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Limitations of classical calculus of variations
» Many basic elliptic PDEs can be written in the form
Id(u) =p (1)

where ¢ is a convex lower semi-continuous functional on
an infinite dimensional function space H. e.g., to solve

{—div(a(p(Vu(x))+F’(u(x)) = p(x) on QCR",
u = 0 on JQ.

where ¢ (resp., F) is convex on R" (resp., R), it suffices to
minimize on H} () the convex functional

d(u) = fﬂ {p(Vu(x)) + F(u(x)) = p(x)u(x)} dx.

This is a typical Euler-Lagrangian equation.
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minimize on H} () the convex functional

d(u) = fﬂ {p(Vu(x)) + F(u(x)) = p(x)u(x)} dx.
This is a typical Euler-Lagrangian equation.

» But what about the following Dirichlet BVP?

—div(T(Vu(x))+F’(u(x))+Z,(’:1a,~(x)g—)‘<’i = p(x) on Q,
u = 0 on JdQ.

where T is a vector field not derived from a potential?
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What I'm selling

» A variational formulation for many equations which are not
normally Euler-Lagrange.
We replace the usual energy functionals by suitable
selfdual Lagrangians on phase space.

» Describe how this approach is particularly well suited to
deal with

1. Existence and uniqueness

2. Inverse problems

3. Control theory problems

4. Homogenization of such equations.

» Indicate why all this should be developed on the
Wasserstein manifold.



Basic example of selfdual variational calculus

—Au+|uPPu+x] . a ()ax = f on Q,
u = 0 on JQ.

Assuming div(a) = 0 on £, then it suffices to minimize, on the
same H}(Q), the new convex functional
I(u) = V(u) + V*(a- Vu), where

f IVulPdx + — f lulPdx + f fudx

and ¢~ is its Fenchel-Legendre transform. Note that
I(u)=V(u)+Vv*(a-Vu)-(u,a-Vu) >0
since by Legendre duality: (x) + ¢*(p) — (x,p) = 0, and

Px) + 9 (p) — (x,p) =0 iff  pedp(x).
and so if I(u) = 0, then

a-Vu=0V(u)=-Au+uP'u+f



Key concept: Selfdual Lagrangians
1. Selfdual Lagrangians: L : X X X* —» R U {+o0} is convex Isc
in both variables and

L*(p,x) = L(x,p) forall (p,x) € X* x X.
In this case, L(x,p) —(x,p) > 0 for every (x,p) € X x X*, and
L(x,p)—<{x,p) =0if and only if (p, x) € IL(x, p)

2. Selfdual Vector Field: F : X — X* such that there is L
selfdual Lagrangian with F = JdL, i.e.,

F(x)=dL(x):={peX*;L(x,p)—(x,p) =0}
={p e X*;(p, x) € dL(x, p)}.

3. The Completely Selfdual Equations.
p=dL(x) or (p,x)=0L(x,p).



Basic examples of selfdual Lagrangians:

1. If ¢ is convex lower semi-continuous on X, then
L(x,p) = ¢(x) + ¢*(-p)

is a selfdual Lagrangian on X x X* and dL (x) = dp(X).
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2. IfT: X — X* is skew-symmetric (i.e., [* = —TI), then

L(x,p) = ¢(x) + ¢'(-Tx + p)

is a selfdual Lagrangian on X x X* and dL = I + dp
i.e., superposition of a dissipative and conservative vector
fields) is derived from a selfdual Lagrangian (potential!)



Basic examples of selfdual Lagrangians:
1. If ¢ is convex lower semi-continuous on X, then
L(x,p) = ¢(x) + ¢*(-p)

is a selfdual Lagrangian on X x X* and JL (x) = dp(X).
2. IfT: X — X* is skew-symmetric (i.e., [* = —TI), then

L(x,p) = ¢(x) + ¢'(-Tx + p)

is a selfdual Lagrangian on X x X* and dL = I + dp
i.e., superposition of a dissipative and conservative vector
fields) is derived from a selfdual Lagrangian (potential!)

3. Solving p € dL(x) = I'(x) + d¢(x) amounts to showing that
0 is the infimum of

Io(x) = L(x,p) = (X, p) = ¢(X) + ¢*(=TX + p) = (X, p).



Important:

» JdL is NOT necessarily a differential, yet it is derived from a
potential in the sense that a solution can be obtained by
minimizing I(x) = L(x, p) — {(x, p) and by showing that
infyex I(x) = 0 equal to zero!

