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Introduction

Goal: extend to infinite-dimensional Gaussian spaces (Wiener spaces)
the theory of sets of finite perimeters (and of BV functions).

This theory, developed in the ’50 by Caccioppoli, De Giorgi, Federer,
leads to general notions of surface area, to a deeper understanding
of the Gauss-Green formula, and marks the beginning of modern
Geometric Measure Theory.

In Wiener spaces the finite-codimension theory for “smooth” surfaces
was developed in ’88 by Airault-Malliavin. In more recent years the
BV theory has been extended to the Wiener space by Fukushima,
motivated by infinite-dimensional diffusion processes in nonsmooth
domains.

In the last two years, papers by A-Maniglia-Miranda-Pallara, Hino,
A-Miranda-Pallara, A-Figalli.
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The Wiener space

X separable Banach space, γ ∈ P(X ) with
∫

X x dγ = 0, not supported
in a proper subspace of X . We say that γ is Gaussian if x 7→ 〈x∗, x〉
has a Gaussian law (in R) for all x ∈ X ∗ \ {0}.

The Cameron-Martin subspace H ⊂ X is defined by

H := {h ∈ X : (τh)]γ � γ} .

It turns out that H is dense in X , but γ(H) = 0!

There is a natural way to extract from the density βh of (τh)]γ w.r.t. γ
an Hilbert norm | · |H which makes the inclusion of H in X compact. In
finite dimensions, with the standard Gaussian,

βh(x) = e−|h|
2/2+〈x ,h〉.
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The Wiener space

Another way to introduce H is via the formula

H =

{∫
X

f (x)x dγ(x) : f ∈ L2(X , γ)

}
and the integration by parts formula∫

X
∂hφ dγ = −

∫
X

φĥ dγ (φ smooth)

that makes h ∈ H 7→ ĥ ∈ L2(X , γ) an isometry.
When

h =

∫
X
〈x∗, x〉x dγ(x) for some x∗ ∈ X ∗

then ĥ(x) is precisely 〈x∗, x〉 and this class of vectors is dense in H.
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that makes h ∈ H 7→ ĥ ∈ L2(X , γ) an isometry.
When

h =

∫
X
〈x∗, x〉x dγ(x) for some x∗ ∈ X ∗
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Cylindrical projection and factorization

If x∗1 , . . . , x∗n are such that 〈x∗i , ·〉 are an orthonormal basis in L2(X , γ)
the corresponding vectors hi are orthonormal in H and we can define
“orthogonal projections”

Πn(x) :=
n∑

i=1

〈x∗i , x〉hi

onto the space Hn spanned by h1, . . . , hn.
This induces a factorization X = Y ⊕ Hn of X and a factorization of
γ = γ⊥n ⊗ γn, with γ⊥n Gaussian and γn standard Gaussian in Hn. In
addition H⊥

n is the Cameron-Martin space of (Y , γ⊥n ).
Many facts of the theory can be proved via cylindrical projection and
passage to the limit, but things are not always that easy.
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Connections with optimal transport
Brenier’s theorem can be extended to the Wiener space, considering
the cost function:

c(x , y) :=

{
|x − y |2H if x − y ∈ H;
+∞ otherwise.

Theorem. (Feyel-Ustünel) For all µ0, µ1 � γ, if the transport cost is
finite there exists a unique optimal transport map T . The displacement
map T − Id is H-valued and, if µ0 = γ and µ1 = fγ, we have

(∗) 1
2

W 2
2 (fγ, γ) ≤

∫
X

f ln f dγ.

The inequality (*), ensuring that the transport cost is finite whenever
the entropy is finite, is the limiting case of Talagrand’s inequality

1
2

W 2
2 (fγn, γn) ≤

∫
Rn

f ln f dγn.

