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The model

Inhomogeneous independent bond percolation model

L = {n ~e1 : n ∈ Z}

(ωe)e∈Zd , ωe ∈ {0, 1}, indep.

Pp,p′(ωe = 1) =

{
p if e 6⊂ L,

p′ if e ⊂ L.

p′
p

When p′ = p, we simply write Pp ≡ Pp,p.



Main question

Let pc = pc(d) be the critical value of the homogeneous model (p′ = p).

Earlier works on this model dealt with the case p = pc(d) and proved

that there is no percolation for any p′ < 1 when

d = 2 [Zhang, AoP ’94],

d large [Newman& Wu, AoP ’97].

We are interested in the case p < pc(d), d ≥ 2.

Of course, there is no percolation in any dimension for any p′ < 1

in that case.

Instead, what concerns us here is the rate of exponential decay of

connectivities along L:

ξp,p′ = − lim
n→∞

1

n
logPp,p′(0←→ n~e1).

What is the behavior of ξp,p′ as a function of p′ for fixed p < pc(d)?
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Basic properties

ξp,p′ exists by sub-additivity.

ξp ≡ ξp,p > 0 for all p < pc
[Menshikov ’86, Aizenman&Barsky ’87].

ξp,p′ is non-increasing in p′. In particular,

p′ ≤ p =⇒ ξp,p′ ≥ ξp,
p′ ≥ p =⇒ ξp,p′ ≤ ξp.
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Existence of a transition

Fact #1

ξp,p′ = ξp, ∀p′ ≤ p.

nα nα

u

0

v

n~e1

Let α ∈ ( 1
2
, 1), u = nαe2, v = n~e1 + nαe2. By FKG,

Pp,p′(0←→ n~e1) ≥ p2nαPp,p′(u ←→ v).

But

Pp,p′(u ←→ v) ≥ Pp,p′(u ←→ v, u ←→ L)/

= Pp(u ←→ v, u ←→ L)/

= (1− o(1))Pp(u ←→ v)

= e−ξpn(1+o(1)).

This implies that ξp,p′ ≤ ξp, since Pp,p′(0←→ n~e1) ≤ e−ξp,p′ n.
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Continuity

Fact #2

ξp,p′ is Lipschitz continuous in p′ on [0, 1].

Let p/2 ≤ p′1 < p′2 ≤ 1. From Russo’s formula,

Pp,p′2 (0←→ n~e1)

Pp,p′1 (0←→ n~e1)
= exp

{∫ p′2

p′1

1

s
Ep,s

[
#PivL(0←→ n~e1)

∣∣ 0←→ n~e1

]
ds
}
,

where PivL(0←→ n~e1) is the set of pivotal edges, for the event

0←→ n~e1, contained in L.

It is easy to show that |C(0, n~e1) ∩ L| ≤ 2n, with high probability.

This implies that

Pp,p′2 (0←→ n~e1)

Pp,p′1 (0←→ n~e1)
≤ exp

{8

p
(p′2 − p′1)n

]
.

Therefore

0 ≤ ξp,p′1 − ξp,p′2 ≤
8

p
(p′2 − p′1).
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Positivity

Fact #3

ξp,p′ > 0, ∀p′ < 1.

0

B1 B2 B3

1/ξp

Bm

n~e1

Up to a probability at most e−cn,

Positive fraction of uncovered blocks.

Positive fraction of uncovered block with all edges closed.

The event {0←→ n~e1} occurs only if there are no uncovered blocks

with all their edges closed, which is exponentially unlikely.
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Critical point

Let p′c = p′c(d) = sup {p′ : ξp,p′ = ξp}.

Fact #4

p′c(2) = p′c(3) = p, ∀d ≥ 4 : p′c(d) ∈ (p, 1).

This amounts to determining whether

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)

grows exponentially fast with n when p′ is slightly larger than p.
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Critical point

Observe that

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)
= Ep

[
eL̃(C0,n~e1

)
∣∣ 0←→ n~e1

]
,

where

L̃(C) = log(p′/p) |C ∩ L|+ log((1− p′)/(1− p)) |∂C ∩ L|,

and ∂C denotes the exterior boundary of the cluster C.