Theorem

Let L be a selfdual Lagrangian on a reflexive Banach space
X x X*, let p € X* be such that (0, p) € Dom(L). If the functional

Io(x) = L(x,p) — (x,p) is coercive on X, then there exists u € X
such that

Ip(u) = min Ip(u) =0andp € dL(u).



Unexpected surprise: All maximal monotone operators
are selfdual vector fields and vice-versa

(i) Let L be a proper selfdual Lagrangian L on a reflexive
Banach space X x X*, then the vector field x — dL(x) is
maximal monotone.

(i) Conversely, if g : D(8) c X — 2X" is a maximal monotone
operator with a non-empty domain, then there exists a selfdual
Lagrangian Lg on X x X* such that g = éLﬁ.

Not surprising —in retrospect— but many advantages:

» Maximal monotone operators can be reduced to convex
analysis in phase space.
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are selfdual vector fields and vice-versa

(i) Let L be a proper selfdual Lagrangian L on a reflexive
Banach space X x X*, then the vector field x — dL(x) is
maximal monotone.

(i) Conversely, if g : D(8) c X — 2X" is a maximal monotone
operator with a non-empty domain, then there exists a selfdual
Lagrangian Lg on X x X* such that g = éLﬁ.

Not surprising —in retrospect— but many advantages:

» Maximal monotone operators can be reduced to convex
analysis in phase space.

» Equations involving MM vector fields are variational.

» Analogue of Rockafellar’s theorem for cyclically monotone
operators.



Solving variationally non-potential equations
Variational resolution of two typical equations involving a
maximal monotone vector field f: X — X*.

First associate to § a selfdual Lagrangian L : X x X* — R such
that ‘3 = 8Lﬁ
(1) Solving p € p(u) amounts to minimizing on X the functional

Ip(u) = Lg(u, p) — {u, p).

(2) Solving —div(p(Vu(x))) = p(x) on Q, u= 0 on J%Q,
amounts to minimizing on H (2) the functional

Io(u) == fein(r(g;)RN) fQ [Lo(Vu(x), £(x)) = u(x), p(x)n | dx
—div(f)=p

Because Ip(u) = L(u, p) - (u, p) where

L(u,p) := inf{ fQ L(x, Vu(x), f(x)) dx; f € L3(Q; RN), —div(f) = p},

is a selfdual Lagrangian Lagrangian on H}(Q) x H™'(Q)



Nonlinear inverse problems

Given uy € H}(%), find a vector field B in a given class of
maximal monotone maps C such that ug is a solution of

—div(B(Vu(x)) = p(x), u=0o0ndQ (2)

Least square approach: Minimize

flu (x)12dx

over all u € H}(Q), B € C, such that —div(B(Vu)) = p on Q.
The constraint set is not easily tractable.



Penalized least square

Let £ = {L selfdual on R" x R"; dL = g for some 8 € C}.
For each € > 0, minimize the functional

(L, u,f) flu (x)|2dx

efQ{L(VU f) = p(x)u(x)} dx

onthe class 7 := {(L, u,f) € LxH}(Q) x L(Q); div f = p}

» P, is convex and Isc in all variables.

» If Lis a convex “compact” class of selfdual Lagrangians,
there exists a minimizer (L, U, f.) € T

» If e is small enough, the non-negative penalization has to
be small at (L, U, fc), and a weak cluster point (Lo, Uo, fo)
is a solution with By := dLy being the optimal maximal
monotone operator, since the penalty term has to be zero.



Optimal control: Cheapest temperature source control

for a desired temperature profile
Consider the heat equation

u(x, t) — Au(x,t) = f(x,t) inQx][0,1]
ux,t)y = 0 on dQ2 x [0, 1] (3)
u(x,0) = g(x) IinQ

Let up(x,t), with up(x,0) = g(x) be a desired temperature
profile to be achieved over Q2 along [0, 1].

Need to control the temperature by specifying the heat source f
over the domain Q, assume the cost of maintaining such
temperature is given by C(f) = f01 IIflI2 dt.

We want to minimize the cost of f and achieve the closest
possible behaviour to the profile up, i.e., we want to minimize

]
f f(IU(X, 1) — uo(x, )7 + If(x, 1)[?)dx dt
0 Q

among all possible solutions u of (3) for some f.