On the other hand, the existence of optimal maps is more subtle
and it does not rely on optimal Kantorovich potentials (see also
Bogachev-Kolesnikov).
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Connections with optimal transport
As in the finite-dimensional theory, the L2(X , γ) gradient flow of the
“Dirichlet” energy ∫

X
|∇u|2H dγ

and the Wasserstein gradient flow of the relative entropy
∫

X f ln f dγ
coincide (Fang-Shao-Sturm).
The first “heat” flow is classical and known as Ornstein-Uhlenbeck
semigroup. It has a nice explicit expression, known as Mehler’s
formula:

ut(x) =

∫
X

u0(e−tx +
√

1− e−2ty) dγ(y).

When X = Rn and γn = GnL n is the standard Gaussian, the density
ρt := utGn w.r.t. L n solves the Fokker-Planck equation

d
dt

ρt = ∇ · (∇ρt + xρt).
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Classical Geometric Measure Theory
We say that E ∈ B(Rn) has finite perimeter if there exists a
vector-valued measure with finite total variation

DχE =
(
D1χE , . . . , DnχE

)
representing the distributional derivative of χE , i.e.∫

E

∂φ

∂xi
dx = −

∫
Rn

φ dDiχE ∀φ ∈ C1
c (Rn), i = 1, . . . , n.

When E has a sufficiently nice boundary, the Gauss-Green theorem
gives

DχE = νEH n−1 ∂E with νE inner unit normal.

For this reason we may define perimeter of E the quantity

P(E) := |DχE |(Rn),

so that P(E) = H n−1(∂E) when E is sufficiently nice.
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One more definition of perimeter

De Giorgi gave another definition of perimeter, whose relevance has
been overlooked until recent times. He noticed that Jensen’s inequality
and the semigroup property yield

t 7→
∫

Rn
|∇xu(t , x)|dx is nonincreasing in (0,+∞)

along solutions u(t , x) to the heat equation.

Then, taking χE as initial condition, he defined

P(E) := lim
t↓0

∫
Rn
|∇xu(t , x)|dx ∈ [0,∞]

and he proved that this definition is consistent with the “distributional”
one.
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Measure-theoretic boundaries
Simple examples shows that DχE is concentrated on sets much
smaller than ∂E . Hence, in order to represent properly DχE , finer and
measure-theoretic notions of boundary are needed:
Federer’s essential boundary ∂∗E :

∂∗E :=

{
x : lim sup

r↓0

L n(Br (x) ∩ E)

L n(Br (x))
> 0, lim sup

r↓0

L n(Br (x) \ E)

L n(Br (x))
> 0

}
.

It is at least L n-negligible, by Lebesgue’s theorem. We have
∂∗E = Rn \ (E0 ∪ E1).
De Giorgi’s reduced boundary:

FE :=

{
x ∈ spt|DχE | : ∃νE(x) := lim

r↓0

DχE(Br (x))

|DχE |(Br (x))
and |νE(x)| = 1

}
.

By Besicovitch’s differentiation theorem DχE is concentrated on
FE and DχE = νE |DχE |.
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Structure of DχE

Theorem. (De Giorgi-Federer) For any set of finite perimeter E we
have:
(a) |DχE |(B) = H m−1(B ∩FE) for all B ∈ B(Rm);
(b) FE ⊂ E1/2 ⊂ ∂∗E, but H m−1(∂∗E \FE) = 0;
(c) FE is contained in the union of countably many Lipschitz

hypersurfaces.
These results, of central importance for the development of modern
GMT, reduce somehow the gap between the weak and the classical
Gauss-Green formulas.
The proof of these statements is mostly based on a blow-up analysis,
and in particular in the proof of the convergence

1
r
(E − x) → halfspace as r ↓ 0 for all x ∈ FE .

This procedure will not be applicable in infinite-dimensional spaces.
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Gaussian theory: finite dimensions

X = Rm, Gm(x) = (2π)−m/2e−|x |
2/2, γ = GmL m standard Gaussian.

Since ∂hγ = −〈x , h〉γ we have the integration by parts formula∫
X

f∂hφ dγ = −
∫

X
φ∂hf dγ +

∫
X
〈x , h〉fφ dγ h ∈ X

It can be used, with f = χE , to define a weak derivative DγχE .
Obviously DγχE = GmDχE and all “local” regularity properties remain
true.
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Infinite dimensions: good news

• Still the integration by parts formula along directions in H makes
sense, and this leads to a Sobolev (and BV ) theory (Gross, Malliavin,
Fukushima).

