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The model

Inhomogeneous independent bond percolation model

L={né :neZ}

(We)eezd, we € {0, 1}, indep. —

—P

p ifed¢ L,
p ifec L.

Ppp(we=1) = {

When p’ = p, we simply write P, = P .
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Let pc = pc(d) be the critical value of the homogeneous model (p’ = p).

Earlier works on this model dealt with the case p = p.(d) and proved
that there is no percolation for any p’ < 1 when
ed=2 [Zhang, AoP '94]

e d Iarge [Newman& Wu, AoP '97]
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Let pc = pc(d) be the critical value of the homogeneous model (p’ = p).

Earlier works on this model dealt with the case p = p.(d) and proved
that there is no percolation for any p’ < 1 when
ed=2 [Zhang, AoP '94]

e d Iarge [Newman& Wu, AoP '97]

We are interested in the case p < p.(d), d > 2.
@ Of course, there is no percolation in any dimension for any p’ < 1
in that case.

@ Instead, what concerns us here is the rate of exponential decay of
connectivities along L:

1 o
Epp = —nll_)n;o - logPp (0 — néy).
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Let pc = pc(d) be the critical value of the homogeneous model (p’ = p).

Earlier works on this model dealt with the case p = p.(d) and proved
that there is no percolation for any p’ < 1 when
ed=2 [Zhang, AoP '94]

e d Iarge [Newman& Wu, AoP '97]

We are interested in the case p < p.(d), d > 2.
@ Of course, there is no percolation in any dimension for any p’ < 1
in that case.

@ Instead, what concerns us here is the rate of exponential decay of
connectivities along L:

1 o
Epp = —nll_)n;o - logPp (0 +— néy).

What is the behavior of &, as a function of p’ for fixed p < pc(d)?
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Basic properties

@ &, exists by sub-additivity.
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Basic properties

@ &, exists by sub-additivity.

° Ep = gp’p > 0 for all p< pC[Menshikov '86, Aizenman&Barsky '87]_
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Basic properties

® &,y exists by sub-additivity.
° Ep = gpp > 0 for all p< pc[Menshikov '86, Aizenman&Barsky '87]_

@ &, is non-increasing in p’. In particular,

pr<p= fp,p’ > gpv
Pl >p = gp,p’ < gp-
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Existence of a transition

gp,p’ = &pv VPI <np.
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Existence of a transition

gp,p’ = &pv VPI <np.

0 né

Let a € (1,1), u= n"e2, v = néi + n®e2. By FKG,

P, (0 < n&) > p?" P,y (u > v).
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Existence of a transition

gp,p’ = gp: VPI <np.

0 né
Let a € (1,1), u= n"e2, v = néi + n®e2. By FKG,
P, (0 < n&) > p?" P,y (u > v).
But
Ppp(u+—v)>P,(u+— v,u/ L)
=Py(u+— v,u</> L)
=1 -0o(1)Pp(us+—v)
_ oen(i+o(1)
4, oversre
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This implies that £,y < &,, since P, (0 «— n&) < e *»r'".



Continuity

&p.p is Lipschitz continuous in p’ on [0, 1].
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Continuity

&p.p is Lipschitz continuous in p’ on [0, 1].

o Let p/2 < pj < p, <1. From Russo's formula,
Ppp, (0 <— néy)

P 1 . _ _
W = exp{/pl EEP'S I:#PIVL:(O “— nel) | 0+— nel] ds},

1

where Pive(0 <— néy) is the set of pivotal edges, for the event
0 <— néy, contained in L.
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Continuity

&p.p is Lipschitz continuous in p’ on [0, 1].

o Let p/2 < pj < p, <1. From Russo's formula,
Ppp, (0 <— néy)

P 1 . _ _
W = exp{/pl EEP'S I:#PIVL:(O “— nel) | 0+— nel] ds},

1

where Pive(0 <— néy) is the set of pivotal edges, for the event
0 <— néy, contained in L.