Superficially similar to the pinning problem for a

(d − 1)-dimensional RW (Xn)n≥0: determine the growth rate of

ERW [eεLN |XN = 0] ,

where ε > 0 and LN is the local time of X at 0 up to time N.

Major difference: above, log(p′/p) and log((1− p′)/(1− p)) have

opposite signs, which results in both attractive and repulsive

components.
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Critical point Effective random walk representation

Essential tool: random walk representation of subcritical percolation

clusters [Campanino, Ioffe&V., AoP ’08].

Let p < pc and n ∈ N. Then, up to an event of exponentially small

Pp(· | 0←→ n~e1)-probability, C0,n~e1
admits the following decomposition:

n~e10

{0←→ n~e1} = {Y L + Y1 + · · ·+ YN + Y R = n~e1},

where (Yk)k≥1 is a random walk on Zd with law P, and Y L, Y R are

independent random variables with exponential tails.

In the sequel, I’ll always ignore the boundary terms Y L and Y R.
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Critical point Effective random walk representation

Y3

Y2

Y4

Y1
Y5

We write Yk = (Y
‖
k , Y

⊥
k ) ∈ Z× Zd−1.

Properties of the effective random walk Y :

P(Y
‖

1 ≥ 1) = 1;

P(|Y1| > t) ≤ e−νt for some ν = ν(p, d) > 0;

for any z⊥ ∈ Zd−1, P
(
Y ⊥1 = z⊥

)
= P

(
Y ⊥1 = −z⊥

)
.
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Critical point d ≥ 4 : p′c > p

Assume that d ≥ 4. We already know that p′c < 1, by continuity.

To prove that p′c > p, we return to the observation that

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)
= Ep

[
eL̃(C0,n~e1

)
∣∣ 0←→ n~e1

]

≤ Ep
[
eL̂(C0,n~e1

)
∣∣ 0←→ n~e1

]
with

L̂(C) = log(p′/p)︸ ︷︷ ︸
≡ε>0

|C ∩ L|.
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Critical point d ≥ 4 : p′c > p

Rewriting the previous expression in terms of the effective RW yields:

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)
≤ Ep

[
eε|C∩L|

∣∣ 0←→ n~e1

]
≤ E

[
eε

∑Tn
i=1|D(Yi ,Yi−1)∩L| ∣∣ ∃N ≥ 1 : YN = n~e1

]
,

where

D(Yi−1, Yi) denotes the “diamond” containing the piece of cluster

between Yi−1 and Yi ;

Tn = min {k ≥ 1 : Yk = n~e1} ≤ n.

We’re essentially back to the pinning problem for a RW in dimension

3 + 1 or more, for which the claim is easy.



Critical point d ≥ 4 : p′c > p

Rewriting the previous expression in terms of the effective RW yields:

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)
≤ Ep

[
eε|C∩L|

∣∣ 0←→ n~e1

]
≤ E

[
eε

∑Tn
i=1|D(Yi ,Yi−1)∩L| ∣∣ ∃N ≥ 1 : YN = n~e1

]
,

where

D(Yi−1, Yi) denotes the “diamond” containing the piece of cluster

between Yi−1 and Yi ;

Tn = min {k ≥ 1 : Yk = n~e1} ≤ n.

We’re essentially back to the pinning problem for a RW in dimension

3 + 1 or more, for which the claim is easy.



Critical point d ≥ 4 : p′c > p

Rewriting the previous expression in terms of the effective RW yields:

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)
≤ Ep

[
eε|C∩L|

∣∣ 0←→ n~e1

]
≤ E

[
eε

∑Tn
i=1|D(Yi ,Yi−1)∩L| ∣∣ ∃N ≥ 1 : YN = n~e1

]
,

where

D(Yi−1, Yi) denotes the “diamond” containing the piece of cluster

between Yi−1 and Yi ;

Tn = min {k ≥ 1 : Yk = n~e1} ≤ n.

We’re essentially back to the pinning problem for a RW in dimension

3 + 1 or more, for which the claim is easy.



