Percolation with a line of defects

Yvan Velenik

Université de Genève

joint work with Sacha Friedli and Dmitry Ioffe

The model

Inhomogeneous independent bond percolation model

$$\mathcal{L} = \{ n \, \vec{e}_1 : n \in \mathbb{Z} \}$$

 $(\omega_e)_{e\in\mathbb{Z}^d}$, $\omega_e\in\{0,1\}$, indep.

$$\mathbb{P}_{p,p'}(\omega_e = 1) = \begin{cases} p & \text{if } e \not\subset \mathcal{L}, \\ p' & \text{if } e \subset \mathcal{L}. \end{cases}$$

When p' = p, we simply write $\mathbb{P}_p \equiv \mathbb{P}_{p,p}$.

Main question

Let $p_c = p_c(d)$ be the critical value of the homogeneous model (p' = p).

Earlier works on this model dealt with the case $p = p_c(d)$ and proved that there is no percolation for any p' < 1 when

- d = 2 [Zhang, AoP '94],
- d large [Newman& Wu, AoP '97].

Main question

Let $p_c = p_c(d)$ be the critical value of the homogeneous model (p' = p).

Earlier works on this model dealt with the case $p = p_c(d)$ and proved that there is no percolation for any p' < 1 when

- d = 2 [Zhang, AoP '94].
- d large [Newman& Wu, AoP '97].

We are interested in the case $p < p_c(d)$, $d \ge 2$.

- Of course, there is no percolation in any dimension for any p' < 1 in that case.
- Instead, what concerns us here is the rate of exponential decay of connectivities along \mathcal{L} :

$$\xi_{p,p'} = -\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1).$$

Main question

Let $p_c = p_c(d)$ be the critical value of the homogeneous model (p' = p).

Earlier works on this model dealt with the case $p = p_c(d)$ and proved that there is no percolation for any p' < 1 when

- d = 2 [Zhang, AoP '94].
- d large [Newman& Wu, AoP '97].

We are interested in the case $p < p_c(d)$, $d \ge 2$.

- Of course, there is no percolation in any dimension for any p' < 1 in that case.
- Instead, what concerns us here is the rate of exponential decay of connectivities along \mathcal{L} :

$$\xi_{p,p'} = -\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1).$$

What is the behavior of $\xi_{p,p'}$ as a function of p' for fixed $p < p_c(d)$?

Basic properties

• $\xi_{p,p'}$ exists by sub-additivity.

Basic properties

- $\xi_{p,p'}$ exists by sub-additivity.
- $\xi_p \equiv \xi_{p,p} > 0$ for all $p < p_c$ [Menshikov '86, Aizenman&Barsky '87].

Basic properties

- $\xi_{p,p'}$ exists by sub-additivity.
- $\xi_p \equiv \xi_{p,p} > 0$ for all $p < p_c$ [Menshikov '86, Aizenman&Barsky '87].
- $\xi_{p,p'}$ is non-increasing in p'. In particular,

$$p' \le p \implies \xi_{p,p'} \ge \xi_p,$$

$$p' \ge p \implies \xi_{p,p'} \le \xi_p.$$

Existence of a transition

$$\xi_{p,p'}=\xi_p, \qquad \forall p'\leq p.$$

Existence of a transition

$$\xi_{p,p'}=\xi_p, \qquad \forall p'\leq p.$$

Let
$$\alpha \in (\frac{1}{2}, 1)$$
, $u = n^{\alpha} \mathbf{e}_2$, $v = n\vec{e}_1 + n^{\alpha} \mathbf{e}_2$. By FKG,
$$\mathbb{P}_{\rho, \rho'}(0 \longleftrightarrow n\vec{e}_1) \geq \rho^{2n^{\alpha}} \mathbb{P}_{\rho, \rho'}(u \longleftrightarrow v).$$

Existence of a transition

Fact #1

$$\xi_{p,p'}=\xi_p, \qquad \forall p'\leq p.$$

Let
$$\alpha \in (\frac{1}{2}, 1)$$
, $u = n^{\alpha} \mathbf{e}_2$, $v = n\vec{e}_1 + n^{\alpha} \mathbf{e}_2$. By FKG,

$$\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1) \ge p^{2n^{\alpha}} \mathbb{P}_{p,p'}(u \longleftrightarrow v).$$

But

$$\begin{split} \mathbb{P}_{p,p'}(u \longleftrightarrow v) &\geq \mathbb{P}_{p,p'}(u \longleftrightarrow v, u \longleftrightarrow \mathcal{L}) \\ &= \mathbb{P}_p(u \longleftrightarrow v, u \longleftrightarrow \mathcal{L}) \\ &= (1 - o(1)) \, \mathbb{P}_p(u \longleftrightarrow v) \\ &= e^{-\xi_p n(1 + o(1))}. \end{split}$$

This implies that $\xi_{p,p'} \leq \xi_p$, since $\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1) \leq e^{-\xi_{p,p'}n}$.

Fact #2

 $\xi_{p,p'}$ is Lipschitz continuous in p' on [0,1].

Fact #2

 $\xi_{p,p'}$ is Lipschitz continuous in p' on [0,1].