• The Ornstein-Uhlenbeck semigroup, given by Mehler’s formula

ρt(x) =

∫
X

ρ0
(
e−tx +

√
1− e−2ty) dγ(y)

provides a nice smoothing operator (along directions of H).
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Infinite dimensions: bad news

• Preiss-Tiser showed that Lebesgue theorem holds if the covariance
operator of γ decays sufficiently fact (quite fast, indeed). Preiss
provided also an example of a Gaussian measure γ in a Hilbert space
X and f ∈ L∞(X , γ) such that

lim sup
r↓0

1
γ(Br (x))

∫
Br (x)

f dγ > f (x) in a set of γ-positive measure.

So, no Lebesgue theorem can be expected in general and the definition
of essential boundary becomes problematic.
• Of course also no Besicovitch theorem can be expected, so there is
no hope to define the reduced boundary in the traditional way.
A possible way out is based on the understanding that the norm of X
is somehow not natural, and not related to γ as closely as H and its
norm.
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Questions

Let E be a set of finite perimeter in (X , γ) and let DγχE be the
corresponding H-valued measure.

• How “large” is the (measure theoretic) support of DγχE?
• Can we define suitable notions of essential and reduced boundary?
• Can we extend De Giorgi’s representation theorem of |DχE | to this
context? (thus getting a “more precise” integration by parts formula in
the Wiener space)

Theorem. (A-Miranda-Pallara) |DγχE | is concentrated on countably
many graphs of entire Sobolev functions defined on hyperplanes of X .
To make more precise the third question, we need a suitable notion
of (cylindrical) codimension-one Hausdorff measure, introduced by
Feyel-De la Pradelle.
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Codimension-one Hausdorff measures

Given a finite-dimensional subspace F of H, and the corresponding
factorization X = Y ⊕ F , Feyel-De la Pradelle defined

H ∞−1
F (A) :=

1
√

2π
m

∫
Y

∫
Ay

e−|x |
2/2 dH m−1

F (x) dγ⊥(y)

and noticed the crucial monotonicity property H ∞−1
F ≤ H ∞−1

G
whenever F ⊂ G.
Then, considering suitable families of subspaces that “invade” H, we
can define several notions of codimension-one Hausdorff measure. In
this lecture:

H ∞−1 := sup
{

H ∞−1
F : F ⊂ H̃

}
,

where H̃ = {
∫
〈x∗, x〉x dγ : x∗ ∈ X ∗}.

Feyel-De la Pradelle prove that this measure coincides with the
Airault-Malliavin one, on smooth level sets.
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Feyel-De la Pradelle prove that this measure coincides with the
Airault-Malliavin one, on smooth level sets.
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Codimension-one Hausdorff measures

As illustrated in the picture, γ⊥F × γF is a factorization of γ induced by
a m-dimensional subspace F of H (γF is the standard Gaussian in F ,
with the metric induced by H) and the sets Ay are the m-dimensional
sections of A, keeping y ∈ (I − πF )(X ) fixed.

A

F+

F
_|

F
_γ

y

y

|
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The OU semigroup is a substitute for the mean on
balls
Theorem. (Stein, Rota) Let Pt be a linear unitary semigroup in
L2(X , µ), and assume that for all f ∈ L2(X , µ) the map t 7→ Pt f (x) is
continuous in (0,∞) for µ-a.e. x ∈ X. Then

lim
t↓0

Pt f (x) = f (x) for µ-a.e. x ∈ X.

Heuristically, since in finite dimensions Pt is a mean value of mean
values on balls (mostly of radius ∼

√
t), we may think to use the

Ornstein-Uhlenbeck semigroup Tt also to define measure-theoretic
boundaries, and this makes sense also in infinite dimensions.
This is in agreement with the pioneering definition of perimeter De
Giorgi, based on the heat semigroup, and on the semigroup based
proofs of the isoperimetric inequality (Ledoux):√

π

t

∫
Tt/2χETt/2χX\E dx ≤ P(E).
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Points of density 1/2

Density theorem. (A-Figalli) If E is a Borel set with finite perimeter in
(X , γ), it holds:

lim
t↓0

∫
X
|TtχE −

1
2
|2 d |DγχE | = 0.

