitable selfdual Lagrangians on phase space.
- Describe how this approach is particularly well suited to deal with

(日) (日) (日) (日) (日) (日) (日)

- 1. Existence and uniqueness
- 2. Inverse problems
- 3. Control theory problems
- 4. Homogenization of such equations.
- Indicate why all this should be developed on the Wasserstein manifold.

#### Basic example of selfdual variational calculus

$$\begin{cases} -\Delta u + |u|^{p-2}u + \sum_{i=1}^{n} a_i(x) \frac{\partial u}{\partial x_i} = f \text{ on } \Omega, \\ u = 0 \text{ on } \partial \Omega. \end{cases}$$

Assuming div(a) = 0 on  $\Omega$ , then it suffices to minimize, on the same  $H_0^1(\Omega)$ , the new convex functional  $I(u) = \Psi(u) + \Psi^*(\mathbf{a} \cdot \nabla u)$ , where  $\Psi(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{p} \int_{\Omega} |u|^p dx + \int_{\Omega} fu dx$ and  $\psi^*$  is its Fenchel-Legendre transform. Note that  $I(u) = \Psi(u) + \Psi^*(\mathbf{a} \cdot \nabla u) - \langle u, \mathbf{a} \cdot \nabla u \rangle \ge 0$ 

since by Legendre duality:  $\psi(x) + \psi^*(p) - \langle x, p \rangle \ge 0$ , and

 $\psi(x) + \psi^*(p) - \langle x, p \rangle = 0 \quad \text{iff} \quad p \in \partial \psi(x).$ 

and so if I(u) = 0, then

$$\mathbf{a} \cdot \nabla u = \partial \Psi(u) = -\Delta u + |u|^{p-1} u + f$$

#### Key concept: Selfdual Lagrangians

**1. Selfdual Lagrangians:**  $L : X \times X^* \to \mathbb{R} \cup \{+\infty\}$  is convex lsc in both variables and

 $L^*(p, x) = L(x, p)$  for all  $(p, x) \in X^* \times X$ .

In this case,  $L(x,p) - \langle x,p \rangle \ge 0$  for every  $(x,p) \in X \times X^*$ , and

 $L(x,p) - \langle x,p \rangle = 0$  if and only if  $(p,x) \in \partial L(x,p)$ 

**2. Selfdual Vector Field:**  $F : X \to X^*$  such that there is *L* selfdual Lagrangian with  $F = \overline{\partial}L$ , i.e.,

$$F(x) = \overline{\partial}L(x) := \{p \in X^*; L(x,p) - \langle x,p \rangle = 0\}$$
$$= \{p \in X^*; (p,x) \in \partial L(x,p)\}.$$

3. The Completely Selfdual Equations.

$$p = \overline{\partial}L(x)$$
 or  $(p, x) = \partial L(x, p)$ .

#### Basic examples of selfdual Lagrangians:

1. If  $\varphi$  is **convex lower semi-continuous** on *X*, then

$$L(x,p) = \varphi(x) + \varphi^*(-p)$$

is a selfdual Lagrangian on  $X \times X^*$  and  $\overline{\partial}L(x) = \partial \varphi(x)$ .



#### Basic examples of selfdual Lagrangians:

1. If  $\varphi$  is **convex lower semi-continuous** on *X*, then

$$L(x,p) = \varphi(x) + \varphi^*(-p)$$

is a selfdual Lagrangian on  $X \times X^*$  and  $\overline{\partial L}(x) = \partial \varphi(x)$ . 2. If  $\Gamma : X \to X^*$  is **skew-symmetric** (i.e.,  $\Gamma^* = -\Gamma$ ), then

$$L(x,p) = \varphi(x) + \varphi^*(-\Gamma x + p)$$

is a selfdual Lagrangian on  $X \times X^*$  and  $\partial L = \Gamma + \partial \varphi$ i.e., superposition of a dissipative and conservative vector fields) is derived from a selfdual Lagrangian (potential!)

