Percolation with a line of defects

Yvan Velenik
Université de Genève

joint work with
Sacha Friedli and Dmitry loffe

Inhomogeneous independent bond percolation model
$\mathcal{L}=\left\{n \vec{e}_{1}: n \in \mathbb{Z}\right\}$
$\left(\omega_{e}\right)_{e \in \mathbb{Z}^{d}}, \omega_{e} \in\{0,1\}$, indep.
$\mathbb{P}_{p, p^{\prime}}\left(\omega_{e}=1\right)= \begin{cases}p & \text { if } e \not \subset \mathcal{L}, \\ p^{\prime} & \text { if } e \subset \mathcal{L} .\end{cases}$

When $p^{\prime}=p$, we simply write $\mathbb{P}_{p} \equiv \mathbb{P}_{p, p}$.

Main question

Let $p_{\mathrm{c}}=p_{\mathrm{c}}(d)$ be the critical value of the homogeneous model $\left(p^{\prime}=p\right)$.
Earlier works on this model dealt with the case $p=p_{c}(d)$ and proved that there is no percolation for any $p^{\prime}<1$ when

- $d=2$ [Zhang, AoP '94],
- d large [Newman\& Wu, AoP '97].

Main question

Let $p_{\mathrm{c}}=p_{\mathrm{c}}(d)$ be the critical value of the homogeneous model $\left(p^{\prime}=p\right)$.
Earlier works on this model dealt with the case $p=p_{\mathrm{c}}(d)$ and proved that there is no percolation for any $p^{\prime}<1$ when

- $d=2$ [Zhang, AoP '94],
- d large [Newman\& Wu, AoP '97].

We are interested in the case $p<p_{c}(d), d \geq 2$.

- Of course, there is no percolation in any dimension for any $p^{\prime}<1$ in that case.
- Instead, what concerns us here is the rate of exponential decay of connectivities along \mathcal{L} :

$$
\xi_{p, p^{\prime}}=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)
$$

Main question

Let $p_{\mathrm{c}}=p_{\mathrm{c}}(d)$ be the critical value of the homogeneous model $\left(p^{\prime}=p\right)$.
Earlier works on this model dealt with the case $p=p_{\mathrm{c}}(d)$ and proved that there is no percolation for any $p^{\prime}<1$ when

- $d=2$ [Zhang, AoP '94],
- d large ${ }^{[N e w m a n \& ~ W u, ~ A o P ~ ' 97] . ~}$

We are interested in the case $p<p_{c}(d), d \geq 2$.

- Of course, there is no percolation in any dimension for any $p^{\prime}<1$ in that case.
- Instead, what concerns us here is the rate of exponential decay of connectivities along \mathcal{L} :

$$
\xi_{p, p^{\prime}}=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)
$$

What is the behavior of $\xi_{p, p^{\prime}}$ as a function of p^{\prime} for fixed $p<p_{\mathrm{c}}(d)$?

Basic properties

- $\xi_{p, p^{\prime}}$ exists by sub-additivity.

Basic properties

- $\xi_{p, p^{\prime}}$ exists by sub-additivity.
- $\xi_{p} \equiv \xi_{p, p}>0$ for all $p<p_{c}{ }^{\text {[Menshikov '86, Aizenman\&Barsky '87] }}$.

Basic properties

- $\xi_{p, p^{\prime}}$ exists by sub-additivity.
- $\xi_{p} \equiv \xi_{p, p}>0$ for all $p<p_{\mathrm{c}}{ }^{\text {[Menshikov '86, Aizenman\&Barsky '87] }}$.
- $\xi_{p, p^{\prime}}$ is non-increasing in p^{\prime}. In particular,

$$
\begin{aligned}
& p^{\prime} \leq p \Longrightarrow \xi_{p, p^{\prime}} \geq \xi_{p}, \\
& p^{\prime} \geq p \Longrightarrow \xi_{p, p^{\prime}} \leq \xi_{p} .
\end{aligned}
$$

Existence of a transition

Fact \#1

$$
\xi_{p, p^{\prime}}=\xi_{p}, \quad \forall p^{\prime} \leq p .
$$

Existence of a transition

Fact \#1

$$
\xi_{p, p^{\prime}}=\xi_{p}, \quad \forall p^{\prime} \leq p .
$$

Let $\alpha \in\left(\frac{1}{2}, 1\right), u=n^{\alpha} \mathbf{e}_{2}, v=n \vec{e}_{1}+n^{\alpha} \mathbf{e}_{2}$. By FKG,

$$
\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \geq p^{2 n^{\alpha}} \mathbb{P}_{p, p^{\prime}}(u \longleftrightarrow v) .
$$

Fact \#1

$$
\xi_{p, p^{\prime}}=\xi_{p}, \quad \forall p^{\prime} \leq p .
$$

Let $\alpha \in\left(\frac{1}{2}, 1\right), u=n^{\alpha} \mathbf{e}_{2}, v=n \vec{e}_{1}+n^{\alpha} \mathbf{e}_{2}$. By FKG,

$$
\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \geq p^{2 n^{\alpha}} \mathbb{P}_{p, p^{\prime}}(u \longleftrightarrow v)
$$

But

$$
\begin{aligned}
\mathbb{P}_{p, p^{\prime}}(u \longleftrightarrow v) & \geq \mathbb{P}_{p, p^{\prime}}(u \longleftrightarrow v, u \longleftrightarrow \mathcal{L}) \\
& =\mathbb{P}_{p}(u \longleftrightarrow v, u \longleftrightarrow \mathcal{L}) \\
& =(1-o(1)) \mathbb{P}_{p}(u \longleftrightarrow v) \\
& =e^{-\xi_{p} n(1+o(1))} .
\end{aligned}
$$

This implies that $\xi_{p, p^{\prime}} \leq \xi_{p}$, since $\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \leq e^{-\xi_{p, p^{\prime}} n}$.