Selfdual variational formulation of heat equation

For a given f, Equation (3) is solved by minimizing
Ji(u) = f f Vu(t, x)P + |v (—2)7(f(x) - tx))| —2f(x)u(t,x))dxdt
[ ta0orax=2 [ wexg00dx+ 5 [ Qu0F +lut, ) dx

over A2[[0, TJ; H(‘)(Q)].
The control problem amounts to minimize for each € > 0,

1 2 2 1
fo fQ(Iu(x,t)—uo(x,t)l + [f(x, t)| )dth+EJf(U)

over A2[[0, T]; H} ()] x L3([0, T] X Q), to find (u, f.), then let €
go to zero.



A basic homogenization problem

We consider the conductivity equation with a given heat source
uy, in a heterogenous medium defined by the
non-homogeneous conductivity vector field 5.

Ta(X) € B(Z,Vun(x)) x€Q,
—div(tp(x)) = ui(x) X€qQ, 4)
un(x) = O X €09,

where Q is a bounded domain of R¥, and g : @ x RN —» RN is a
measurable map on Q x RN such that:
> B(x,-) is maximal monotone on RN for almost all x € Q
» B(., &) is Q-periodic for an open non-degenerate
parallelogram Q in R".

This problem has been investigated in recent years by many
authors: Francfort, Murat, Tartar, Damlamian, Meunier, Van
Shaftingen, Braides, Chiado Piat, Dal Maso, Defranscheshi.



Representation of a family of maximal monotone fields

1(x) € PB(x,Vu(x)) a.e. xeQ,
{ —div(z(x)) = p(x) a.e. xeq.

The class Mq,,(IRV) introduced by Chiado Piat, Dal Maso,
Defranscheshi consists of all possibly multi-valued functions
B: QxRN — RN with closed values, which satisfy:

(i) B is measurable with respect to £(Q) x B(RN) and 8(RV)
where L(Q) is is the o-field of all measurable subsets of  and
B(RN) is the o-field of all Borel subsets of RV.

(i) For a.e. x € Q, the map B(x,.) : RN — RN is maximal
monotone.

(iii) There exist non-negative constants my, mo, ¢y and ¢, such
that for every & € RN and 1 € g(&),

C C
(&, Mgy = Max {jlélp - my, Ezlnlq - mz}, (5)



Selfdual Lagrangians associated to maximal
monotone operators

(1) If B € Mqp(RN) for p > 1, then there exists a
state-dependent selfdual Lagrangian L : @ x RN x RN — R
such that B(x,.) = dL(x,.) fora.e. x € Q, and forall a,b € RN,

(+) Co(lalP +1b|? = no(x)) < L(x,a,b) < Cy(lalP’ + bl + ny(x))
where Cy and C; are two positive constants and ng, ny € L'(Q).

(2) Conversely, if L : @ x RN x RN — R is a state-dependent
selfdual Lagrangian satisfying (**), then dL(x,.) € Mq,p(IRN).



Lifting Self-dual Lagrangians from R" x R" to
W P(Q) x W-19(Q)

Suppose L is a state-dependent selfdual Lagrangian on
Q x RN x RN such that for all a,b € RV,
(#+) Co(lalP +|b|7—no(x)) < L(x,a,b) < Ci(lalP +|b|? + ny(x))

where Cy, C; > 0 and ng, ny € L'(Q). Then the Lagrangian
defined on WP (Q) x W~19(Q) by

F(u, u*) := inf{ f L(x, Vu(x), f(x)) dx; f € LY(Q; RN), =div(f) = u),
Q

is selfdual W)P(Q) x W-'9(Q).



Variational resolution of the main equation

Let B € Mq p(RN) for some p > 1, then for every u* € W=9(Q)
with 3 + 1 =1, there exist Tl € W, (Q) and 7(x) € LI(Q; RV)
such that

fep(x,Vu(x)) ae xeQ
{ _div(f) = u. ()

It is obtained by minimizing the functional
I(u):= inf f [L(x, Vu(x), f(x)) = (u(x), u" (x))n ] dx
Q

feLa(;RN)
~div(f)=u"

on W'P(Q), where L is a state-dependent selfdual Lagrangian
on Q x RN x RN associated to § in such a way that
dL(x,-) = p(x,-) fora.e x € Q.



Variational formula for the homogenized field
Given a family g in Mq,,(IRN) that is Q-periodic for an open
non-degenerate parallelogram Q in R”, its homogenization
Brom €an now be given by a variational formula in terms of a
homogenized selfdual Lagrangian Lyom.