#### Basic examples of selfdual Lagrangians:

1. If  $\varphi$  is **convex lower semi-continuous** on *X*, then

$$L(x,p) = \varphi(x) + \varphi^*(-p)$$

is a selfdual Lagrangian on  $X \times X^*$  and  $\overline{\partial L}(x) = \partial \varphi(x)$ . 2. If  $\Gamma : X \to X^*$  is **skew-symmetric** (i.e.,  $\Gamma^* = -\Gamma$ ), then

$$L(x,p) = \varphi(x) + \varphi^*(-\Gamma x + p)$$

is a selfdual Lagrangian on  $X \times X^*$  and  $\partial L = \Gamma + \partial \varphi$ i.e., superposition of a dissipative and conservative vector fields) is derived from a selfdual Lagrangian (potential!)

3. Solving  $p \in \overline{\partial}L(x) = \Gamma(x) + \partial\varphi(x)$  amounts to showing that 0 is the infimum of

$$I_{p}(x) = L(x,p) - \langle x,p \rangle = \varphi(x) + \varphi^{*}(-\Gamma x + p) - \langle x,p \rangle.$$

・ロト・日本・日本・日本・日本

#### Important:

►  $\overline{\partial}L$  is NOT necessarily a differential, yet it is derived from a potential in the sense that a solution can be obtained by minimizing  $I(x) = L(x,p) - \langle x,p \rangle$  and by showing that  $\inf_{x \in X} I(x) = 0$  equal to zero!

#### Theorem

Let L be a selfdual Lagrangian on a reflexive Banach space  $X \times X^*$ , let  $p \in X^*$  be such that  $(0, p) \in Dom(L)$ . If the functional  $I_p(x) = L(x, p) - \langle x, p \rangle$  is coercive on X, then there exists  $u \in X$  such that

$$I_p(u) = \min_{u \in X} I_p(u) = 0$$
 and  $p \in \overline{\partial}L(u)$ .

## Unexpected surprise: All maximal monotone operators are selfdual vector fields and vice-versa

(i) Let *L* be a proper selfdual Lagrangian *L* on a reflexive Banach space  $X \times X^*$ , then the vector field  $x \to \overline{\partial}L(x)$  is maximal monotone.

(ii) Conversely, if  $\beta : D(\beta) \subset X \to 2^{X^*}$  is a maximal monotone operator with a non-empty domain, then there exists a selfdual Lagrangian  $L_{\beta}$  on  $X \times X^*$  such that  $\beta = \overline{\partial}L_{\beta}$ .

#### Not surprising -in retrospect- but many advantages:

 Maximal monotone operators can be reduced to convex analysis in phase space.

## Unexpected surprise: All maximal monotone operators are selfdual vector fields and vice-versa

(i) Let *L* be a proper selfdual Lagrangian *L* on a reflexive Banach space  $X \times X^*$ , then the vector field  $x \to \overline{\partial}L(x)$  is maximal monotone.

(ii) Conversely, if  $\beta : D(\beta) \subset X \to 2^{X^*}$  is a maximal monotone operator with a non-empty domain, then there exists a selfdual Lagrangian  $L_{\beta}$  on  $X \times X^*$  such that  $\beta = \overline{\partial}L_{\beta}$ .

#### Not surprising -in retrospect- but many advantages:

 Maximal monotone operators can be reduced to convex analysis in phase space.

Equations involving MM vector fields are variational.

## Unexpected surprise: All maximal monotone operators are selfdual vector fields and vice-versa

(i) Let *L* be a proper selfdual Lagrangian *L* on a reflexive Banach space  $X \times X^*$ , then the vector field  $x \to \overline{\partial}L(x)$  is maximal monotone.

(ii) Conversely, if  $\beta : D(\beta) \subset X \to 2^{X^*}$  is a maximal monotone operator with a non-empty domain, then there exists a selfdual Lagrangian  $L_{\beta}$  on  $X \times X^*$  such that  $\beta = \overline{\partial} L_{\beta}$ .