Continuity

Fact \#2

$\xi_{p, p^{\prime}}$ is Lipschitz continuous in p^{\prime} on $[0,1]$.

Continuity

Fact \#2

$\xi_{p, p^{\prime}}$ is Lipschitz continuous in p^{\prime} on $[0,1]$.

- Let $p / 2 \leq p_{1}^{\prime}<p_{2}^{\prime} \leq 1$. From Russo's formula,

$$
\frac{\mathbb{P}_{p, p_{2}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p, p_{1}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}=\exp \left\{\int_{p_{1}^{\prime}}^{p_{2}^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \mathrm{d} s\right\},
$$

where $\operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)$ is the set of pivotal edges, for the event $0 \longleftrightarrow n \vec{e}_{1}$, contained in \mathcal{L}.

Continuity

Fact \#2

$\xi_{p, p^{\prime}}$ is Lipschitz continuous in p^{\prime} on $[0,1]$.

- Let $p / 2 \leq p_{1}^{\prime}<p_{2}^{\prime} \leq 1$. From Russo's formula,

$$
\frac{\mathbb{P}_{p, p_{2}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p, p_{1}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}=\exp \left\{\int_{p_{1}^{\prime}}^{p_{2}^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \mathrm{d} s\right\},
$$

where $\operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)$ is the set of pivotal edges, for the event $0 \longleftrightarrow n \vec{e}_{1}$, contained in \mathcal{L}.

- It is easy to show that $\left|C\left(0, n \vec{e}_{1}\right) \cap \mathcal{L}\right| \leq 2 n$, with high probability. This implies that

$$
\frac{\mathbb{P}_{p, p_{2}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p, p_{1}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} \leq \exp \left\{\frac{8}{p}\left(p_{2}^{\prime}-p_{1}^{\prime}\right) n\right] .
$$

Continuity

Fact \#2

$\xi_{p, p^{\prime}}$ is Lipschitz continuous in p^{\prime} on $[0,1]$.

- Let $p / 2 \leq p_{1}^{\prime}<p_{2}^{\prime} \leq 1$. From Russo's formula,

$$
\frac{\mathbb{P}_{p, p_{2}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p, p_{1}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}=\exp \left\{\int_{p_{1}^{\prime}}^{p_{2}^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \mathrm{d} s\right\},
$$

where $\operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)$ is the set of pivotal edges, for the event $0 \longleftrightarrow n \vec{e}_{1}$, contained in \mathcal{L}.

- It is easy to show that $\left|C\left(0, n \vec{e}_{1}\right) \cap \mathcal{L}\right| \leq 2 n$, with high probability. This implies that

$$
\frac{\mathbb{P}_{p, p_{2}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p, p_{1}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} \leq \exp \left\{\frac{8}{p}\left(p_{2}^{\prime}-p_{1}^{\prime}\right) n\right] .
$$

- Therefore

$$
0 \leq \xi_{p, p_{1}^{\prime}}-\xi_{p, p_{2}^{\prime}} \leq \frac{8}{p}\left(p_{2}^{\prime}-p_{1}^{\prime}\right)
$$

Positivity

Fact \#3

$$
\xi_{p, p^{\prime}}>0, \quad \forall p^{\prime}<1 .
$$

Positivity

Fact \#3

$$
\xi_{p, p^{\prime}}>0, \quad \forall p^{\prime}<1 .
$$

Positivity

Fact \#3

$$
\xi_{p, p^{\prime}}>0, \quad \forall p^{\prime}<1 .
$$

Positivity

Fact \#3

$$
\xi_{p, p^{\prime}}>0, \quad \forall p^{\prime}<1 .
$$

Up to a probability at most $e^{-c n}$,

- Positive fraction of uncovered blocks.

Positivity

Fact \#3

$$
\xi_{p, p^{\prime}}>0, \quad \forall p^{\prime}<1
$$

Up to a probability at most $e^{-c n}$,

- Positive fraction of uncovered blocks.
- Positive fraction of uncovered blocks with all their edges closed.

Positivity

Fact \#3

$$
\xi_{p, p^{\prime}}>0, \quad \forall p^{\prime}<1 .
$$

Up to a probability at most $e^{-c n}$,

- Positive fraction of uncovered blocks.
- Positive fraction of uncovered blocks with all their edges closed.

The event $\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$ occurs only if there are no uncovered blocks with all their edges closed, which is exponentially unlikely.

Critical point

Let $p_{\mathrm{c}}^{\prime}=p_{\mathrm{c}}^{\prime}(d)=\sup \left\{p^{\prime}: \xi_{p, p^{\prime}}=\xi_{p}\right\}$.
Fact \#4

$$
p_{\mathrm{c}}^{\prime}(2)=p_{\mathrm{c}}^{\prime}(3)=p, \quad \forall d \geq 4: p_{\mathrm{c}}^{\prime}(d) \in(p, 1) .
$$

Critical point

$$
\text { Let } p_{\mathrm{c}}^{\prime}=p_{\mathrm{c}}^{\prime}(d)=\sup \left\{p^{\prime}: \xi_{p, p^{\prime}}=\xi_{p}\right\} .
$$

Fact \#4

$$
p_{\mathrm{c}}^{\prime}(2)=p_{\mathrm{c}}^{\prime}(3)=p, \quad \forall d \geq 4: p_{\mathrm{c}}^{\prime}(d) \in(p, 1) .
$$

This amounts to determining whether

$$
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}
$$

grows exponentially fast with n when p^{\prime} is slightly larger than p.