Warning. Here one has to work with TtχE as pointwise defined by
Mehler’s formula and the choice of a Borel representative is important.
Definition. (Points of density 1/2) Let ti ↓ 0 be such that∑

i
√

ti + ‖Tti χE − 1
2‖L1(|DγχE |) < ∞. We define

E1/2 :=

{
x ∈ X : lim

i→∞
Tti χE(x) =

1
2

}
.
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Representation of |DγχE |

A drawback of this definition is its dependence upon (ti). Nevertheless,
the density theorem ensures that |DγχE | is concentrated on E1/2 and
the next result shows that the dependence on (ti) is mild:
Representation theorem. (A-Figalli) E1/2 has finite H ∞−1-measure
and

|DγχE | = H ∞−1 E1/2.

This improves an earlier result by Hino. Given a nondecreasing family
F = {Fm}m≥1 of subspaces of H̃ whose union is dense in H, he
defined cylindrical essential boundary the set

∂∗FE := lim inf
m

∂∗Fm
E , where ∂∗Fm

E := {(y , z) : z ∈ ∂∗Ey}.
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Representation of |DγχE |

Then, Hino proved that

(∗) |DγχE | = H ∞−1
F ∂∗FE with H ∞−1

F := sup
m

H ∞−1
Fm

.

The drawback in (*) is that both objects in the r.h.s. a priori depend on
F , while the l.h.s. does not. Indeed, it seems quite hard in general to
compare

H ∞−1
F with H ∞−1

F ′

and even to compare their null sets.
A consequence of our result is that we can replace in (*) coordinate-free
objects, namely the Feyel-De La Pradelle codimension-one Hausdorff
measure and E1/2.
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Some ideas from the proofs

We focus on the density theorem. Recall that in finite dimensions

lim
t↓0

∫
X
|TtχE −

1
2
|2 d |DγχE | = 0

holds simply because TtχE → 1/2 pointwise on the reduced boundary,
on which |DγχE | is concentrated. In turn, the convergence to 1/2 of
TtχE relies on a blow-up analysis, a tool we cannot use in infinite
dimensions.
I will present first a soft and quite general argument that provides
w∗-convergence of TtχE to 1/2 in L∞(X , |DγχE |). Then we will see
how one can show that

lim sup
t↓0

∫
X
|TtχE |2 d |DγχE | ≤

1
4
|DγχE |(X ).

This allows to improve the convergence from weak to strong.
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Soft proof of w∗-convergence
Suffices to show that any weak∗ limit point g of TtχE as t ↓ 0 satisfies
g ≥ 1/2 |DγχE |-a.e. in X .
Fix A ⊂ X open and set ft = TtχE , then

|Dγ(ftχE)|(A) ≤
∫

A
ft d |DγχE |+

∫
E∩A

|∇ft |dγ.

Since ∇ftγ = Dγ(TtχE) = e−tT ∗
t DγχE , we can estimate

|Dγ(ftχE)|(A) ≤
∫

A
ft d |DγχE |+ e−t

∫
X

Tt(χE∩A) d |DγχE |.

Since Tt(χE∩A) ≤ ft and tends to 0 out of A, as t ↓ 0 we get

|DγχE |(A) ≤ 2
∫

A
g d |DγχE |

for any limit point g.
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Estimate of
∫
|TtχE |2 d |DγχE |

Let X = Y ⊕ F be a factorization of X , with the corresponding
factorization γ = γ⊥F ⊗ γF , and F ⊂ H̃ finite dimensional.
Set x = (y , z) ∈ Y ⊕ F , Ey := {z : (y , z) ∈ E} ⊂ F and notice that,
obviously

lim
t↓0

∫
Y

∫
F
|T F

t χEy |2 d |DγF χEy |dγ⊥(y) =
1
4

∫
Y
|DγF χEy |(F ) dγ⊥(y).