#### Not surprising -in retrospect- but many advantages:

- Maximal monotone operators can be reduced to convex analysis in phase space.
- Equations involving MM vector fields are variational.
- Analogue of Rockafellar's theorem for cyclically monotone operators.

### Solving variationally non-potential equations

Variational resolution of two typical equations involving a maximal monotone vector field  $\beta : X \to X^*$ .

First associate to  $\beta$  a selfdual Lagrangian  $L : X \times X^* \to \mathbf{R}$  such that  $\beta = \overline{\partial} L_{\beta}$ .

(1) Solving  $p \in \beta(u)$  amounts to minimizing on X the functional

$$I_p(u) = L_\beta(u,p) - \langle u,p \rangle.$$

(2) Solving  $-\operatorname{div}(\beta(\nabla u(x))) = p(x)$  on  $\Omega$ , u = 0 on  $\partial\Omega$ , amounts to minimizing on  $H_0^1(\Omega)$  the functional

$$I_{p}(u) := \inf_{\substack{f \in L^{2}(\Omega; \mathbb{R}^{N}) \\ -\operatorname{div}(f) = p}} \int_{\Omega} \left[ L_{\beta} (\nabla u(x), f(x)) - \langle u(x), p(x) \rangle_{\mathbb{R}^{N}} \right] dx$$

Because  $I_p(u) = \mathcal{L}(u, p) - \langle u, p \rangle$  where

 $\mathcal{L}(u,p) := \inf\{\int_{\Omega} L(x, \nabla u(x), f(x)) dx; f \in L^{2}(\Omega; \mathbb{R}^{N}), -\operatorname{div}(f) = p\},\$ 

is a selfdual Lagrangian Lagrangian on  $H_0^1(\Omega) \times H^{-1}(\Omega)$ 

#### Nonlinear inverse problems

Given  $u_0 \in H_0^1(\Omega)$ , find a vector field  $\beta$  in a given class of maximal monotone maps *C* such that  $u_0$  is a solution of

$$-\operatorname{div}(\beta(\nabla u(x)) = p(x), \quad u = 0 \text{ on } \partial\Omega$$
(2)

(日) (日) (日) (日) (日) (日) (日)

Least square approach: Minimize

$$\int_{\Omega} |u(x) - u_0(x)|^2 dx$$

over all  $u \in H_0^1(\Omega)$ ,  $\beta \in C$ , such that  $-\operatorname{div}(\beta(\nabla u)) = p$  on  $\Omega$ . The constraint set is not easily tractable.

#### Penalized least square

Let  $\mathcal{L} = \{L \text{ selfdual on } \mathbb{R}^n \times \mathbb{R}^n; \overline{\partial}L = \beta \text{ for some } \beta \in C\}.$ For each  $\epsilon > 0$ , minimize the functional

$$\mathcal{P}_{\epsilon}(L, u, f) = \int_{\Omega} |u(x) - u_0(x)|^2 dx + \frac{1}{\epsilon} \int_{\Omega} \left\{ L \left( \nabla u, f \right) - p(x) u(x) \right\} dx$$

on the class  $\mathcal{T} := \{(L, u, f) \in \mathcal{L} \times H_0^1(\Omega) \times L^2(\Omega); \operatorname{div} f = p\}$ 

- $\mathcal{P}_{\epsilon}$  is convex and lsc in all variables.
- If *L* is a convex "compact" class of selfdual Lagrangians, there exists a minimizer (*L<sub>ε</sub>*, *u<sub>ε</sub>*, *f<sub>ε</sub>*) ∈ *T*
- If ε is small enough, the non-negative penalization has to be small at (L<sub>ε</sub>, u<sub>ε</sub>, f<sub>ε</sub>), and a weak cluster point (L<sub>0</sub>, u<sub>0</sub>, f<sub>0</sub>) is a solution with β<sub>0</sub> := ∂L<sub>0</sub> being the optimal maximal monotone operator, since the penalty term has to be zero.