Critical point

- Observe that

$$
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}=\mathbb{E}_{p}\left[e^{\tilde{L}\left(C_{0, n \vec{e}_{1}}\right)} \mid 0 \longleftrightarrow n \vec{e}_{1}\right],
$$

where

$$
\tilde{L}(C)=\log \left(p^{\prime} / p\right)|C \cap \mathcal{L}|+\log \left(\left(1-p^{\prime}\right) /(1-p)\right)|\partial C \cap \mathcal{L}|,
$$

and ∂C denotes the exterior boundary of the cluster C.

Critical point

- Observe that

$$
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}=\mathbb{E}_{p}\left[e^{\tilde{L}\left(C_{0, n \vec{e}_{1}}\right)} \mid 0 \longleftrightarrow n \overrightarrow{e_{1}}\right],
$$

where

$$
\tilde{L}(C)=\log \left(p^{\prime} / p\right)|C \cap \mathcal{L}|+\log \left(\left(1-p^{\prime}\right) /(1-p)\right)|\partial C \cap \mathcal{L}|,
$$

and ∂C denotes the exterior boundary of the cluster C.

- Superficially similar to the pinning problem for a (d-1)-dimensional RW $\left(X_{n}\right)_{n \geq 0}$: determine the growth rate of

$$
E_{R W}\left[e^{\epsilon L_{N}} \mid X_{N}=0\right],
$$

where $\epsilon>0$ and L_{N} is the local time of X at 0 up to time N.

Critical point

- Observe that

$$
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}=\mathbb{E}_{p}\left[e^{\tilde{L}\left(C_{0, n \vec{e}_{1}}\right)} \mid 0 \longleftrightarrow n \overrightarrow{e_{1}}\right],
$$

where

$$
\tilde{L}(C)=\log \left(p^{\prime} / p\right)|C \cap \mathcal{L}|+\log \left(\left(1-p^{\prime}\right) /(1-p)\right)|\partial C \cap \mathcal{L}|
$$

and ∂C denotes the exterior boundary of the cluster C.

- Superficially similar to the pinning problem for a (d-1)-dimensional RW $\left(X_{n}\right)_{n \geq 0}$: determine the growth rate of

$$
E_{R W}\left[e^{\epsilon L_{N}} \mid X_{N}=0\right],
$$

where $\epsilon>0$ and L_{N} is the local time of X at 0 up to time N.

- Major difference: above, $\log \left(p^{\prime} / p\right)$ and $\log \left(\left(1-p^{\prime}\right) /(1-p)\right)$ have opposite signs, which results in both attractive and repulsive components.

Essential tool: random walk representation of subcritical percolation clusters [Campanino, loffe\&V., AoP '08].

Let $p<p_{\mathrm{c}}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\mathbb{P}_{p}\left(\cdot \mid 0 \longleftrightarrow n \vec{e}_{1}\right)$-probability, $C_{0, n \vec{e}_{1}}$ admits the following decomposition:

Essential tool: random walk representation of subcritical percolation clusters [Campanino, loffe\&V., AoP '08].

Let $p<p_{c}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\mathbb{P}_{p}\left(\cdot \mid 0 \longleftrightarrow n \vec{e}_{1}\right)$-probability, $C_{0, n \vec{e}_{1}}$ admits the following decomposition:

Essential tool: random walk representation of subcritical percolation clusters [Campanino, loffe\&V., AoP '08].

Let $p<p_{c}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\mathbb{P}_{p}\left(\cdot \mid 0 \longleftrightarrow n \vec{e}_{1}\right)$-probability, $C_{0, n \vec{e}_{1}}$ admits the following decomposition:

where $\left(Y_{k}\right)_{k \geq 1}$ is a random walk on \mathbb{Z}^{d} with law P, and Y^{L}, Y^{R} are independent random variables with exponential tails.

Essential tool: random walk representation of subcritical percolation clusters [Campanino, loffe\&V., AoP '08].

Let $p<p_{c}$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\mathbb{P}_{p}\left(\cdot \mid 0 \longleftrightarrow n \vec{e}_{1}\right)$-probability, $C_{0, n \vec{e}_{1}}$ admits the following decomposition:

where $\left(Y_{k}\right)_{k \geq 1}$ is a random walk on \mathbb{Z}^{d} with law P, and Y^{L}, Y^{R} are independent random variables with exponential tails.
In the sequel, l'll always ignore the boundary terms Y^{L} and Y^{R}.

We write $Y_{k}=\left(Y_{k}^{\|}, Y_{k}^{\perp}\right) \in \mathbb{Z} \times \mathbb{Z}^{d-1}$.