• Let $p/2 \le p_1' < p_2' \le 1$. From Russo's formula,

$$\frac{\mathbb{P}_{p,p_2'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{p,p_1'}(0\longleftrightarrow n\vec{e}_1)} = \exp\{\int_{p_1'}^{p_2'} \frac{1}{s} \mathbb{E}_{p,s} [\# \mathsf{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \mid 0\longleftrightarrow n\vec{e}_1] \; \mathrm{d}s \},$$

where $\operatorname{Piv}_{\mathcal{L}}(0 \longleftrightarrow n\vec{e}_1)$ is the set of pivotal edges, for the event $0 \longleftrightarrow n\vec{e}_1$, contained in \mathcal{L} .

Fact #2

 $\xi_{p,p'}$ is Lipschitz continuous in p' on [0,1].

• Let $p/2 \le p_1' < p_2' \le 1$. From Russo's formula,

$$\frac{\mathbb{P}_{\rho,\rho_2'}(0 \longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{\rho,\rho_1'}(0 \longleftrightarrow n\vec{e}_1)} = \exp\{\int_{\rho_1'}^{\rho_2'} \frac{1}{s} \mathbb{E}_{\rho,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(0 \longleftrightarrow n\vec{e}_1) \bigm| 0 \longleftrightarrow n\vec{e}_1 \big] \; \mathrm{d}s \},$$

where $\operatorname{Piv}_{\mathcal{L}}(0 \longleftrightarrow n\vec{e}_1)$ is the set of pivotal edges, for the event $0 \longleftrightarrow n\vec{e}_1$, contained in \mathcal{L} .

• It is easy to show that $|C(0, n\vec{e}_1) \cap \mathcal{L}| \leq 2n$, with high probability. This implies that

$$\frac{\mathbb{P}_{p,p_2'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{p,p_1'}(0\longleftrightarrow n\vec{e}_1)} \leq \exp\{\frac{8}{p}(p_2'-p_1')n\}.$$

Fact #2

 $\xi_{p,p'}$ is Lipschitz continuous in p' on [0,1].

• Let $p/2 \le p_1' < p_2' \le 1$. From Russo's formula,

$$\frac{\mathbb{P}_{p,p_2'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{p,p_1'}(0\longleftrightarrow n\vec{e}_1)} = \exp\{\int_{p_1'}^{p_2'} \frac{1}{s} \mathbb{E}_{p,s} [\# \text{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \mid 0\longleftrightarrow n\vec{e}_1] \, ds\},\$$

where $\operatorname{Piv}_{\mathcal{L}}(0 \longleftrightarrow n\vec{e}_1)$ is the set of pivotal edges, for the event $0 \longleftrightarrow n\vec{e}_1$, contained in \mathcal{L} .

• It is easy to show that $|C(0, n\vec{e}_1) \cap \mathcal{L}| \leq 2n$, with high probability. This implies that

$$\frac{\mathbb{P}_{p,p_2'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{p,p_1'}(0\longleftrightarrow n\vec{e}_1)} \leq \exp\{\frac{8}{p}(p_2'-p_1')n\}.$$

Therefore

$$0 \le \xi_{p,p'_1} - \xi_{p,p'_2} \le \frac{8}{p} (p'_2 - p'_1).$$

$$\xi_{p,p'} > 0$$
, $\forall p' < 1$.

$$\xi_{p,p'} > 0$$
, $\forall p' < 1$.

$$\xi_{p,p'} > 0$$
, $\forall p' < 1$.

Fact #3

$$\xi_{p,p'} > 0, \quad \forall p' < 1.$$

Up to a probability at most e^{-cn} ,

• Positive fraction of uncovered blocks.

Fact #3

$$\xi_{p,p'} > 0, \quad \forall p' < 1.$$

Up to a probability at most e^{-cn} ,

- Positive fraction of uncovered blocks.
- Positive fraction of uncovered blocks with all their edges closed.

Fact #3

$$\xi_{p,p'} > 0$$
, $\forall p' < 1$.

Up to a probability at most e^{-cn} ,

- Positive fraction of uncovered blocks.
- Positive fraction of uncovered blocks with all their edges closed.

The event $\{0 \longleftrightarrow n\vec{e}_1\}$ occurs only if there are no uncovered blocks with all their edges closed, which is exponentially unlikely.

Summary

Let
$$p'_{c} = p'_{c}(d) = \sup \{p' : \xi_{p,p'} = \xi_{p}\}.$$

$$p'_{c}(2) = p'_{c}(3) = p, \qquad \forall d \ge 4 : p'_{c}(d) \in (p, 1).$$

Let
$$p'_{c} = p'_{c}(d) = \sup \{p' : \xi_{p,p'} = \xi_{p}\}.$$

Fact #4

$$p'_{c}(2) = p'_{c}(3) = p, \quad \forall d \ge 4 : p'_{c}(d) \in (p, 1).$$

This amounts to determining whether

$$\frac{\mathbb{P}_{\rho,\rho'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)}$$

grows exponentially fast with n when p' is slightly larger than p.

Observe that

$$\frac{\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0 \longleftrightarrow n\vec{e}_1)} = \mathbb{E}_p \big[e^{\tilde{L}(C_{0,n\vec{e}_1})} \bigm| 0 \longleftrightarrow n\vec{e}_1 \big],$$

where

$$\tilde{L}(C) = \log(p'/p) |C \cap \mathcal{L}| + \log((1-p')/(1-p)) |\partial C \cap \mathcal{L}|,$$

and ∂C denotes the exterior boundary of the cluster C.