# Optimal control: Cheapest temperature source control for a desired temperature profile

Consider the heat equation

$$u_t(x,t) - \Delta u(x,t) = f(x,t) \quad \text{in } \Omega \times [0,1]$$
  

$$u(x,t) = 0 \qquad \text{on } \partial \Omega \times [0,1]$$
  

$$u(x,0) = g(x) \qquad \text{in } \Omega$$
(3)

Let  $u_0(x, t)$ , with  $u_0(x, 0) = g(x)$  be a desired temperature profile to be achieved over  $\Omega$  along [0, 1].

Need to control the temperature by specifying the heat source f over the domain  $\Omega$ , assume the cost of maintaining such

temperature is given by  $C(f) = \int_0^1 ||f||_2^2 dt$ .

We want to minimize the cost of  $\tilde{t}$  and achieve the closest possible behaviour to the profile  $u_0$ , i.e., we want to minimize

$$\int_0^1 \int_{\Omega} (|u(x,t) - u_0(x,t)|^2 + |f(x,t)|^2) dx \, dt$$

among all possible solutions u of (3) for some  $f_{a,a}$ ,  $f_{a,b}$ ,  $f_{a,b$ 

#### Selfdual variational formulation of heat equation

For a given f, Equation (3) is solved by minimizing

$$\begin{aligned} J_f(u) &= \frac{1}{2} \int_0^1 \int_\Omega \left( |\nabla u(t,x)|^2 + \left| \nabla (-\Delta)^{-1} (f(x) - \dot{u}(t,x)) \right|^2 - 2f(x)u(t,x) \right) \mathrm{d}x \, \mathrm{d}t \\ &+ \int_\Omega |g(x)|^2 \, \mathrm{d}x - 2 \int_\Omega u(0,x)g(x) \, \mathrm{d}x + \frac{1}{2} \int_\Omega (|u(0,x)|^2 + |u(1,x)|^2) \, \mathrm{d}x. \end{aligned}$$

over  $A^2[[0, T]; H_0^1(\Omega)]$ . The control problem amounts to minimize for each  $\epsilon > 0$ ,

$$\int_0^1 \int_{\Omega} (|u(x,t) - u_0(x,t)|^2 + |f(x,t)|^2) dx \, dt + \frac{1}{\epsilon} J_f(u)$$

over  $A^2[[0, T]; H_0^1(\Omega)] \times L^2([0, T] \times \Omega)$ , to find  $(u_{\epsilon}, f_{\epsilon})$ , then let  $\epsilon$  go to zero.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

### A basic homogenization problem

We consider the conductivity equation with a given heat source  $u_n^*$  in a heterogenous medium defined by the non-homogeneous conductivity vector field  $\beta$ .

$$\begin{cases} \tau_n(x) \in \beta(\frac{x}{\epsilon_n}, \nabla u_n(x)) & x \in \Omega, \\ -\operatorname{div}(\tau_n(x)) &= u_n^*(x) & x \in \Omega, \\ u_n(x) &= 0 & x \in \partial\Omega, \end{cases}$$
(4)

where  $\Omega$  is a bounded domain of  $\mathbb{R}^N$ , and  $\beta : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$  is a measurable map on  $\Omega \times \mathbb{R}^N$  such that:

- $\beta(x, \cdot)$  is maximal monotone on  $\mathbb{R}^N$  for almost all  $x \in \Omega$
- β(., ξ) is Q-periodic for an open non-degenerate parallelogram Q in ℝ<sup>n</sup>.

This problem has been investigated in recent years by many authors: Francfort, Murat, Tartar, Damlamian, Meunier, Van Shaftingen, Braides, Chiado Piat, Dal Maso, Defranscheshi.