We write $Y_{k}=\left(Y_{k}^{\|}, Y_{k}^{\perp}\right) \in \mathbb{Z} \times \mathbb{Z}^{d-1}$.
Properties of the effective random walk Y :

- $P\left(Y_{1}^{\|} \geq 1\right)=1$;
- $\mathrm{P}\left(\left|Y_{1}\right|>t\right) \leq e^{-\nu t}$ for some $\nu=\nu(p, d)>0$;
- for any $z^{\perp} \in \mathbb{Z}^{d-1}, \mathrm{P}\left(Y_{1}^{\perp}=z^{\perp}\right)=\mathrm{P}\left(Y_{1}^{\perp}=-z^{\perp}\right)$.

Assume that $d \geq 4$. We already know that $p_{c}^{\prime}<1$, by continuity.
To prove that $p_{\mathrm{c}}^{\prime}>p$, we return to the observation that

$$
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}=\mathbb{E}_{p}\left[e^{\tilde{L}\left(c_{0, n \vec{e}_{1}}\right)} \mid 0 \longleftrightarrow n \vec{e}_{1}\right]
$$

Assume that $d \geq 4$. We already know that $p_{c}^{\prime}<1$, by continuity.
To prove that $p_{\mathrm{c}}^{\prime}>p$, we return to the observation that

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{p}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & =\mathbb{E}_{p}\left[e^{\tilde{L}\left(C_{0, n \vec{e}_{1}}\right)} \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \\
& \leq \mathbb{E}_{p}\left[e^{\hat{L}\left(C_{0, n \vec{e}_{1}}\right)} \mid 0 \longleftrightarrow n \vec{e}_{1}\right]
\end{aligned}
$$

with

$$
\hat{L}(C)=\underbrace{\log \left(p^{\prime} / p\right)}_{\equiv \epsilon>0}|C \cap \mathcal{L}| .
$$

Rewriting the previous expression in terms of the effective RW yields:

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & \leq \mathbb{E}_{p}\left[e^{\epsilon|C \cap \mathcal{L}|} \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \\
& \leq \mathrm{E}\left[e^{\left.\epsilon \sum_{i=1}^{T_{n}\left|D\left(Y_{i}, Y_{i-1}\right) \cap \mathcal{L}\right|} \mid \exists N \geq 1: Y_{N}=n \vec{e}_{1}\right]}\right.
\end{aligned}
$$

where

- $D\left(Y_{i-1}, Y_{i}\right)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_{i};
- $T_{n}=\min \left\{k \geq 1: Y_{k}=n \vec{e}_{1}\right\} \leq n$.

Rewriting the previous expression in terms of the effective RW yields:

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & \leq \mathbb{E}_{p}\left[e^{\epsilon|C \cap \mathcal{L}|} \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \\
& \leq \mathrm{E}\left[e^{\left.\epsilon \sum_{i=1}^{T_{n}\left|D\left(Y_{i}, Y_{i-1}\right) \cap \mathcal{L}\right|} \mid \exists N \geq 1: Y_{N}=n \vec{e}_{1}\right]}\right.
\end{aligned}
$$

where

- $D\left(Y_{i-1}, Y_{i}\right)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_{i};
- $T_{n}=\min \left\{k \geq 1: Y_{k}=n \vec{e}_{1}\right\} \leq n$.

Rewriting the previous expression in terms of the effective RW yields:

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & \leq \mathbb{E}_{p}\left[e^{\epsilon|C \cap \mathcal{L}|} \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \\
& \leq \mathrm{E}\left[e^{\left.\epsilon \sum_{i=1}^{T_{n}\left|D\left(Y_{i}, Y_{i-1}\right) \cap \mathcal{L}\right|} \mid \exists N \geq 1: Y_{N}=n \vec{e}_{1}\right]}\right.
\end{aligned}
$$

where

- $D\left(Y_{i-1}, Y_{i}\right)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_{i};
- $T_{n}=\min \left\{k \geq 1: Y_{k}=n \vec{e}_{1}\right\} \leq n$.

Rewriting the previous expression in terms of the effective RW yields:

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & \leq \mathbb{E}_{p}\left[e^{\epsilon|C \cap \mathcal{L}|} \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \\
& \leq \mathrm{E}\left[e^{\left.\epsilon \sum_{i=1}^{T_{n}\left|D\left(Y_{i}, Y_{i-1}\right) \cap \mathcal{L}\right|} \mid \exists N \geq 1: Y_{N}=n \vec{e}_{1}\right]}\right.
\end{aligned}
$$

where

- $D\left(Y_{i-1}, Y_{i}\right)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_{i};
- $T_{n}=\min \left\{k \geq 1: Y_{k}=n \vec{e}_{1}\right\} \leq n$.

Rewriting the previous expression in terms of the effective RW yields:

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & \leq \mathbb{E}_{p}\left[e^{\epsilon|C \cap \mathcal{L}|} \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \\
& \leq E\left[e^{\epsilon \sum_{i=1}^{T_{n}}\left|D\left(Y_{i}, Y_{i-1}\right) \cap \mathcal{L}\right|} \mid \exists N \geq 1: Y_{N}=n \vec{e}_{1}\right]
\end{aligned}
$$

where

- $D\left(Y_{i-1}, Y_{i}\right)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_{i};
- $T_{n}=\min \left\{k \geq 1: Y_{k}=n \vec{e}_{1}\right\} \leq n$.

We're essentially back to the pinning problem for a RW in dimension $3+1$ or more, for which the claim is easy.