@ It is easy to show that |C(0, né;) N L| < 2n, with high probability.
This implies that
Py, (0 <— né)

8
— < exp{—=(p5—p:)nl|.
Pp'p/l(o ne]_) = p{p(pZ pl) ]
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Continuity

&p.p is Lipschitz continuous in p’ on [0, 1].

o Let p/2 < pj < p, <1. From Russo's formula,
Ppp, (0 <— néy)

P 1 . _ _
W = exp{/l EEP'S I:#PIVL:(O “— nel) | 0+— nel] ds},

Py
where Pive(0 <— néy) is the set of pivotal edges, for the event
0 <— néy, contained in L.

@ It is easy to show that |C(0, né;) N L| < 2n, with high probability.
This implies that
Py, (0 <— né)

8
— < exp{—=(p5—p:)nl|.
Pp'p/l(o ne]_) = p{p(pZ pl) ]

@ Therefore

(pl2 - p;_) (6, UNIVERSITE
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0< gp,p'l - gp,pg <

T |0
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Positivity

Enp > 0, vp < 1.
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Positivity

(i UNIVERSITE
% DE GeNEvE



Positivity

covered

(i UNIVERSITE
% DE GeNEvE



Positivity

Enp > 0, vp < 1.

B B B | mem

0 g
covered

Up to a probability at most e=¢",
@ Positive fraction of uncovered blocks.
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Positivity

Enp > 0, vp < 1.

B B B | mem

0 g
covered

Up to a probability at most e=¢",
@ Positive fraction of uncovered blocks.

@ Positive fraction of uncovered blocks with all their edges closed.
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Positivity

Enp > 0, vp < 1.

B B B | msm

0 g
covered

Up to a probability at most e=¢",
@ Positive fraction of uncovered blocks.

@ Positive fraction of uncovered blocks with all their edges closed.

The event {0 «— né1} occurs only if there are no uncovered blocks
with all their edges closed, which is exponentially unlikely.
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Critical point

Let p. = pL(d) =sup{p’ : & = &b}

p(2)=p(3)=p.  Vd2>4: p(d)€(p1).
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Critical point

Let p. = pL(d) =sup{p’ : & = &b}

Fact #4

p(2)=p(3)=p.  Vd2>4: p(d)€(p1).

This amounts to determining whether

]P’p,p/(O — né&)
P,(0 <— nép)

grows exponentially fast with n when p’ is slightly larger than p.
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Critical point

@ Observe that

P, (0 <— néy)

=K Z(CO,né) =y
B0 ngy) vle [0 nal,

where
L(C) =log(p'/p)|C N L| +log((1—p)/(1—p))|dCN L],

and OC denotes the exterior boundary of the cluster C.
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Critical point

@ Observe that

P, (0 <— néy)

—F L(Cong) =,
B0 ngy) vle [0 nal,

where

L(C) =log(p'/p)|C N L| +log((1—p)/(1—p))|dCN L],

and OC denotes the exterior boundary of the cluster C.

@ Superficially similar to the pinning problem for a
(d — 1)-dimensional RW (X,),>0: determine the growth rate of

Erwl[e| Xy = 0],
where € > 0 and Ly is the local time of X at 0 up to time N.
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Critical point

@ Observe that

P, (0 <— néy)

—F L(Cong) =,
B0 ngy) vle [0 nal,

where

L(C) =log(p'/p)|C N L| +log((1—p)/(1—p))|dCN L],

and OC denotes the exterior boundary of the cluster C.
@ Superficially similar to the pinning problem for a
(d — 1)-dimensional RW (X,),>0: determine the growth rate of
Erwl[e®™"[Xn = 0],

where € > 0 and Ly is the local time of X at 0 up to time N.

o Major difference: above, log(p’/p) and log((1 — p’)/(1 — p)) have
opposite signs, which results in both attractive and repulsive
components. @ et



Critical point Effective random walk representation

Essential tool: random walk representation of subcritical percolation
clusters [Campanino, loffe&V., AoP '08]

Let p < pc and n € N. Then, up to an event of exponentially small
P,(-| 0 <— né&y)-probability, Co ns admits the following decomposition:
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Critical point Effective random walk representation

Essential tool: random walk representation of subcritical percolation
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Critical point Effective random walk representation

Essential tool: random walk representation of subcritical percolation
clusters [Campanino, loffe&V., AoP '08]