### Representation of a family of maximal monotone fields

 $\begin{cases} \tau(x) \in \beta(x, \nabla u(x)) & a.e. \ x \in \Omega, \\ -\operatorname{div}(\tau(x)) = p(x) & a.e. \ x \in \Omega. \end{cases}$ 

The class  $M_{\Omega,p}(\mathbb{R}^N)$  introduced by Chiado Piat, Dal Maso, Defranscheshi consists of all possibly multi-valued functions  $\beta : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$  with closed values, which satisfy: (i)  $\beta$  is measurable with respect to  $\mathcal{L}(\Omega) \times \mathcal{B}(\mathbb{R}^N)$  and  $\mathcal{B}(\mathbb{R}^N)$ where  $\mathcal{L}(\Omega)$  is is the  $\sigma$ -field of all measurable subsets of  $\Omega$  and  $\mathcal{B}(\mathbb{R}^N)$  is the  $\sigma$ -field of all Borel subsets of  $\mathbb{R}^N$ . (ii) For a.e.  $x \in \Omega$ , the map  $\beta(x, .) : \mathbb{R}^N \to \mathbb{R}^N$  is maximal monotone.

(iii) There exist non-negative constants  $m_1, m_2, c_1$  and  $c_2$  such that for every  $\xi \in \mathbb{R}^N$  and  $\eta \in \beta(\xi)$ ,

$$\langle \xi, \eta \rangle_{\mathbb{R}^N} \ge \max\left\{\frac{c_1}{p}|\xi|^p - m_1, \frac{c_2}{q}|\eta|^q - m_2\right\},\tag{5}$$

## Selfdual Lagrangians associated to maximal monotone operators

(1) If  $\beta \in M_{\Omega,p}(\mathbb{R}^N)$  for p > 1, then there exists a state-dependent selfdual Lagrangian  $L : \Omega \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$  such that  $\beta(x, .) = \overline{\partial}L(x, .)$  for a.e.  $x \in \Omega$ , and for all  $a, b \in \mathbb{R}^N$ ,

(\*)  $C_0(|a|^p + |b|^q - n_0(x)) \le L(x, a, b) \le C_1(|a|^p + |b|^q + n_1(x))$ 

where  $C_0$  and  $C_1$  are two positive constants and  $n_0$ ,  $n_1 \in L^1(\Omega)$ .

(2) Conversely, if  $L : \Omega \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$  is a state-dependent selfdual Lagrangian satisfying (\*\*), then  $\overline{\partial}L(x, .) \in M_{\Omega,p}(\mathbb{R}^N)$ .

Lifting Self-dual Lagrangians from  $\mathbf{R}^n \times \mathbf{R}^n$  to  $W_0^{1,p}(\Omega) \times W^{-1,q}(\Omega)$ 

Suppose *L* is a state-dependent selfdual Lagrangian on  $\Omega \times \mathbb{R}^N \times \mathbb{R}^N$  such that for all  $a, b \in \mathbb{R}^N$ ,

(\*\*) 
$$C_0(|a|^p + |b|^q - n_0(x)) \le L(x, a, b) \le C_1(|a|^p + |b|^q + n_1(x))$$

where  $C_0, C_1 > 0$  and  $n_0, n_1 \in L^1(\Omega)$ . Then the Lagrangian defined on  $W_0^{1,p}(\Omega) \times W^{-1,q}(\Omega)$  by

 $F(u, u^*) := \inf\{\int_{\Omega} L(x, \nabla u(x), f(x)) dx; f \in L^q(\Omega; \mathbb{R}^N), -\operatorname{div}(f) = u^*\},\$ 

・ロト・日本・日本・日本・日本

is selfdual  $W_0^{1,\rho}(\Omega) \times W^{-1,q}(\Omega)$ .