Let us turn now to the proof that $p_{\mathrm{c}}^{\prime}=p$ when $d=2,3$.
We introduce a suitable event $\mathcal{M}_{\delta} \subset\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$ and write

$$
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} \geq \frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}
$$

Let us turn now to the proof that $p_{\mathrm{c}}^{\prime}=p$ when $d=2,3$.
We introduce a suitable event $\mathcal{M}_{\delta} \subset\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$ and write

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & \geq \frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} \\
& =\underbrace{\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)}}_{\text {"Energetic gain" }} \underbrace{\mathbb{P}_{p}\left(\mathcal{M}_{\delta} \mid 0 \longleftrightarrow n \vec{e}_{1}\right)}_{\text {"Entropic cost" }} .
\end{aligned}
$$

Let us turn now to the proof that $p_{\mathrm{c}}^{\prime}=p$ when $d=2,3$.
We introduce a suitable event $\mathcal{M}_{\delta} \subset\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$ and write

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & \geq \frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} \\
& =\underbrace{\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)}}_{\text {"Energetic gain" }} \underbrace{\mathbb{P}_{p}\left(\mathcal{M}_{\delta} \mid 0 \longleftrightarrow n \vec{e}_{1}\right)}_{\text {"Entropic cost" }}
\end{aligned}
$$

We'll choose $\mathcal{M}_{\delta}(\delta$ small $)$ in such a way that

$$
\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)} \geq e^{c \delta\left(p^{\prime}-p\right) n}
$$

and

$$
\mathbb{P}_{p}\left(\mathcal{M}_{\delta} \mid 0 \longleftrightarrow n \vec{e}_{1}\right) \geq \begin{cases}e^{-c \delta^{2} n} & \text { if } d=2 \\ e^{-c(\delta /|\log \delta|) n} & \text { if } d=3\end{cases}
$$

Let us turn now to the proof that $p_{\mathrm{c}}^{\prime}=p$ when $d=2,3$.
We introduce a suitable event $\mathcal{M}_{\delta} \subset\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$ and write

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} & \geq \frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)} \\
& =\underbrace{\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)}}_{\text {"Energetic gain" }} \underbrace{\mathbb{P}_{p}\left(\mathcal{M}_{\delta} \mid 0 \longleftrightarrow n \vec{e}_{1}\right)}_{\text {"Entropic cost" }}
\end{aligned}
$$

We'll choose $\mathcal{M}_{\delta}(\delta$ small $)$ in such a way that

$$
\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)} \geq e^{c \delta\left(p^{\prime}-p\right) n}
$$

and

$$
\mathbb{P}_{p}\left(\mathcal{M}_{\delta} \mid 0 \longleftrightarrow n \vec{e}_{1}\right) \geq \begin{cases}e^{-c \delta^{2} n} & \text { if } d=2 \\ e^{-c(\delta /|\log \delta|) n} & \text { if } d=3\end{cases}
$$

The conclusion follows for small enough δ, since $\delta \gg \delta^{2}, \delta /|\log \delta|$.

Critical point

$$
d=2,3: p_{\mathrm{c}}^{\prime}=p
$$

We choose for $\mathcal{M}_{\delta} \subset\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$ the event
There exists a self-avoiding path $\gamma \subset C_{0, n \vec{e}_{1}}$ possessing at least δn cone-points on \mathcal{L}

We choose for $\mathcal{M}_{\delta} \subset\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$ the event
There exists a self-avoiding path $\gamma \subset C_{0, n \vec{e}_{1}}$ possessing at least δn cone-points on \mathcal{L}

Entropy estimate:

- What is the probability that the effective random walk Y visits \mathcal{L} at least δn times before reaching $n \vec{e}_{1}$?
- Not difficult to obtain estimates of the correct order.

We choose for $\mathcal{M}_{\delta} \subset\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$ the event
There exists a self-avoiding path $\gamma \subset C_{0, n \vec{e}_{1}}$ possessing at least δn cone-points on \mathcal{L}

Entropy estimate:

- What is the probability that the effective random walk Y visits \mathcal{L} at least δn times before reaching $n \vec{e}_{1}$?
- Not difficult to obtain estimates of the correct order.

Let's see how the energy bound is established...

Since \mathcal{M}_{δ} is an increasing event, we can again use Russo's formula

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)} & =\exp \int_{p}^{p^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(\mathcal{M}_{\delta}\right) \mid \mathcal{M}_{\delta}\right] \mathrm{d} s \\
& \geq \exp \int_{p}^{p^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid \mathcal{M}_{\delta}\right] \mathrm{d} s
\end{aligned}
$$

Since \mathcal{M}_{δ} is an increasing event, we can again use Russo's formula

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)} & =\exp \int_{p}^{p^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(\mathcal{M}_{\delta}\right) \mid \mathcal{M}_{\delta}\right] \mathrm{d} s \\
& \geq \exp \int_{p}^{p^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid \mathcal{M}_{\delta}\right] \mathrm{d} s
\end{aligned}
$$

The problem is thus reduced to proving that there are in average $O(\delta n)$ pivotal edges on \mathcal{L}_{n} for the event $\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$, when \mathcal{M}_{δ} occurs.

Since \mathcal{M}_{δ} is an increasing event, we can again use Russo's formula

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)} & =\exp \int_{p}^{p^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(\mathcal{M}_{\delta}\right) \mid \mathcal{M}_{\delta}\right] \mathrm{d} s \\
& \geq \exp \int_{p}^{p^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid \mathcal{M}_{\delta}\right] \mathrm{d} s
\end{aligned}
$$

The problem is thus reduced to proving that there are in average $O(\delta n)$ pivotal edges on \mathcal{L}_{n} for the event $\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$, when \mathcal{M}_{δ} occurs.