Observe that

$$\frac{\mathbb{P}_{p,p'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0\longleftrightarrow n\vec{e}_1)} = \mathbb{E}_p\left[e^{\tilde{L}(C_{0,n\vec{e}_1})} \mid 0\longleftrightarrow n\vec{e}_1\right],$$

where

$$\tilde{L}(C) = \log(p'/p) |C \cap \mathcal{L}| + \log((1-p')/(1-p)) |\partial C \cap \mathcal{L}|,$$

and ∂C denotes the exterior boundary of the cluster C.

• Superficially similar to the pinning problem for a (d-1)-dimensional RW $(X_n)_{n\geq 0}$: determine the growth rate of

$$E_{RW}[e^{\epsilon L_N}|X_N=0]$$
 ,

where $\epsilon > 0$ and L_N is the local time of X at 0 up to time N.

Observe that

$$\frac{\mathbb{P}_{p,p'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0\longleftrightarrow n\vec{e}_1)} = \mathbb{E}_p\left[e^{\tilde{L}(C_{0,n\vec{e}_1})} \mid 0\longleftrightarrow n\vec{e}_1\right],$$

where

$$\tilde{L}(C) = \log(p'/p) |C \cap \mathcal{L}| + \log((1-p')/(1-p)) |\partial C \cap \mathcal{L}|,$$

and ∂C denotes the exterior boundary of the cluster C.

• Superficially similar to the pinning problem for a (d-1)-dimensional RW $(X_n)_{n\geq 0}$: determine the growth rate of

$$E_{RW}[e^{\epsilon L_N}|X_N=0]$$
,

where $\epsilon > 0$ and L_N is the local time of X at 0 up to time N.

• Major difference: above, $\log(p'/p)$ and $\log((1-p')/(1-p))$ have opposite signs, which results in **both attractive and repulsive** components.

Essential tool: random walk representation of subcritical percolation clusters [Campanino, Ioffe&V., AoP '08].

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\mathbb{P}_p(\cdot \mid 0 \longleftrightarrow n\vec{e}_1)$ -probability, $C_{0,n\vec{e}_1}$ admits the following decomposition:

Essential tool: random walk representation of subcritical percolation clusters [Campanino, Ioffe&V., AoP '08]

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\mathbb{P}_p(\cdot \mid 0 \longleftrightarrow n\vec{e}_1)$ -probability, $C_{0,n\vec{e}_1}$ admits the following decomposition:

Essential tool: random walk representation of subcritical percolation clusters [Campanino, Ioffe&V., AoP '08]

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\mathbb{P}_p(\cdot \mid 0 \longleftrightarrow n\vec{e}_1)$ -probability, $C_{0,n\vec{e}_1}$ admits the following decomposition:

$$\{0 \longleftrightarrow n\vec{e}_1\} = \{Y^{L} + Y_1 + \dots + Y_N + Y^{R} = n\vec{e}_1\},\$$

where $(Y_k)_{k\geq 1}$ is a random walk on \mathbb{Z}^d with law P, and Y^L , Y^R are independent random variables with exponential tails.

Essential tool: random walk representation of subcritical percolation clusters [Campanino, Ioffe&V., AoP '08].

Let $p < p_c$ and $n \in \mathbb{N}$. Then, up to an event of exponentially small $\mathbb{P}_p(\cdot \mid 0 \longleftrightarrow n\vec{e}_1)$ -probability, $C_{0,n\vec{e}_1}$ admits the following decomposition:

$$\{0 \longleftrightarrow n\vec{e}_1\} = \{Y^{L} + Y_1 + \dots + Y_N + Y^{R} = n\vec{e}_1\},\$$

where $(Y_k)_{k\geq 1}$ is a random walk on \mathbb{Z}^d with law P, and Y^L , Y^R are independent random variables with exponential tails.

In the sequel, I'll always ignore the boundary terms Y^L and Y^R .

We write $Y_k = (Y_k^{\parallel}, Y_k^{\perp}) \in \mathbb{Z} \times \mathbb{Z}^{d-1}$.

Properties of the effective random walk Y:

- $P(Y_1^{\parallel} \ge 1) = 1;$
- $P(|Y_1| > t) \le e^{-\nu t}$ for some $\nu = \nu(p, d) > 0$;
- for any $z^{\perp} \in \mathbb{Z}^{d-1}$, $P(Y_1^{\perp} = z^{\perp}) = P(Y_1^{\perp} = -z^{\perp})$.

Assume that $d \ge 4$. We already know that $p'_c < 1$, by continuity.

To prove that $p'_{c} > p$, we return to the observation that

$$\frac{\mathbb{P}_{p,p'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0\longleftrightarrow n\vec{e}_1)} = \mathbb{E}_p\big[e^{\tilde{L}(C_{0,n\vec{e}_1})} \mid 0\longleftrightarrow n\vec{e}_1\big]$$

Assume that $d \ge 4$. We already know that $p'_c < 1$, by continuity.