Let p < pc and n € N. Then, up to an event of exponentially small
P,(-| 0 <— né&y)-probability, Co ns admits the following decomposition:

{0—n&} ={Y"+Yi+ - +Yy+YR=na}

where (Y )x>1 is a random walk on Z9 with law P, and Y*, YR are
independent random variables with exponential tails.
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Critical point Effective random walk representation

Essential tool: random walk representation of subcritical percolation
clusters [Campanino, loffe&V., AoP '08]

Let p < pc and n € N. Then, up to an event of exponentially small
P,(-| 0 <— né&y)-probability, Co ns admits the following decomposition:

{0—n&} ={Y"+Yi+ - +Yy+YR=na}

where (Y )x>1 is a random walk on Z9 with law P, and Y*, YR are
independent random variables with exponential tails. '
In the sequel, I'll always ignore the boundary terms Y and YR. 5 b eneve



Critical point Effective random walk representation

We write Y = (Y}, Y4) € Z x 791,
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Critical point Effective random walk representation

We write Y = (Y}, Y4) € Z x 791,

Properties of the effective random walk Y':
o PV >1)=1;
o P(lYi| > t) < e™¥t for some v = v(p, d) > 0;
e forany zt € Z971, P(Y{t =z1) = P(Y{h = —z1).
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Critical point d>4:p.>p

Assume that d > 4. We already know that p. < 1, by continuity.

To prove that p. > p, we return to the observation that

Py (0 <— néy)

= E(C,ne') e
pel )~ [ 0. na)
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Critical point d>4:p.>p

Assume that d > 4. We already know that p. < 1, by continuity.

To prove that p. > p, we return to the observation that

Py (0 <— néy)

= E(C,ne') e
g ) = Ep[efCo) 0. na)

IA

E,[ef(Cra) | 0 s né]

with
L(C) =log(p'/p)IC N L.
——

=e>0
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Critical point d>4:p.>p

Rewriting the previous expression in terms of the effective RW vyields:

Pp.» (0 <— nép) <E
P,(0 «— n&y) —

< E[efZAIPOYINE | 3N > 11y, = g,

» €194 0 +— né]

where

o D(Yi_1,Y;) denotes the “diamond” containing the piece of cluster
between Y;_; and Y;;

@ Tp=min{k>1:Y,=n&}<n

T JE— /
R
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Critical point d>4:p.>p

Rewriting the previous expression in terms of the effective RW vyields:

Pp.» (0 <— nép) <E
P,(0 «— n&y) —
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where
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Critical point d>4:p.>p

Rewriting the previous expression in terms of the effective RW vyields:

Pp.» (0 <— nép) <E
P,(0 <— né&y) —

< E[eeZ;T:’HlD(Yf,Yi-OﬂEI | IN>1:Yy = ”51].

» €194 0 +— né]

where

o D(Yi_1,Y;) denotes the “diamond” containing the piece of cluster
between Y;_; and Y;;

@ Tp=min{k>1:Y,=n&}<n

We're essentially back to the pinning problem for a RW in dimension
3+ 1 or more, for which the claim is easy.
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Critical point

Let us turn now to the proof that p. = p when d =2, 3.
We introduce a suitable event Mg C {0 <— né;} and write

]P’p,p/(O — né&) N ]P’p,pf (Mé)
Py(0«—né&) — P,(0+— né)
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Critical point

Let us turn now to the proof that p. = p when d =2, 3.
We introduce a suitable event Mg C {0 <— né;} and write

]P’p,p/(O — né&) N ]P’p,pf (Mé)
Py(0«—né&) — P,(0+— né)

IP)p.p’(-/'\/t&)
IPP(M5)
N———

“Energetic gain”

P,(M;]0 <— nép).
“Entrogﬂz cost”
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Critical point

Let us turn now to the proof that p. = p when d =2, 3.
We introduce a suitable event Mg C {0 <— né;} and write

]P’plp/(O — né&) N ]P)p,pf (Mé)
Py(0«—né&) — P,(0+— né)

IP)p.p’(-/'\/té)
PP(ME)
N———

“Energetic gain”

P,(M;]0 <— nép).