Since \mathcal{M}_{δ} is an increasing event, we can again use Russo's formula

$$
\begin{aligned}
\frac{\mathbb{P}_{p, p^{\prime}}\left(\mathcal{M}_{\delta}\right)}{\mathbb{P}_{p}\left(\mathcal{M}_{\delta}\right)} & =\exp \int_{p}^{p^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(\mathcal{M}_{\delta}\right) \mid \mathcal{M}_{\delta}\right] \mathrm{d} s \\
& \geq \exp \int_{p}^{p^{\prime}} \frac{1}{s} \mathbb{E}_{p, s}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid \mathcal{M}_{\delta}\right] \mathrm{d} s
\end{aligned}
$$

The problem is thus reduced to proving that there are in average $O(\delta n)$ pivotal edges on \mathcal{L}_{n} for the event $\left\{0 \longleftrightarrow n \vec{e}_{1}\right\}$, when \mathcal{M}_{δ} occurs.

Claim: since $p<p_{\mathrm{c}}$, a positive fraction of the cone-points of the path on \mathcal{L} are not covered, with high probability. Since the edges incident on such cone-points are necessarily pivotal for the connection, we obtain:

$$
\mathbb{E}_{p, s}\left(\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}, \mathcal{M}_{\delta}\right) \geq c \delta n,
$$

for some $c=c(p)>0$. The conclusion follows.

Additional informations about the red part?

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

Let \#CutPts $\mathcal{L}_{\mathcal{L}}\left(C_{0, n \vec{e}_{1}}\right)$ denote the number of cut-points of $C_{0, n \vec{e}_{1}}$ on the line \mathcal{L}

Fact \#5

Assume that $p^{\prime}>p_{\mathrm{c}}^{\prime}$. Then, there exist $\rho, \mathrm{c}>0$ such that

$$
\mathbb{P}_{p, p^{\prime}}\left(\# \operatorname{CutPts}_{\mathcal{L}}\left(C_{0, n \vec{e}_{1}}\right)<\rho n \mid 0 \longleftrightarrow n \vec{e}_{1}\right) \leq e^{-c n} .
$$

Three steps:

- A self-avoiding path $\pi: 0 \rightarrow n \vec{e}_{1}$ makes typically only small excursions away from \mathcal{L}.
- Conditionally on such a path π, most of the cluster remains close to π.
- Surgery to ensure the presence of many cut-points on \mathcal{L}.

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

Step 1. Let us consider a self-avoiding path $\pi: 0 \rightarrow n \vec{e}_{1}$. We want to show that π typically leaves \mathcal{L} only for small excursions.

Fix $K>0$ large (depending on p, p^{\prime}). We coarse-grain π as follows:

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

Step 1. Let us consider a self-avoiding path $\pi: 0 \rightarrow n \vec{e}_{1}$. We want to show that π typically leaves \mathcal{L} only for small excursions.

Fix $K>0$ large (depending on p, p^{\prime}). We coarse-grain π as follows:

The resulting broken line is the skeleton associated to π.

Behavior on $\left(p_{c}^{\prime}, 1\right)$

Probabilistic cost of the pieces (remember that $\xi_{p}>\xi_{p, p^{\prime}}$):

- Of a stretch along the line:

Behavior on $\left(p_{c}^{\prime}, 1\right)$

Probabilistic cost of the pieces (remember that $\xi_{p}>\xi_{p, p^{\prime}}$):

- Of a stretch along the line:

- Of an excursion \mathcal{X}_{j} with $\left|\mathcal{X}_{j}\right| K$-steps away from the line:

$$
\leq e^{-\xi_{p, p^{\prime}}\left|v_{j}-u_{j}\right|-c\left|\mathcal{X}_{j}\right| K}
$$

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

Probabilistic cost of the pieces (remember that $\xi_{p}>\xi_{p, p^{\prime}}$):

- Of a stretch along the line:

- Of an excursion \mathcal{X}_{j} with $\left|\mathcal{X}_{j}\right| K$-steps away from the line:

$$
\leq e^{-\xi_{p, p^{\prime}}\left|v_{j}-u_{j}\right|-c\left|\mathcal{X}_{j}\right| K}
$$

Therefore the $\mathbb{P}_{p, p^{\prime}}$-probability of a skeleton is bounded above by

$$
e^{-\xi_{p, p^{\prime}} n-c K \sum_{j=1}^{M}\left|\mathcal{X}_{j}\right|},
$$

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

Probabilistic cost of the pieces (remember that $\xi_{p}>\xi_{p, p^{\prime}}$):

- Of a stretch along the line:

- Of an excursion \mathcal{X}_{j} with $\left|\mathcal{X}_{j}\right| K$-steps away from the line:

$$
\leq e^{-\xi_{p, p^{\prime}}\left|v_{j}-u_{j}\right|-c\left|\mathcal{X}_{j}\right| K}
$$

Therefore the $\mathbb{P}_{p, p^{\prime}}$-probability of a skeleton is bounded above by

$$
e^{-\xi_{p, p^{\prime}} n-c K \sum_{j=1}^{M}\left|\mathcal{X}_{j}\right|}
$$

and thus its $\mathbb{P}_{p, p^{\prime}}\left(\cdot \mid 0 \longleftrightarrow n \vec{e}_{1}\right)$-probability is bounded above by

$$
\frac{e^{-\xi_{p, p^{\prime}} n-c K \sum_{j=1}^{M}\left|\mathcal{X}_{j}\right|}}{e^{-\xi_{p, p^{\prime}} n(1-o(1))}} \leq e^{-c K \sum_{j=1}^{M}\left|\mathcal{X}_{j}\right|+o(n)}
$$