To prove that $p'_{c} > p$, we return to the observation that

$$\begin{array}{ll} \frac{\mathbb{P}_{p,p'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0\longleftrightarrow n\vec{e}_1)} &= \mathbb{E}_p\big[e^{\tilde{L}(C_{0,n\vec{e}_1})} \mid 0\longleftrightarrow n\vec{e}_1\big] \\ &\leq \mathbb{E}_p\big[e^{\hat{L}(C_{0,n\vec{e}_1})} \mid 0\longleftrightarrow n\vec{e}_1\big] \end{array}$$

with

$$\hat{L}(C) = \underbrace{\log(p'/p)}_{\equiv \epsilon > 0} |C \cap \mathcal{L}|.$$

$$\begin{split} \frac{\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0 \longleftrightarrow n\vec{e}_1)} &\leq \mathbb{E}_p \big[e^{\epsilon |C \cap \mathcal{L}|} \bigm| 0 \longleftrightarrow n\vec{e}_1 \big] \\ &\leq \mathbb{E} \big[e^{\epsilon \sum_{i=1}^{T_n} |D(Y_i,Y_{i-1}) \cap \mathcal{L}|} \bigm| \exists N \geq 1 : Y_N = n\vec{e}_1 \big], \end{split}$$

- $D(Y_{i-1}, Y_i)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_i ;
- $T_n = \min\{k \ge 1 : Y_k = n\vec{e}_1\} \le n$.

$$\begin{split} \frac{\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0 \longleftrightarrow n\vec{e}_1)} &\leq \mathbb{E}_p \big[e^{\epsilon |C \cap \mathcal{L}|} \bigm| 0 \longleftrightarrow n\vec{e}_1 \big] \\ &\leq \mathbb{E} \big[e^{\epsilon \sum_{i=1}^{T_n} |D(Y_i,Y_{i-1}) \cap \mathcal{L}|} \bigm| \exists N \geq 1 : Y_N = n\vec{e}_1 \big], \end{split}$$

- $D(Y_{i-1}, Y_i)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_i ;
- $T_n = \min\{k \ge 1 : Y_k = n\vec{e}_1\} \le n$.

$$\begin{split} \frac{\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0 \longleftrightarrow n\vec{e}_1)} &\leq \mathbb{E}_p \big[e^{\epsilon |C \cap \mathcal{L}|} \bigm| 0 \longleftrightarrow n\vec{e}_1 \big] \\ &\leq \mathbb{E} \big[e^{\epsilon \sum_{i=1}^{T_n} |D(Y_i,Y_{i-1}) \cap \mathcal{L}|} \bigm| \exists N \geq 1 : Y_N = n\vec{e}_1 \big], \end{split}$$

- $D(Y_{i-1}, Y_i)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_i ;
- $T_n = \min\{k \ge 1 : Y_k = n\vec{e}_1\} \le n$.

$$\begin{split} \frac{\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0 \longleftrightarrow n\vec{e}_1)} &\leq \mathbb{E}_p \big[e^{\epsilon |C \cap \mathcal{L}|} \bigm| 0 \longleftrightarrow n\vec{e}_1 \big] \\ &\leq \mathsf{E} \big[e^{\epsilon \sum_{i=1}^{T_n} |D(Y_i,Y_{i-1}) \cap \mathcal{L}|} \bigm| \exists N \geq 1 : Y_N = n\vec{e}_1 \big], \end{split}$$

- $D(Y_{i-1}, Y_i)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_i ;
- $T_n = \min\{k \ge 1 : Y_k = n\vec{e}_1\} \le n$.

$$\begin{split} \frac{\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1)}{\mathbb{P}_p(0 \longleftrightarrow n\vec{e}_1)} &\leq \mathbb{E}_p \big[e^{\epsilon |C \cap \mathcal{L}|} \bigm| 0 \longleftrightarrow n\vec{e}_1 \big] \\ &\leq \mathsf{E} \big[e^{\epsilon \sum_{i=1}^{T_n} |D(Y_i,Y_{i-1}) \cap \mathcal{L}|} \bigm| \exists N \geq 1 : Y_N = n\vec{e}_1 \big], \end{split}$$

where

- $D(Y_{i-1}, Y_i)$ denotes the "diamond" containing the piece of cluster between Y_{i-1} and Y_i ;
- $T_n = \min\{k \ge 1 : Y_k = n\vec{e}_1\} \le n$.

We're essentially back to the pinning problem for a RW in dimension 3+1 or more, for which the claim is easy.

Let us turn now to the proof that $p'_{c} = p$ when d = 2, 3.

We introduce a suitable event $\mathcal{M}_{\delta} \subset \{0 \longleftrightarrow n\vec{e}_1\}$ and write

$$\frac{\mathbb{P}_{\rho,\rho'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)} \ \geq \ \frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)}$$

Let us turn now to the proof that $p'_{c} = p$ when d = 2, 3.

We introduce a suitable event $\mathcal{M}_{\delta} \subset \{0 \longleftrightarrow n\vec{e}_1\}$ and write

$$\begin{array}{ccc} \frac{\mathbb{P}_{\rho,\rho'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)} & \geq & \frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)} \\ \\ & = & \underbrace{\frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(\mathcal{M}_{\delta})}}_{\text{"Energetic gain"}} \underbrace{\mathbb{P}_{\rho}(\mathcal{M}_{\delta} \mid 0\longleftrightarrow n\vec{e}_1)}_{\text{"Entropic cost"}}. \end{array}$$

Let us turn now to the proof that $p'_c = p$ when d = 2, 3.