We have to carefully estimate the error we make when we replace the
OU semigroup in F by the “global” OU semigroup Tt . Another error,
easier to handle, arises from the replacement of∫

Y
|DγF χEy |dγ⊥(y) with |DγχE |.

Both errors should tend to 0, uniformly in t , as F ↑ H.
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|T F

t χEy |2 d |DγF χEy |dγ⊥(y) =
1
4

∫
Y
|DγF χEy |(F ) dγ⊥(y).

We have to carefully estimate the error we make when we replace the
OU semigroup in F by the “global” OU semigroup Tt . Another error,
easier to handle, arises from the replacement of∫

Y
|DγF χEy |dγ⊥(y) with |DγχE |.

Both errors should tend to 0, uniformly in t , as F ↑ H.

Luigi Ambrosio (SNS) GMT in Wiener spaces Toronto, November 2010 25 / 28



Estimate of
∫
|TtχE |2 d |DγχE |

Let X = Y ⊕ F be a factorization of X , with the corresponding
factorization γ = γ⊥F ⊗ γF , and F ⊂ H̃ finite dimensional.
Set x = (y , z) ∈ Y ⊕ F , Ey := {z : (y , z) ∈ E} ⊂ F and notice that,
obviously

lim
t↓0

∫
Y

∫
F
|T F

t χEy |2 d |DγF χEy |dγ⊥(y) =
1
4

∫
Y
|DγF χEy |(F ) dγ⊥(y).

We have to carefully estimate the error we make when we replace the
OU semigroup in F by the “global” OU semigroup Tt . Another error,
easier to handle, arises from the replacement of∫

Y
|DγF χEy |dγ⊥(y) with |DγχE |.

Both errors should tend to 0, uniformly in t , as F ↑ H.

Luigi Ambrosio (SNS) GMT in Wiener spaces Toronto, November 2010 25 / 28



Estimate of
∫
|TtχE |2 d |DγχE |

Let X = Y ⊕ F be a factorization of X , with the corresponding
factorization γ = γ⊥F ⊗ γF , and F ⊂ H̃ finite dimensional.
Set x = (y , z) ∈ Y ⊕ F , Ey := {z : (y , z) ∈ E} ⊂ F and notice that,
obviously

lim
t↓0

∫
Y

∫
F
|T F

t χEy |2 d |DγF χEy |dγ⊥(y) =
1
4

∫
Y
|DγF χEy |(F ) dγ⊥(y).

We have to carefully estimate the error we make when we replace the
OU semigroup in F by the “global” OU semigroup Tt . Another error,
easier to handle, arises from the replacement of∫

Y
|DγF χEy |dγ⊥(y) with |DγχE |.

Both errors should tend to 0, uniformly in t , as F ↑ H.

Luigi Ambrosio (SNS) GMT in Wiener spaces Toronto, November 2010 25 / 28



The error estimate relies on three ingredients.

Tt f (y , z) = T Y
t

(
y ′ 7→ T F

t f (y ′, ·)(z)
)
(y) (factorization of Tt )

∫
Y
|g − Ttg|dγ ≤ c

√
t
∫

Y
|∇g|dγ (Poincaré inequality)

Since we are integrating against singular measures σ = |DγF χEy | in F ,
the Poincaré inequality is not sufficient to conclude. We need also the
dimension-free estimate

lim sup
t↓0

√
tT ∗

t σ ≤ γ.

For general measures σ the blow-up rate of T ∗
t σ as t ↓ 0 is

√
t
−m

,
m being the dimension of F , but rectifiability of σ leads to a blow-up
rate independent of m.
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Open problems

1. What about log-concave measures γ? As far as I know, there is no
general integration by parts formula or analogue of Cameron-Martin
space in this context.

2. Can we show that H ∞−1(X \ (E0 ∪ E1/2 ∪ E1)
)

= 0?

3. What about higher (finite) codimension theory? Still the integral-
geometric approach of Feyel-De La Pradelle and Hino works, but some
“global” and coordinate-free concepts seem to be missing.
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