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

On can deduce from the above (and a control over the entropy of such skeletons) that

$$
\mathbb{P}_{p, p^{\prime}}\left(\exists \pi: 0 \rightarrow n \vec{e}_{1} \text { s.t. } \sum_{j=1}^{M} K\left|\mathcal{X}_{j}\right| \geq \epsilon n \mid 0 \longleftrightarrow n \vec{e}_{1}\right) \leq e^{-c(\epsilon) n} .
$$

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

On can deduce from the above (and a control over the entropy of such skeletons) that

$$
\mathbb{P}_{p, p^{\prime}}\left(\exists \pi: 0 \rightarrow n \vec{e}_{1} \text { s.t. } \sum_{j=1}^{M} K\left|\mathcal{X}_{j}\right| \geq \epsilon n \mid 0 \longleftrightarrow n \vec{e}_{1}\right) \leq e^{-c(\epsilon) n} .
$$

In particular, π mostly remains inside a tube of radius K around \mathcal{L} :

Behavior on $\left(p_{c}^{\prime}, 1\right)$

On can deduce from the above (and a control over the entropy of such skeletons) that

$$
\mathbb{P}_{p, p^{\prime}}\left(\exists \pi: 0 \rightarrow n \vec{e}_{1} \text { s.t. } \sum_{j=1}^{M} K\left|\mathcal{X}_{j}\right| \geq \epsilon n \mid 0 \longleftrightarrow n \vec{e}_{1}\right) \leq e^{-c(\epsilon) n} .
$$

In particular, π mostly remains inside a tube of radius K around \mathcal{L} :

A similar coarse-graining argument shows that the same is true for $C_{0, n \vec{e}_{1}}$:

Behavior on $\left(p_{c}^{\prime}, 1\right)$

The conclusion follows from a surgery argument:

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

The conclusion follows from a surgery argument:

This has a positive probability of occuring in any box, uniformly in what happens elsewhere. Therefore a positive fraction of the boxes must contain a cut-point on \mathcal{L}.

Behavior on $\left(p_{c}^{\prime}, 1\right)$

Fact \#6

$\xi_{p, p^{\prime}}$ is strictly decreasing and real analytic on $\left(p_{c}^{\prime}, 1\right)$.
We use, once more, Russo's formula:

$$
\frac{\partial}{\partial p^{\prime}} \log \mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=\mathbb{E}_{p, p^{\prime}}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right]
$$

Behavior on $\left(p_{c}^{\prime}, 1\right)$

Fact \#6

$$
\xi_{p, p^{\prime}} \text { is strictly decreasing and real analytic on }\left(p_{c}^{\prime}, 1\right) \text {. }
$$

We use, once more, Russo's formula:

$$
\frac{\partial}{\partial p^{\prime}} \log \mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=\mathbb{E}_{p, p^{\prime}}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right]
$$

Since $p^{\prime}>p_{\mathrm{c}}^{\prime}$,

$$
\mathbb{E}_{p, p^{\prime}}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \geq \frac{\rho}{2} n .
$$

Behavior on $\left(p_{\mathrm{c}}^{\prime}, 1\right)$

Fact \#6

$$
\xi_{p, p^{\prime}} \text { is strictly decreasing and real analytic on }\left(p_{c}^{\prime}, 1\right) \text {. }
$$

We use, once more, Russo's formula:

$$
\frac{\partial}{\partial p^{\prime}} \log \mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=\mathbb{E}_{p, p^{\prime}}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right]
$$

Since $p^{\prime}>p_{\mathrm{c}}^{\prime}$,

$$
\mathbb{E}_{p, p^{\prime}}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \geq \frac{\rho}{2} n .
$$

Consequently,

$$
\begin{aligned}
\xi_{p, p_{2}^{\prime}}-\xi_{p, p_{1}^{\prime}} & =-\lim _{n \rightarrow \infty} \frac{1}{n}\left(\log \mathbb{P}_{p, p_{2}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)-\log \mathbb{P}_{p, p_{1}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)\right) \\
& \leq-\frac{\rho}{2}\left(p_{2}^{\prime}-p_{1}^{\prime}\right)
\end{aligned}
$$

Behavior on $\left(p_{c}^{\prime}, 1\right)$

Fact \#6

$$
\xi_{p, p^{\prime}} \text { is strictly decreasing and real analytic on }\left(p_{c}^{\prime}, 1\right) \text {. }
$$

We use, once more, Russo's formula:

$$
\frac{\partial}{\partial p^{\prime}} \log \mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=\mathbb{E}_{p, p^{\prime}}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right]
$$

Since $p^{\prime}>p_{\mathrm{c}}^{\prime}$,

$$
\mathbb{E}_{p, p^{\prime}}\left[\# \operatorname{Piv}_{\mathcal{L}}\left(0 \longleftrightarrow n \vec{e}_{1}\right) \mid 0 \longleftrightarrow n \vec{e}_{1}\right] \geq \frac{\rho}{2} n .
$$

Consequently,

$$
\begin{aligned}
\xi_{p, p_{2}^{\prime}}-\xi_{p, p_{1}^{\prime}} & =-\lim _{n \rightarrow \infty} \frac{1}{n}\left(\log \mathbb{P}_{p, p_{2}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)-\log \mathbb{P}_{p, p_{1}^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)\right) \\
& \leq-\frac{\rho}{2}\left(p_{2}^{\prime}-p_{1}^{\prime}\right)
\end{aligned}
$$

Analyticity follows from the renewal structure of $C_{0, n \vec{e}_{1}}$.