We introduce a suitable event $\mathcal{M}_{\delta} \subset \{0 \longleftrightarrow n\vec{e}_1\}$ and write

$$\begin{array}{ccc} \frac{\mathbb{P}_{\rho,\rho'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)} & \geq & \frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)} \\ \\ & = & \underbrace{\frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(\mathcal{M}_{\delta})}}_{\text{"Energetic gain"}} \underbrace{\mathbb{P}_{\rho}(\mathcal{M}_{\delta} \mid 0\longleftrightarrow n\vec{e}_1)}_{\text{"Entropic cost"}}. \end{array}$$

We'll choose \mathcal{M}_{δ} (δ small) in such a way that

$$\frac{\mathbb{P}_{p,p'}(\mathcal{M}_{\delta})}{\mathbb{P}_{p}(\mathcal{M}_{\delta})} \geq e^{c\delta(p'-p)n}.$$

and

$$\mathbb{P}_p(\mathcal{M}_{\delta}|0\longleftrightarrow n\vec{e}_1) \geq \begin{cases} e^{-c\,\delta^2 n} & \text{if } d=2, \\ e^{-c\,(\delta/|\log\delta|)n} & \text{if } d=3. \end{cases}$$

Let us turn now to the proof that $p'_c = p$ when d = 2, 3.

We introduce a suitable event $\mathcal{M}_{\delta} \subset \{0 \longleftrightarrow n\vec{e}_1\}$ and write

$$\frac{\mathbb{P}_{\rho,\rho'}(0\longleftrightarrow n\vec{e}_1)}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)} \geq \frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1)}$$

$$= \underbrace{\frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(\mathcal{M}_{\delta})}}_{\text{"Energetic gain"}} \underbrace{\mathbb{P}_{\rho}(\mathcal{M}_{\delta} \mid 0\longleftrightarrow n\vec{e}_1)}_{\text{"Entropic cost"}}.$$

We'll choose \mathcal{M}_{δ} (δ small) in such a way that

$$\frac{\mathbb{P}_{p,p'}(\mathcal{M}_{\delta})}{\mathbb{P}_{p}(\mathcal{M}_{\delta})} \geq e^{c\delta(p'-p)n}.$$

and

$$\mathbb{P}_{p}(\mathcal{M}_{\delta}|0\longleftrightarrow n\vec{e}_{1}) \geq \begin{cases} e^{-c\delta^{2}n} & \text{if } d=2, \\ e^{-c(\delta/|\log\delta|)n} & \text{if } d=3. \end{cases}$$

The conclusion follows for small enough δ , since $\delta \gg \delta^2$, $\delta/|\log \delta|$.

We choose for $\mathcal{M}_{\delta} \subset \{0 \longleftrightarrow n\vec{e}_1\}$ the event

There exists a self-avoiding path $\gamma \subset C_{0,n\vec{e}_1}$ possessing at least δn cone-points on \mathcal{L}

We choose for $\mathcal{M}_{\delta} \subset \{0 \longleftrightarrow n\vec{e}_1\}$ the event

There exists a self-avoiding path $\gamma \subset C_{0,n\vec{e}_1}$ possessing at least δn cone-points on \mathcal{L}

Entropy estimate:

- What is the probability that the effective random walk Y visits \mathcal{L} at least δn times before reaching $n\vec{e}_1$?
- Not difficult to obtain estimates of the correct order.

We choose for $\mathcal{M}_{\delta} \subset \{0 \longleftrightarrow n\vec{e}_1\}$ the event

There exists a self-avoiding path $\gamma \subset C_{0,n\vec{e}_1}$ possessing at least δn cone-points on \mathcal{L}

Entropy estimate:

- What is the probability that the effective random walk Y visits \mathcal{L} at least δn times before reaching $n\vec{e}_1$?
- Not difficult to obtain estimates of the correct order.

Let's see how the energy bound is established...

$$\begin{split} \frac{\mathbb{P}_{p,p'}(\mathcal{M}_{\delta})}{\mathbb{P}_{p}(\mathcal{M}_{\delta})} &= \exp \int_{\rho}^{p'} \frac{1}{s} \mathbb{E}_{p,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(\mathcal{M}_{\delta}) \bigm| \mathcal{M}_{\delta} \big] \; \mathrm{d}s \\ &\geq \exp \int_{\rho}^{p'} \frac{1}{s} \mathbb{E}_{p,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(\mathbf{0} \longleftrightarrow n\vec{e_{1}}) \bigm| \mathcal{M}_{\delta} \big] \; \mathrm{d}s \, . \end{split}$$

$$\begin{split} \frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(\mathcal{M}_{\delta})} &= \exp \int_{\rho}^{\rho'} \frac{1}{s} \mathbb{E}_{\rho,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(\mathcal{M}_{\delta}) \bigm| \mathcal{M}_{\delta} \big] \; \mathrm{d}s \\ &\geq \exp \int_{\rho}^{\rho'} \frac{1}{s} \mathbb{E}_{\rho,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(\mathbf{0} \longleftrightarrow n\vec{e}_{1}) \bigm| \mathcal{M}_{\delta} \big] \; \mathrm{d}s \,. \end{split}$$

The problem is thus reduced to proving that there are in average $O(\delta n)$ pivotal edges on \mathcal{L}_n for the event $\{0 \longleftrightarrow n\vec{e}_1\}$, when \mathcal{M}_{δ} occurs.