“Entropic cost”

We'll choose M (6 small) in such a way that

]Pp,p’(Mé)

> (P’ —p)n

Pp(Mé)

and ,
- emcdn ifd=2,
IP)P(-/\/t(S'O AN nel) 2 {e—c(é/ﬂogél)n if d = 3.
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Critical point

Let us turn now to the proof that p. = p when d =2, 3.
We introduce a suitable event Mg C {0 <— né;} and write

]P’p,p/(O — né&) > ]P)p,p/ (Ma)
Py(0«—né&) — P,(0+— né)

IP)p.p’(-/'\/t&)
PD(ME)
N———

“Energetic gain”

P,(M;]0 <— nép).

“Entropic cost”

We'll choose M (6 small) in such a way that

]Pp,p’(Mé)

> (P’ —p)n

Pp(Mé)

and
e=con if d =2,

IP)P(-/\/t(S'O AN nel) 2 {e—c(é/ﬂogél)n if d = 3.
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The conclusion follows for small enough &, since § > 6°,6/|logé|.



Critical point

We choose for Ms C {0 «— né&;} the event

There exists a self-avoiding path v C Co ne
possessing at least dn cone-points on L
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Critical point

We choose for Ms C {0 «— né&;} the event

There exists a self-avoiding path v C Co ne
possessing at least n cone-points on L

Entropy estimate:

@ What is the probability that the effective random walk Y visits £ at
least dn times before reaching né;?

@ Not difficult to obtain estimates of the correct order.
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Critical point

We choose for Ms C {0 «— né&;} the event

There exists a self-avoiding path v C Co ne
possessing at least n cone-points on L

Entropy estimate:

@ What is the probability that the effective random walk Y visits £ at
least dn times before reaching né;?

@ Not difficult to obtain estimates of the correct order.
Let's see how the energy bound is established... - UNIVERSITE

s
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Critical point

Since M; is an increasing event, we can again use Russo’s formula

Py (Ms)
Pp(Mé)

o 1 )
= eXP/ ;Ep,s [#PIVL(Ma) | ./\/15] ds
p

/

Pl
> exp/ EEP'S [#PivL(O > néy) | Ma] ds.
p
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Critical point

Since M; is an increasing event, we can again use Russo’s formula

P, (Ms)

o 1 )
By =, SEasl#Pes) | M) ds

/

Pl
> exp/ EEP'S [#PivL(O > néy) | M&] ds.
p

The problem is thus reduced to proving that there are in average O(dn)
pivotal edges on L, for the event {0 «+— né:}, when M; occurs.
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Critical point

Since M; is an increasing event, we can again use Russo’s formula

Py (Ms)
Pp(Ms)

/ 1 ‘
= eXp/ ;Ep,s [#PlVL(M&) | M&] ds
P

/

Pl
> exp/ EEP'S [#PivE(O > néy) | M&] ds.
p

The problem is thus reduced to proving that there are in average O(dn)
pivotal edges on L, for the event {0 «+— né:}, when M; occurs.
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Critical point

Since M; is an increasing event, we can again use Russo’s formula

Py (Ms)
IPp(Mé)

/

1 .
= eXP/ ng,s [#PlVL(M&) | ./\/15] ds
P

p/
1 . N
> exp/ EE”'S [#Pive(0 «— néi) | Ms] ds.
p

The problem is thus reduced to proving that there are in average O(dn)
pivotal edges on L, for the event {0 «+— né:}, when M; occurs.

Claim: since p < pc, a positive fraction of the cone-points of the path on £
are not covered, with high probability. Since the edges incident on such
cone-points are necessarily pivotal for the connection, we obtain:

Eps (#Pivc(O +— néy) | 0<+— né'l,/\/lg) > con,

(i UNIVERSITE
% DE GeNEvE

for some ¢ = ¢(p) > 0. The conclusion follows.



fp P’
&p




fp P’
&p

Pe 1

=p(d=2,3)| |>p(d24) |

Additional informations about the red part? UNIVERSITE
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Behavior on (p;, 1)

cut-points of Cg g on the line £ g T

Let #CutPts;z(Co e ) denote the number of =il T i
o

Fact #5

Assume that p’ > p.. Then, there exist p, ¢ > 0 such that

Py (#CutPtsz(Cong ) < pn |0 +— nép) < e .