Theorem: If B € Mqop(RV) is Q-periodic and L is a state
dependent selfdual Lagrangian on Q x RN x RN such that
B(x,.) = dL(x,.). Then Brom is given by Brom = dLnom Where
Lyom is the selfdual Lagrangian

: . 1 ,
Lon(&,) = min [ L{x, &+ Vo), 1-+ gx)) o
pew'?(@) 1Ql Ja

geLi(Q;IRN)

WP(Q)={ue W1”’(Q);f u(x)dx =0 and uis Q-periodic}.
Q

L9(QRY) = {g < LIQR"): | (6y), Voly)dy =0, ¥p € W}(@)



Mosco and I'-convergence of selfdual functionals

Let F, and F be functionals on a reflexive Banach space X. The
sequence {Fp} is said to [-converge (resp., Mosco-converge) to
F, if the following two conditions are satisfied:

1. For any sequence {un} € X such that u, — u strongly
(resp., up — uweakly) in X to some u € X, one has

F(u) < Ii’gn inf Fn(un).

2. For any u € X, there exists a sequence {un} ¢ X such that
up — u strongly in X and

nllnoo Fn(un) = F(u).

The following is a fundamental property of Mosco-convergence.
Let Fj,, F be convex lower semi-continuous functionals, then
{Fn} Mosco-converge to F if and only their Fenchel-Legendre
duals {F;} Mosco-converge to F*.



This implies the agreable fact that Mosco and I'-convergence
are actually equivalent for a sequence of selfdual Lagrangians
{Ln}, as long as the limiting Lagrangian L is itself selfdual.

Theorem

Let {L,} be a family of selfdual Lagrangians on X x X*, where X
is a reflexive Banach space, and let L be a Lagrangian on

X x X*. The following statements are then equivalent:

1. {L,} Mosco-converges to L.
2. L is selfdual and {L,} I'-converges to F.

3. L is selfdual and for any (u, u*) € X x X*, there exists a
sequence (up, uy,) converging strongly to (u, u*) in X x X*
such that

limsup La(un, up) < L(u, u).
n



Graph Convergence

Considering a sequence of sets {A,} in X, the corresponding
sequential lower and upper limit sets are respectively given by

LiX(An) —{ueX : Au, > u, uy € Anl,

LsX(An) —{ue X : 3k(n) — oo, Iy — U, Unk) € Ak)-

In other words, Limit vs. cluster points.

Clearly, Lix(An) € Lsx(An).

A sequence of subsets {A,} of X is said to converge to A C X,
in the sense of Kuratowski-Painlevé, if

Lsx(An) = A = Lix(An).

This definition, when X is replaced by the phase space X x X*
and when the subsets A, are graphs of maps from X to X*, is
also refered to as graph-convergence.



Continuity of L — dL for I' to Graph convergence

One of the most attractive properties of Mosco convergence is
the fact that for convex functions it implies the graph
convergence (or Kuratowski-Painlevé convergence) of their
corresponding subdifferentials.

A similar result holds for self-dual Lagrangian (and
-convergence).

Theorem

Let X be a reflexive Banach space and suppose {L.} is a family
of selfdual Lagrangians on X x X*.

IfL: Xx X" — RU {+o0} is a selfdual Lagrangian that is a
[-limit of {L,}, then the graph of L, converge to the graph of dL
in the sense of Kuratowski-Painlevé.



Variational approach to gradient flows (Brezis-Ekeland,1976)

{_\'/(t) € Jdop(v(t)) ae. on [0,T],
v(0) = w.

¢ convex |.s.c on Hilbert space H. (e.g., p(u) = 3 fﬂ [Vu(x)[2dx)
Minimize

.
= fo [qo(u(t))+(p"(—tv(t))]dt+%|u(0)|2—2<u(0),vO>+|vO|2+%|u(T)|2
.
I(u)f L(t, u(t), u(t))dt + £(u(0),u(T)) Selfdual form!
0
Using that [\ (u(t), i(t)dt = Su(T)R - Slu(0)R,

;
@) = [ [o(u) + 9" (-a) + (o, ueh at + 1u(0) - vof >0,

The important factor is that with selfduality we can prove
inf I(u) = I(U) = 0, then we are done by Legendre duality.



Analogue on Wasserstein space!!ll1????