$$\begin{split} \frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(\mathcal{M}_{\delta})} &= \exp \int_{\rho}^{\rho'} \frac{1}{s} \mathbb{E}_{\rho,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(\mathcal{M}_{\delta}) \bigm| \mathcal{M}_{\delta} \big] \; \mathrm{d}s \\ &\geq \exp \int_{\rho}^{\rho'} \frac{1}{s} \mathbb{E}_{\rho,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(\mathbf{0} \longleftrightarrow n\vec{e}_{1}) \bigm| \mathcal{M}_{\delta} \big] \; \mathrm{d}s \,. \end{split}$$

The problem is thus reduced to proving that there are in average $O(\delta n)$ pivotal edges on \mathcal{L}_n for the event $\{0 \longleftrightarrow n\vec{e}_1\}$, when \mathcal{M}_{δ} occurs.

$$\begin{split} \frac{\mathbb{P}_{\rho,\rho'}(\mathcal{M}_{\delta})}{\mathbb{P}_{\rho}(\mathcal{M}_{\delta})} &= \exp \int_{\rho}^{\rho'} \frac{1}{s} \mathbb{E}_{\rho,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(\mathcal{M}_{\delta}) \bigm| \mathcal{M}_{\delta} \big] \; \mathrm{d}s \\ &\geq \exp \int_{\rho}^{\rho'} \frac{1}{s} \mathbb{E}_{\rho,s} \big[\# \mathsf{Piv}_{\mathcal{L}}(0 \longleftrightarrow n\vec{e}_{1}) \bigm| \mathcal{M}_{\delta} \big] \; \mathrm{d}s \, . \end{split}$$

The problem is thus reduced to proving that there are in average $O(\delta n)$ pivotal edges on \mathcal{L}_n for the event $\{0 \longleftrightarrow n\vec{e}_1\}$, when \mathcal{M}_{δ} occurs.

Claim: since $p < p_c$, a positive fraction of the cone-points of the path on \mathcal{L} are not covered, with high probability. Since the edges incident on such cone-points are necessarily pivotal for the connection, we obtain:

$$\mathbb{E}_{p,s}\big(\#\operatorname{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_{1}) \mid 0\longleftrightarrow n\vec{e}_{1}, \mathcal{M}_{\delta}\big) \geq c\delta n,$$

for some c = c(p) > 0. The conclusion follows.

Additional informations about the red part?

Let $\# \text{CutPts}_{\mathcal{L}}(C_{0,n\vec{e_1}})$ denote the number of cut-points of $C_{0,n\vec{e_1}}$ on the line \mathcal{L}

Fact #5

Assume that $p' > p'_c$. Then, there exist ρ , c > 0 such that

$$\mathbb{P}_{\rho,\rho'}(\#\mathsf{CutPts}_{\mathcal{L}}(C_{0,n\vec{e_1}}) < \rho n \,|\, 0 \longleftrightarrow n\vec{e_1}) \leq e^{-cn}.$$

Three steps:

- A self-avoiding path $\pi: 0 \to n\vec{e}_1$ makes typically only small excursions away from \mathcal{L} .
- ullet Conditionally on such a path π , most of the cluster remains close to π .
- ullet Surgery to ensure the presence of many cut-points on ${\cal L}.$

Step 1. Let us consider a self-avoiding path $\pi: 0 \to n\vec{e}_1$. We want to show that π typically leaves \mathcal{L} only for small excursions.

Fix K > 0 large (depending on p, p'). We coarse-grain π as follows:

Step 1. Let us consider a self-avoiding path $\pi: 0 \to n\vec{e}_1$. We want to show that π typically leaves \mathcal{L} only for small excursions.

Fix K > 0 large (depending on p, p'). We coarse-grain π as follows:

The resulting broken line is the **skeleton** associated to π .

Probabilistic cost of the pieces (remember that $\xi_p > \xi_{p,p'}$):

• Of a stretch along the line:

$$\stackrel{v_j}{\sim} \stackrel{u_{j+1}}{\sim} \leq e^{-\xi_{p,p'}|u_{j+1}-v_j|}$$

Probabilistic cost of the pieces (remember that $\xi_p > \xi_{p,p'}$):

• Of a stretch along the line:

$$\underbrace{v_j}_{u_{j+1}} \qquad \leq e^{-\xi_{p,p'} |u_{j+1} - v_j|}$$

• Of an excursion \mathcal{X}_i with $|\mathcal{X}_i|$ K-steps away from the line:

$$\leq e^{-\xi_{p,p'}\,|v_j-u_j|-c|\mathcal{X}_j|K}$$

Probabilistic cost of the pieces (remember that $\xi_p > \xi_{p,p'}$):

• Of a stretch along the line:

$$\underbrace{\phantom{\frac{u_{j+1}}{u_{j+1}}}}^{u_{j+1}} \leq e^{-\xi_{\rho,\rho'} |u_{j+1} - v_j|}$$

• Of an excursion \mathcal{X}_i with $|\mathcal{X}_i|$ K-steps away from the line:

$$\leq e^{-\xi_{p,p'}|v_j-u_j|-c|\mathcal{X}_j|K}$$

Therefore the $\mathbb{P}_{p,p'}$ -probability of a skeleton is bounded above by

$$e^{-\xi_{p,p'}n-cK\sum_{j=1}^{M}|\mathcal{X}_j|}$$
,

Probabilistic cost of the pieces (remember that $\xi_p > \xi_{p,p'}$):