Critical point d ≥ 4 : p′c > p

Rewriting the previous expression in terms of the effective RW yields:

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)
≤ Ep

[
eε|C∩L|

∣∣ 0←→ n~e1

]
≤ E

[
eε

∑Tn
i=1|D(Yi ,Yi−1)∩L| ∣∣ ∃N ≥ 1 : YN = n~e1

]
,

where

D(Yi−1, Yi) denotes the “diamond” containing the piece of cluster

between Yi−1 and Yi ;

Tn = min {k ≥ 1 : Yk = n~e1} ≤ n.

We’re essentially back to the pinning problem for a RW in dimension

3 + 1 or more, for which the claim is easy.



Critical point d ≥ 4 : p′c > p

Rewriting the previous expression in terms of the effective RW yields:

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)
≤ Ep

[
eε|C∩L|

∣∣ 0←→ n~e1

]
≤ E

[
eε

∑Tn
i=1|D(Yi ,Yi−1)∩L| ∣∣ ∃N ≥ 1 : YN = n~e1

]
,

where

D(Yi−1, Yi) denotes the “diamond” containing the piece of cluster

between Yi−1 and Yi ;

Tn = min {k ≥ 1 : Yk = n~e1} ≤ n.

We’re essentially back to the pinning problem for a RW in dimension

3 + 1 or more, for which the claim is easy.



Critical point d = 2, 3 : p′c = p

Let us turn now to the proof that p′c = p when d = 2, 3.

We introduce a suitable event Mδ ⊂ {0←→ n~e1} and write

Pp,p′(0←→ n~e1)

Pp(0←→ n~e1)
≥

Pp,p′(Mδ)

Pp(0←→ n~e1)

=
Pp,p′(Mδ)

Pp(Mδ)︸ ︷︷ ︸
“Energetic gain”

Pp(Mδ | 0←→ n~e1)︸ ︷︷ ︸
“Entropic cost”

.

We’ll choose Mδ (δ small) in such a way that
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Critical point d = 2, 3 : p′c = p

We choose for Mδ ⊂ {0←→ n~e1} the event

There exists a self-avoiding path γ ⊂ C0,n~e1

possessing at least δn cone-points on L

Entropy estimate:

What is the probability that the effective random walk Y visits L at

least δn times before reaching n~e1?

Not difficult to obtain estimates of the correct order.

Let’s see how the energy bound is established...
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Critical point d = 2, 3 : p′c = p

Since Mδ is an increasing event, we can again use Russo’s formula

Pp,p′(Mδ)

Pp(Mδ)
= exp

∫ p′

p

1

s
Ep,s

[
#PivL(Mδ)

∣∣Mδ

]
ds

≥ exp

∫ p′

p

1

s
Ep,s

[
#PivL(0←→ n~e1)

∣∣Mδ

]
ds .

The problem is thus reduced to proving that there are in average O(δn)

pivotal edges on Ln for the event {0←→ n~e1}, when Mδ occurs.

Claim: since p < pc, a positive fraction of the cone-points of the path on L
are not covered, with high probability. Since the edges incident on such

cone-points are necessarily pivotal for the connection, we obtain:

Ep,s
(

#PivL(0←→ n~e1)
∣∣ 0←→ n~e1,Mδ

)
≥ cδn,

for some c = c(p) > 0. The conclusion follows.
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Behavior on (p′c, 1)

Let #CutPtsL(C0,n~e1
) denote the number of

cut-points of C0,n~e1
on the line L

Fact #5

Assume that p′ > p′c. Then, there exist ρ, c > 0 such that

Pp,p′(#CutPtsL(C0,n~e1
) < ρn | 0←→ n~e1) ≤ e−cn.

Three steps:

A self-avoiding path π : 0→ n~e1 makes typically only small

excursions away from L.

Conditionally on such a path π, most of the cluster remains close

to π.

Surgery to ensure the presence of many cut-points on L.



Behavior on (p′c, 1)

Step 1. Let us consider a self-avoiding path π : 0→ n~e1. We want to

show that π typically leaves L only for small excursions.