What about the critical behavior as $p^{\prime} \downarrow p_{\mathrm{c}}^{\prime}$?

Critical behavior

Only in dimensions 2 and 3, unfortunately.

Fact \#7

There exist constants $c_{2}^{ \pm}, c_{3}^{ \pm}>0$ such that, as $p^{\prime} \downarrow p_{c}^{\prime}$,

$$
\begin{array}{rlrl}
c_{2}^{-}\left(p^{\prime}-p_{c}^{\prime}\right)^{2} & \leq \xi_{p}-\xi_{p, p^{\prime}} \leq c_{2}^{+}\left(p^{\prime}-p_{c}^{\prime}\right)^{2} & & (d=2), \\
e^{-c_{3}^{\prime} /\left(p^{\prime}-p_{c}^{\prime}\right)} & \leq \xi_{p}-\xi_{p, p^{\prime}} \leq e^{-c_{3}^{+} /\left(p^{\prime}-p_{c}^{\prime}\right)} & (d=3) .
\end{array}
$$

Critical behavior

Only in dimensions 2 and 3, unfortunately.

Fact \#7

There exist constants $c_{2}^{ \pm}, c_{3}^{ \pm}>0$ such that, as $p^{\prime} \downarrow p_{c}^{\prime}$,

$$
\begin{array}{rlrl}
c_{2}^{-}\left(p^{\prime}-p_{c}^{\prime}\right)^{2} & \leq \xi_{p}-\xi_{p, p^{\prime}} \leq c_{2}^{+}\left(p^{\prime}-p_{c}^{\prime}\right)^{2} & & (d=2), \\
e^{-c_{3}^{\prime} /\left(p^{\prime}-p_{c}^{\prime}\right)} & \leq \xi_{p}-\xi_{p, p^{\prime}} \leq e^{-c_{3}^{+} /\left(p^{\prime}-p_{c}^{\prime}\right)} & (d=3) . \tag{2}
\end{array}
$$

This actually follows from the estimates on p_{c}^{\prime} done before, by taking care of the dependence on p^{\prime} of the various constants...

Sharp asymptotics

Fact \#8

For all $d \geq 2$ and for all $p^{\prime}>p_{\mathrm{c}}^{\prime}$, there exists $r_{d}=r_{d}\left(p, p^{\prime}\right)>0$ such that

$$
\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=r_{d} e^{-\xi_{p, p^{\prime}} n}(1+o(1)) .
$$

Fact \#8

For all $d \geq 2$ and for all $p^{\prime}>p_{c}^{\prime}$, there exists $r_{d}=r_{d}\left(p, p^{\prime}\right)>0$ such that

$$
\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=r_{d} e^{-\xi_{p, p^{\prime}} n}(1+o(1)) .
$$

This should be contrasted with the behavior in the homogeneous case [Campanino\&Chayes ${ }^{2}$, PTRF '91]: for all $d \geq 1$,

$$
\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=\frac{c_{d}}{n^{(d-1) / 2}} e^{-\xi_{p} n}(1+o(1))
$$

Fact \#8

For all $d \geq 2$ and for all $p^{\prime}>p_{c}^{\prime}$, there exists $r_{d}=r_{d}\left(p, p^{\prime}\right)>0$ such that

$$
\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=r_{d} e^{-\xi_{p, p^{\prime}} n}(1+o(1)) .
$$

This should be contrasted with the behavior in the homogeneous case [Campanino\&Chayes ${ }^{2}$, PTRF '91]: for all $d \geq 1$,

$$
\mathbb{P}_{p}\left(0 \longleftrightarrow n \vec{e}_{1}\right)=\frac{C_{d}}{n^{(d-1) / 2}} e^{-\xi_{p} n}(1+o(1))
$$

The proof of these purely exponential asymptotics relies on the renewal structure of $C_{0, n \vec{e}_{1}}$.

Open problems

- Properties of $\xi_{p, p^{\prime}}$:
- Analyze the behavior of $\xi_{p, p^{\prime}}$ as $p^{\prime} \downarrow p_{\mathrm{c}}^{\prime}$, in dimensions $d \geq 4$.
- Analyze the behavior of $\xi_{p, p^{\prime}}$ as a function of both p and p^{\prime}. In particular, for $\left(p, p^{\prime}\right)$ close to the critical line $p \mapsto p_{\mathrm{c}}^{\prime}(p)$.
- More general defects:
- Defect line not coinciding with a coordinate axis; higher-dimensional defects (e.g., hyperplanes of given codimension).
- Half-space percolation, with the defect line (or hyperplane) at the boundary of the system.
- Sharp asymptotics of the connectivity function $\mathbb{P}_{p, p^{\prime}}\left(0 \longleftrightarrow n \vec{e}_{1}\right)$ for $p^{\prime} \leq p_{c}^{\prime}$, and the corresponding scaling limit of the cluster $C_{0, n \vec{e}_{1}}$.
- Extension to other models: e.g., a version for FK-percolation would provide an extension to Ising/Potts models.

Thank you!