• Of a stretch along the line:

$$\overset{v_j}{\longrightarrow} \overset{u_{j+1}}{\longrightarrow} \leq e^{-\xi_{\rho,\rho'} |u_{j+1} - v_j|}$$

• Of an excursion \mathcal{X}_i with $|\mathcal{X}_i|$ K-steps away from the line:

$$\leq e^{-\xi_{p,p'}|v_j-u_j|-c|\mathcal{X}_j|K}$$

Therefore the $\mathbb{P}_{p,p'}$ -probability of a skeleton is bounded above by

$$e^{-\xi_{p,p'}n-cK\sum_{j=1}^{M}|\mathcal{X}_j|}$$

and thus its $\mathbb{P}_{p,p'}(\,\cdot\,|\,0\longleftrightarrow n\vec{e}_1)$ -probability is bounded above by

$$\frac{e^{-\xi_{p,p'}n - cK\sum_{j=1}^{M}|\mathcal{X}_j|}}{e^{-\xi_{p,p'}n(1 - o(1))}} \le e^{-cK\sum_{j=1}^{M}|\mathcal{X}_j| + o(n)}.$$

On can deduce from the above (and a control over the entropy of such skeletons) that

$$\mathbb{P}_{p,p'}\big(\exists \pi: 0 \to n\vec{e}_1 \text{ s.t. } \sum_{j=1}^M K|\mathcal{X}_j| \ge \epsilon n \mid 0 \longleftrightarrow n\vec{e}_1\big) \le e^{-c(\epsilon)n}.$$

On can deduce from the above (and a control over the entropy of such skeletons) that

$$\mathbb{P}_{p,p'}\big(\exists \pi: 0 \to n\vec{e}_1 \text{ s.t. } \sum_{j=1}^M K|\mathcal{X}_j| \ge \epsilon n \mid 0 \longleftrightarrow n\vec{e}_1\big) \le e^{-c(\epsilon)n}.$$

In particular, π mostly remains inside a tube of radius K around \mathcal{L} :

On can deduce from the above (and a control over the entropy of such skeletons) that

$$\mathbb{P}_{p,p'}\big(\exists \pi: 0 \to n\vec{e}_1 \text{ s.t. } \sum_{j=1}^M K|\mathcal{X}_j| \ge \epsilon n \; \big| \; 0 \longleftrightarrow n\vec{e}_1\big) \le e^{-c(\epsilon)n}.$$

In particular, π mostly remains inside a tube of radius K around \mathcal{L} :

A similar coarse-graining argument shows that the same is true for $C_{0,n\vec{e_1}}$:

The conclusion follows from a surgery argument:

The conclusion follows from a surgery argument:

This has a positive probability of occuring in any box, uniformly in what happens elsewhere. Therefore a positive fraction of the boxes must contain a cut-point on \mathcal{L} .

Fact #6

 $\xi_{p,p'}$ is strictly decreasing and real analytic on $(p'_{c}, 1)$.

We use, once more, Russo's formula:

$$\frac{\partial}{\partial p'}\log \mathbb{P}_{p,p'}(0\longleftrightarrow n\vec{e}_1) = \mathbb{E}_{p,p'}\big[\#\operatorname{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \bigm| 0\longleftrightarrow n\vec{e}_1\big].$$

Fact #6

 $\xi_{p,p'}$ is strictly decreasing and real analytic on $(p'_{c}, 1)$.

We use, once more, Russo's formula:

$$\frac{\partial}{\partial p'}\log \mathbb{P}_{p,p'}(0\longleftrightarrow n\vec{e}_1) = \mathbb{E}_{p,p'}\big[\#\mathsf{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \;\big|\; 0\longleftrightarrow n\vec{e}_1\big].$$

Since $p' > p'_{c}$,

$$\mathbb{E}_{p,p'}\big[\#\mathsf{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \mid 0\longleftrightarrow n\vec{e}_1\big] \geq \frac{\rho}{2}n.$$

Fact #6

 $\xi_{p,p'}$ is strictly decreasing and real analytic on $(p'_{c}, 1)$.

We use, once more, Russo's formula:

$$\frac{\partial}{\partial p'}\log \mathbb{P}_{p,p'}(0\longleftrightarrow n\vec{e}_1) = \mathbb{E}_{p,p'}\big[\# \mathsf{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \; \big| \; 0\longleftrightarrow n\vec{e}_1\big].$$

Since $p' > p'_{c}$,

$$\mathbb{E}_{p,p'}\big[\#\mathsf{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \mid 0\longleftrightarrow n\vec{e}_1\big] \geq \frac{\rho}{2}n.$$

Consequently,

$$\xi_{p,p_2'} - \xi_{p,p_1'} = -\lim_{n \to \infty} \frac{1}{n} \left(\log \mathbb{P}_{p,p_2'} (0 \longleftrightarrow n\vec{e}_1) - \log \mathbb{P}_{p,p_1'} (0 \longleftrightarrow n\vec{e}_1) \right)$$

$$\leq -\frac{\rho}{2} (p_2' - p_1').$$

Fact #6

 $\xi_{p,p'}$ is strictly decreasing and real analytic on $(p'_{c}, 1)$.