#### Variational resolution of the main equation

Let  $\beta \in M_{\Omega,p}(\mathbb{R}^N)$  for some p > 1, then for every  $u^* \in W^{-1,q}(\Omega)$ with  $\frac{1}{p} + \frac{1}{q} = 1$ , there exist  $\overline{u} \in W_0^{1,p}(\Omega)$  and  $\overline{f}(x) \in L^q(\Omega; \mathbb{R}^N)$ such that

$$\begin{cases} \overline{t} \in \beta(x, \nabla \overline{u}(x)) & \text{a.e. } x \in \Omega \\ -\operatorname{div}(\overline{t}) = u^*. \end{cases}$$
(6)

It is obtained by minimizing the functional

$$I(u) := \inf_{\substack{f \in L^q(\Omega; \mathbb{R}^N) \\ -\operatorname{div}(f) = u^*}} \int_{\Omega} \left[ L(x, \nabla u(x), f(x)) - \langle u(x), u^*(x) \rangle_{\mathbb{R}^N} \right] dx$$

on  $W^{1,p}(\Omega)$ , where *L* is a state-dependent selfdual Lagrangian on  $\Omega \times \mathbb{R}^N \times \mathbb{R}^N$  associated to  $\beta$  in such a way that  $\overline{\partial L}(x, \cdot) = \beta(x, \cdot)$  for a.e  $x \in \Omega$ .

#### Variational formula for the homogenized field

Given a family  $\beta$  in  $M_{\Omega,p}(\mathbb{R}^N)$  that is *Q*-periodic for an open non-degenerate parallelogram *Q* in  $\mathbb{R}^n$ , its homogenization  $\beta_{hom}$  can now be given by a variational formula in terms of a homogenized selfdual Lagrangian  $L_{hom}$ .

Theorem: If  $\beta \in M_{\Omega,p}(\mathbb{R}^N)$  is *Q*-periodic and *L* is a state dependent selfdual Lagrangian on  $\Omega \times \mathbb{R}^N \times \mathbb{R}^N$  such that  $\beta(x,.) = \overline{\partial}L(x,.)$ . Then  $\beta_{hom}$  is given by  $\beta_{hom} = \overline{\partial}L_{hom}$  where  $L_{hom}$  is the selfdual Lagrangian

$$L_{hom}(\xi,\eta) = \min_{\substack{\varphi \in W^{1,\rho}_{\#}(Q) \\ g \in L^{q}_{\#}(Q;\mathbb{R}^{N})}} \frac{1}{|Q|} \int_{Q} L(x,\xi + \nabla \varphi(x),\eta + g(x)) dx.$$

$$W^{1,p}_{\#}(Q) = \{ u \in W^{1,p}(Q); \int_{Q} u(x) \, dx = 0 \text{ and } u \text{ is } Q - \text{periodic} \}.$$

$$L^{q}_{\#}(Q; \mathbb{R}^{N}) := \left\{ g \in L^{q}(Q; \mathbb{R}^{N}); \int_{Q} \langle g(y), \nabla \varphi(y) \rangle dy = 0, \forall \varphi \in W^{1,p}_{\#}(Q) \right\}$$

#### Mosco and $\Gamma$ -convergence of selfdual functionals

Let  $F_n$  and F be functionals on a reflexive Banach space X. The sequence  $\{F_n\}$  is said to  $\Gamma$ -converge (resp., Mosco-converge) to F, if the following two conditions are satisfied:

1. For any sequence  $\{u_n\} \subset X$  such that  $u_n \to u$  strongly (resp.,  $u_n \to u$  weakly) in X to some  $u \in X$ , one has

 $F(u) \leq \liminf_{n\to\infty} F_n(u_n).$ 

2. For any  $u \in X$ , there exists a sequence  $\{u_n\} \subset X$  such that  $u_n \to u$  strongly in X and

$$\lim_{n\to\infty}F_n(u_n)=F(u).$$

The following is a fundamental property of Mosco-convergence. Let  $F_n$ , F be convex lower semi-continuous functionals, then  $\{F_n\}$  Mosco-converge to F if and only their Fenchel-Legendre duals  $\{F_n^*\}$  Mosco-converge to  $F^*$ . This implies the agreable fact that Mosco and  $\Gamma$ -convergence are actually equivalent for a sequence of selfdual Lagrangians { $L_n$ }, as long as the limiting Lagrangian L is itself selfdual.