Three steps:

@ A self-avoiding path 7 : 0 — né; makes typically only small
excursions away from L.

@ Conditionally on such a path m, most of the cluster remains close
to .

@ Surgery to ensure the presence of many cut-points on L. @ ymersre



Behavior on (p;, 1)

Step 1. Let us consider a self-avoiding path m: 0 — né;. We want to
show that 7 typically leaves £ only for small excursions.

Fix K > 0 large (depending on p, p’). We coarse-grain 7 as follows:
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Behavior on (p;, 1)

Step 1. Let us consider a self-avoiding path m: 0 — né;. We want to
show that 7 typically leaves £ only for small excursions.

Fix K > 0 large (depending on p, p’). We coarse-grain 7 as follows:

X X3

i U i v Uz vs

e

The resulting broken line is the skeleton associated to 7.
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Behavior on (p;, 1)

Probabilistic cost of the pieces (remember that &, > &, »):
@ Of a stretch along the line:

Vi U
wl < e_Ep,p/ [Uj+1—V

UNIVERSITE
DE GENEVE



Behavior on (p;, 1)

Probabilistic cost of the pieces (remember that &, > &, »):
@ Of a stretch along the line:

Vi u,
wl < e_Ep,p/ [Uj+1—V

@ Of an excursion &; with |Xj| K-steps away from the line:

< oo -l —cl|K
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Behavior on (p;, 1)

Probabilistic cost of the pieces (remember that &, > &, »):
@ Of a stretch along the line:

Vi u
j j+1 < e—Ep'pr |Uj+1—Vj

@ Of an excursion &; with |Xj| K-steps away from the line:

x,
< e~bnp lv—ul—clX K

uj v
Therefore the P, y-probability of a skeleton is bounded above by

e o 1=K L 1]
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Behavior on (p;, 1)

Probabilistic cost of the pieces (remember that &, > &, »):
@ Of a stretch along the line:

Vi u
j j+1 < e—Ep'pr |Uj+1—Vj

@ Of an excursion &; with |Xj| K-steps away from the line:

&
< e~ Vi—ujl—cl X K

uj v
Therefore the P, y-probability of a skeleton is bounded above by

e o 1=K L 1]

and thus its P, (- | 0 <— né})-probability is bounded above by

—&ppn—cK 30 |X
€ 5 ( f( ‘)) " < oKX 1%l +o(n)
— 1—o(1 — )
e Spp o ¢
& o e



Behavior on (pg, 1)

On can deduce from the above (and a control over the entropy of such
skeletons) that

M
P, (37!' .0 — nép s.t. Z K|./'\f'J| >en | 0+ né'l) < e—clen
Jj=1
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Behavior on (p;, 1)

On can deduce from the above (and a control over the entropy of such
skeletons) that

M
P, (37!' .0 — nép s.t. Z K|./'\f'J| >en | 0+ né'l) < e—clen
Jj=1

In particular, ™ mostly remains inside a tube of radius K around L:

ok| 0 ne,
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Behavior on (p;, 1)

On can deduce from the above (and a control over the entropy of such
skeletons) that

M
P, (37!' .0 — nép s.t. Z K|.XJ| >en | 0+ né'l) < e—c(en
Jj=1

In particular, ™ mostly remains inside a tube of radius K around L:

oK 0 neéey

A similar coarse-graining argument shows that the same is true for

CO,né’1 :
o

4Kl 0 — PN né,

(i UNIVERSITE
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Behavior on (p;, 1)

The conclusion follows from a surgery argument:

4K

|

JT
g
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Behavior on (p;, 1)

The conclusion follows from a surgery argument:

4K

|

| | S
TP L

This has a positive probability of occuring in any box, uniformly in what
happens elsewhere. Therefore a positive fraction of the boxes must
contain a cut-point on L.
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Behavior on (p;, 1)

&p.p Is strictly decreasing and real analytic on (p., 1).