We use, once more, Russo's formula:

$$\frac{\partial}{\partial p'}\log \mathbb{P}_{p,p'}(0\longleftrightarrow n\vec{e}_1) = \mathbb{E}_{p,p'}\big[\#\operatorname{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \bigm| 0\longleftrightarrow n\vec{e}_1\big].$$

Since $p' > p'_{c}$,

$$\mathbb{E}_{p,p'}\big[\#\mathsf{Piv}_{\mathcal{L}}(0\longleftrightarrow n\vec{e}_1) \bigm| 0\longleftrightarrow n\vec{e}_1\big] \geq \tfrac{\rho}{2}n.$$

Consequently,

$$\xi_{p,p_2'} - \xi_{p,p_1'} = -\lim_{n \to \infty} \frac{1}{n} \left(\log \mathbb{P}_{p,p_2'} (0 \longleftrightarrow n\vec{e}_1) - \log \mathbb{P}_{p,p_1'} (0 \longleftrightarrow n\vec{e}_1) \right)$$

$$\leq -\frac{\rho}{2} (p_2' - p_1').$$

Analyticity follows from the renewal structure of $C_{0,n\vec{e}_1}$.

What about the critical behavior as $p' \downarrow p'_c$?

Critical behavior

Only in dimensions 2 and 3, unfortunately.

Fact #7

There exist constants c_2^{\pm} , $c_3^{\pm} > 0$ such that, as $p' \downarrow p'_c$,

$$c_2^-(p'-p'_c)^2 \le \xi_p - \xi_{p,p'} \le c_2^+(p'-p'_c)^2 \qquad (d=2), \qquad (1)$$

$$e^{-c_3^-/(p'-p'_c)} \le \xi_p - \xi_{p,p'} \le e^{-c_3^+/(p'-p'_c)} \qquad (d=3). \qquad (2)$$

$$e^{-c_3^-/(p'-p_c')} \le \xi_p - \xi_{p,p'} \le e^{-c_3^+/(p'-p_c')}$$
 (d = 3). (2)

Critical behavior

Only in dimensions 2 and 3, unfortunately.

Fact #7

There exist constants c_2^{\pm} , $c_3^{\pm} > 0$ such that, as $p' \downarrow p'_c$,

$$c_2^-(p'-p'_c)^2 \le \xi_p - \xi_{p,p'} \le c_2^+(p'-p'_c)^2 \qquad (d=2), \qquad (1)$$

$$e^{-c_3^-/(p'-p'_c)} \le \xi_p - \xi_{p,p'} \le e^{-c_3^+/(p'-p'_c)} \qquad (d=3). \qquad (2)$$

$$e^{-c_3^-/(p'-p_c')} \le \xi_p - \xi_{p,p'} \le e^{-c_3^+/(p'-p_c')}$$
 (d = 3). (2)

This actually follows from the estimates on p'_c done before, by taking care of the dependence on p' of the various constants...

Sharp asymptotics

Fact #8

For all $d \ge 2$ and for all $p' > p'_c$, there exists $r_d = r_d(p, p') > 0$ such that

$$\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1) = r_d e^{-\xi_{p,p'}n} (1 + o(1)).$$

Sharp asymptotics

Fact #8

For all $d \ge 2$ and for all $p' > p'_c$, there exists $r_d = r_d(p, p') > 0$ such that

$$\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1) = r_d e^{-\xi_{p,p'}n} (1 + o(1)).$$

This should be contrasted with the behavior in the homogeneous case [Campanino&Chayes², PTRF '91]: for all $d \ge 1$,

$$\mathbb{P}_p(0\longleftrightarrow n\vec{e}_1) = \frac{c_d}{n^{(d-1)/2}} e^{-\xi_p n} (1+o(1)).$$

Sharp asymptotics

Fact #8

For all $d \ge 2$ and for all $p' > p'_c$, there exists $r_d = r_d(p, p') > 0$ such that

$$\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1) = r_d e^{-\xi_{p,p'}n} (1 + o(1)).$$

This should be contrasted with the behavior in the homogeneous case [Campanino&Chayes², PTRF '91]: for all d > 1,

$$\mathbb{P}_{\rho}(0\longleftrightarrow n\vec{e}_1) = \frac{c_d}{n^{(d-1)/2}} e^{-\xi_{\rho}n} \left(1 + o(1)\right).$$

The proof of these purely exponential asymptotics relies on the renewal structure of $C_{0,n\vec{e_1}}$.

Open problems

- Properties of $\xi_{p,p'}$:
 - Analyze the behavior of $\xi_{p,p'}$ as $p' \downarrow p'_c$, in dimensions $d \geq 4$.
 - Analyze the behavior of $\xi_{p,p'}$ as a function of both p and p'. In particular, for (p,p') close to the critical line $p \mapsto p'_c(p)$.
- More general defects:
 - Defect line not coinciding with a coordinate axis; higher-dimensional defects (e.g., hyperplanes of given codimension).
 - Half-space percolation, with the defect line (or hyperplane) at the boundary of the system.
- Sharp asymptotics of the connectivity function $\mathbb{P}_{p,p'}(0 \longleftrightarrow n\vec{e}_1)$ for $p' \le p'_c$, and the corresponding scaling limit of the cluster $C_{0,n\vec{e}_1}$.
- Extension to other models: e.g., a version for FK-percolation would provide an extension to Ising/Potts models.

Thank you!