#### Theorem

Let  $\{L_n\}$  be a family of selfdual Lagrangians on  $X \times X^*$ , where X is a reflexive Banach space, and let L be a Lagrangian on  $X \times X^*$ . The following statements are then equivalent:

- 1.  $\{L_n\}$  Mosco-converges to L.
- **2**. *L* is selfdual and  $\{L_n\}$   $\Gamma$ -converges to *F*.
- L is selfdual and for any (u, u\*) ∈ X × X\*, there exists a sequence (u<sub>n</sub>, u<sup>\*</sup><sub>n</sub>) converging strongly to (u, u\*) in X × X\* such that

$$\limsup_n L_n(u_n, u_n^*) \leq L(u, u^*).$$

(ロ) (同) (三) (三) (三) (○) (○)

#### Graph Convergence

Considering a sequence of sets  $\{A_n\}$  in X, the corresponding sequential lower and upper limit sets are respectively given by

$$Li_X(A_n) = \{u \in X : \exists u_n \to u, u_n \in A_n\},\$$

$$Ls_X(A_n) = \{ u \in X : \exists k(n) \to \infty, \exists u_{n(k)} \to u, u_{n(k)} \in A_k \}.$$

In other words, Limit vs. cluster points. Clearly,  $Li_X(A_n) \subseteq Ls_X(A_n)$ . A sequence of subsets  $\{A_n\}$  of X is said to converge to  $A \subset X$ , in the sense of *Kuratowski-Painlevé*, if

$$Ls_X(A_n) = A = Li_X(A_n).$$

This definition, when X is replaced by the phase space  $X \times X^*$ and when the subsets  $A_n$  are graphs of maps from X to  $X^*$ , is also refered to as *graph*-convergence.

## Continuity of $L \rightarrow \overline{\partial}L$ for $\Gamma$ to Graph convergence

One of the most attractive properties of Mosco convergence is the fact that for convex functions it implies the graph convergence (or *Kuratowski-Painlevé convergence*) of their corresponding subdifferentials.

A similar result holds for self-dual Lagrangian (and Γ-convergence).

#### Theorem

Let X be a reflexive Banach space and suppose  $\{L_n\}$  is a family of selfdual Lagrangians on  $X \times X^*$ .

If  $L : X \times X^* \to \mathbb{R} \cup \{+\infty\}$  is a selfdual Lagrangian that is a  $\Gamma$ -limit of  $\{L_n\}$ , then the graph of  $\overline{\partial}L_n$  converge to the graph of  $\overline{\partial}L$  in the sense of Kuratowski-Painlevé.

Variational approach to gradient flows (Brezis-Ekeland, 1976)

$$\begin{cases} -\dot{\mathbf{v}}(t) \in \partial \varphi(\mathbf{v}(t)) \text{ a.e. on } [0, T], \\ \mathbf{v}(0) = \mathbf{v}_0. \end{cases}$$

 $\varphi$  convex l.s.c on Hilbert space *H*. (e.g.,  $\varphi(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx$ ) Minimize

$$\begin{split} I(u) &= \int_0^T \left[ \varphi(u(t)) + \varphi^*(-\dot{u}(t)) \right] dt + \frac{1}{2} |u(0)|^2 - 2\langle u(0), v_0 \rangle + |v_0|^2 + \frac{1}{2} |u(T)|^2 \\ I(u) &= \int_0^T L(t, u(t), \dot{u}(t)) dt + \ell(u(0), u(T)) \quad \text{Selfdual form!} \\ \text{Using that } \int_0^T \langle u(t), \dot{u}(t) \rangle dt &= \frac{1}{2} |u(T)|^2 - \frac{1}{2} |u(0)|^2, \\ I(u) &= \int_0^T \left[ \varphi(u(t)) + \varphi^*(-\dot{u}(t)) + \langle u(t), \dot{u}(t) \rangle \right] dt + |u(0) - v_0|^2 \ge 0, \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

The important factor is that with selfduality we can prove inf  $l(u) = l(\bar{u}) = 0$ , then we are done by Legendre duality.

## Analogue on Wasserstein space!!!!!????