We use, once more, Russo's formula:

0 .
o log Py (0 «— né1) = B,y [#Pive (0 <— néy) | 0 <— néy].
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Behavior on (p;, 1)

&p.p Is strictly decreasing and real analytic on (p., 1).

We use, once more, Russo's formula:

o log Py (0 «— né1) = B,y [#Pive (0 <— néy) | 0 <— néy].

Since p’ > pL,

Ep p [#Pive(0 <— néy) | 0 +— néy] > £n.
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Behavior on (pg, 1)

&p.p Is strictly decreasing and real analytic on (p., 1).

We use, once more, Russo's formula:

a / logPp,y (0 <— néi) =E, [#PlVL(O < néy) | 0+— nel]
Since p’ > pL,
Ep p [#Pive(0 <— néy) | 0 +— néy] > £n.

Consequently,
1 B )
€p.py = Eppy = — nl'_U;o ;(lOQ Py, (0 <— né) —log Py, p (0 ¢— néy))
0
< —5(Pa—ph).
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Behavior on (p;, 1)

&p.p Is strictly decreasing and real analytic on (p., 1).

We use, once more, Russo's formula:
o log Py (0 «— né1) = B,y [#Pive (0 <— néy) | 0 <— néy].
Since p’ > pL,
Ep p [#Pive(0 <— néy) | 0 +— néy] > £n.

Consequently,

1 _ _
Eppy — Epp = — lim. ;(Iog Py, (0 <— né) —log Py, p (0 ¢— néy))
0
< —5(Pa—ph).

Analyticity follows from the renewal structure of Cg ng @ et

"’ DE GENEVE



Ep P
&p

Pe 1

=p(d=2,3)| |>p(d24) |

What about the critical behavior as p’ | p.?
B



Critical behavior

Only in dimensions 2 and 3, unfortunately.

There exist constants czi, c33E > 0 such that, as p’ | pL,

G (P =P <& —&p <t —p.)? (d=2), (1)
=G /(P=p0) < £ —Eop < oG /(P'=p0) (d =3). (2)
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Critical behavior

Only in dimensions 2 and 3, unfortunately.

Fact #7

There exist constants czi, c33E > 0 such that, as p’ | pL,

G (P =P <& —&p <t —p.)? (d=2), (1)
=G /(P=p0) < £ —Eop < oG /(P'=p0) (d =3). (2)

This actually follows from the estimates on p. done before, by taking
care of the dependence on p’ of the various constants...
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Sharp asymptotics

For all d > 2 and for all p’ > pL, there exists ry = rg(p, p') > 0 such that

Py (0 < n&) = rge %" (14 o(1)).
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Sharp asymptotics

For all d > 2 and for all p’ > p., there exists ry = rq(p, p’) > 0 such that
<

Py (0 < n&) = rge %" (14 o(1)).

This should be contrasted with the behavior in the homogeneous
case [Campanino&Chayes?, PTRF '91]: for all d > 1,

Cd

IP’p(O <—— néi) = m efg"" (1 + 0(1)) .
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Sharp asymptotics

For all d > 2 and for all p’ > pL, there exists ry = rg(p, p') > 0 such that

Py (0 < n&) = rge %" (14 o(1)).

This should be contrasted with the behavior in the homogeneous
case [Campanino&Chayes?, PTRF '91]: for all d > 1,

Cd

m efg"" (1 + 0(1)) .

P,(0 ¢— né&;) =
The proof of these purely exponential asymptotics relies on the renewal
structure of Cop pe, .
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Open problems

@ Properties of &, :
e Analyze the behavior of €,y as p’ | pi, in dimensions d > 4.
e Analyze the behavior of £,y as a function of both p and p’. In
particular, for (p, p') close to the critical line p — p.(p).
@ More general defects:
e Defect line not coinciding with a coordinate axis; higher-dimensional
defects (e.g., hyperplanes of given codimension).
o Half-space percolation, with the defect line (or hyperplane) at the
boundary of the system.
@ Sharp asymptotics of the connectivity function Py, (0 <— né) for
p’ < pL, and the corresponding scaling limit of the cluster Cp pg, .

@ Extension to other models: e.g., a version for FK-percolation would
provide an extension to Ising/Potts models.
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