Fix K > 0 large (depending on p, p′). We coarse-grain π as follows:

0 n~e1

K

The resulting broken line is the skeleton associated to π.
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Behavior on (p′c, 1)

Probabilistic cost of the pieces (remember that ξp > ξp,p′):

Of a stretch along the line:

vj uj+1 ≤ e−ξp,p′ |uj+1−vj |

Of an excursion Xj with |Xj | K-steps away from the line:

uj vj

Xj

≤ e−ξp,p′ |vj−uj |−c|Xj |K

Therefore the Pp,p′-probability of a skeleton is bounded above by

e−ξp,p′n−cK
∑M

j=1 |Xj |,

and thus its Pp,p′( · | 0←→ n~e1)-probability is bounded above by

e−ξp,p′n−cK
∑M

j=1 |Xj |

e−ξp,p′n(1−o(1))
≤ e−cK

∑M
j=1 |Xj |+o(n).
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Behavior on (p′c, 1)

On can deduce from the above (and a control over the entropy of such

skeletons) that

Pp,p′
(
∃π : 0→ n~e1 s.t.

M∑
j=1

K|Xj | ≥ εn
∣∣ 0←→ n~e1

)
≤ e−c(ε)n.

In particular, π mostly remains inside a tube of radius K around L:

2K
0 n~e1

A similar coarse-graining argument shows that the same is true for

C0,n~e1
:

0 n~e14K
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The conclusion follows from a surgery argument:

4K

4K

This has a positive probability of occuring in any box, uniformly in what

happens elsewhere. Therefore a positive fraction of the boxes must

contain a cut-point on L.
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Behavior on (p′c, 1)

Fact #6

ξp,p′ is strictly decreasing and real analytic on (p′c, 1).

We use, once more, Russo’s formula:

∂

∂p′
logPp,p′(0←→ n~e1) = Ep,p′

[
#PivL(0←→ n~e1)

∣∣ 0←→ n~e1

]
.

Since p′ > p′c,

Ep,p′
[
#PivL(0←→ n~e1)

∣∣ 0←→ n~e1

]
≥ ρ

2n.

Consequently,

ξp,p′2 − ξp,p′1 = − lim
n→∞

1

n

(
logPp,p′2 (0←→ n~e1)− logPp,p′1 (0←→ n~e1)

)
≤ −

ρ

2
(p′2 − p′1) .

Analyticity follows from the renewal structure of C0,n~e1
.
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Summary

p′c

> p (d ≥ 4)= p (d = 2, 3)

ξp

1
p′

ξp,p′

What about the critical behavior as p′ ↓ p′c?



Critical behavior

Only in dimensions 2 and 3, unfortunately.

Fact #7

There exist constants c±2 , c
±
3 > 0 such that, as p′ ↓ p′c ,

c−2 (p′ − p′c)2 ≤ ξp − ξp,p′ ≤ c+
2 (p′ − p′c)2 (d = 2), (1)

e−c
−
3 /(p′−p′c ) ≤ ξp − ξp,p′ ≤ e−c

+
3 /(p′−p′c ) (d = 3). (2)

This actually follows from the estimates on p′c done before, by taking

care of the dependence on p′ of the various constants...
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Sharp asymptotics

Fact #8

For all d ≥ 2 and for all p′ > p′c, there exists rd = rd(p, p′) > 0 such that

Pp,p′(0←→ n~e1) = rd e
−ξp,p′n (1 + o(1)) .

This should be contrasted with the behavior in the homogeneous

case [Campanino&Chayes2, PTRF ’91]: for all d ≥ 1,

Pp(0←→ n~e1) =
cd

n(d−1)/2
e−ξpn (1 + o(1)) .

The proof of these purely exponential asymptotics relies on the renewal

structure of C0,n~e1
.
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Open problems

Properties of ξp,p′ :

Analyze the behavior of ξp,p′ as p′ ↓ p′c, in dimensions d ≥ 4.

Analyze the behavior of ξp,p′ as a function of both p and p′. In

particular, for (p, p′) close to the critical line p 7→ p′c(p).

More general defects:

Defect line not coinciding with a coordinate axis; higher-dimensional

defects (e.g., hyperplanes of given codimension).

Half-space percolation, with the defect line (or hyperplane) at the

boundary of the system.

Sharp asymptotics of the connectivity function Pp,p′(0←→ n~e1) for

p′ ≤ p′c, and the corresponding scaling limit of the cluster C0,n~e1
.

Extension to other models: e.g., a version for FK-percolation would

provide an extension to Ising/Potts models.



Thank you!
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