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RWRE in Z with i.i.d. environment

An environment w = {wx}xez € Q = [0, 1]%.
P an i.i.d. product measure on €.

1—w, Wy
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RWRE in Z with i.i.d. environment

An environment w = {wx}xez € Q = [0, 1]%.
P an i.i.d. product measure on €.

1—w, Wy

Quenched law P,,: fix an environment.
Xn arandom walk: Xo = 0, and

Pw(XnJ’_‘] :X+1|Xn:X) = L{)X

Averaged law P: average over environments.

P(G) = /Q P.(G)dP(w)
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Recurrence/Transience and LLN

1 — wy
Px =

Wx

Theorem (Solomon ’'75)

@ Eflogpo] < 0= Xy — +0
@ Eflogpo] >0= Xy — —0
@ Elogpo] = 0= X, is recurrent.

Theorem (Solomon ’75)
If Elog po] < O then

1—E[po]
lim & = vp = TEle0] E[po] <1
0 E[po] > 1.

V.
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Averaged Limiting Distributions

k > 0 solves Ep" = 1.

Theorem (Kesten, Kozlov, Spitzer *75)
There exists a constant b such that

(a) r€(0,1)= nlim P (i,(: < x) =1- L,.;,b(x_”*’”)
(b) ke(1,2)= nleooP (W < x) =1—L,p(—x)
(c) k>2= iim (X2 vP x) = d(x)

w Nn—oo b\/ﬁ - o

where L, p, is a x-stable distribution function.
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k > 0 solves Ep" = 1.

Theorem (Kesten, Kozlov, Spitzer *75)
There exists a constant b such that

(a) r€(0,1)= nlim P (i,(: < x) =1- L,.;,b(x_”*’”)
(b) ke(1,2)= nleooP (W < x) =1—L,p(—x)
(c) k>2= iim (X2 vP x) = d(x)

w Nn—oo b\/ﬁ - o

where L, p, is a x-stable distribution function.

Limits for X,: P(T, > t) = P(X; < n).
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Averaged Limiting Distributions

Th:=inf{k > 0: Xx = n}. (Hitting Times)

Theorem (Kesten, Kozlov, Spitzer *75)
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Averaged Limiting Distributions

Th:=inf{k > 0: Xx = n}. (Hitting Times)

Theorem (Kesten, Kozlov, Spitzer *75)
There exists a constant b such that

(a) ke(0,1)= nIi_)mOOIP’ (Ih < x) = L, p(X)
(b) ke(1,2)= nli_)mOOIP> <w < x> =L, p(x)
(c) k>2= nILmOOP (T”;\%VP < x) = d(x)

where L, p, is a x-stable distribution function.

Tn = 27:1(7-1 - 7-,',1)
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Quenched Limiting Distribution: Gaussian Regime

Theorem (Goldsheid 06, P. ’06)
If k > 2 then

. Th—E,Th
lim P, (—2"<x) =d(x), P-—as.
Jim. < = _x) (x) a.s

where o2 = E(Var,Ty), and

lim P,

Vg/za\/ﬁ

where Z,(w) depends only on the environment.

< X) =d(x), P-as.
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Quenched Limiting Distribution: Gaussian Regime

Theorem (Goldsheid 06, P. ’06)
If k > 2 then

. Th—E,Th
lim P, (—2"<x) =d(x), P-—as.
Jim. < = _x) (x) a.s

where o2 = E(Var,Ty), and

lim P,

Vg/za\/ﬁ

where Z,(w) depends only on the environment.

< X) =d(x), P-as.

@ Requires a random centering.
@ Scaling constant is different from averaged CLT.
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Quenched Limiting Distribution: Gaussian Regime

Quenched CLT: T, = > (T; — Ti_4)
Use Lindberg-Feller Condition
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Quenched Limiting Distribution: Gaussian Regime
Quenched CLT: T, = > (T; — Ti_4)

Use Lindberg-Feller Condition

Quenched CLT = Averaged CLT:

Tn—n/VP_ Tn—Ean—i_Ean—n/VP
vn o n vn

@ Terms on right are asymptotically independent.
e (E,T,— n/vp)/\/nis approximately mean zero Gaussian.
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Quenched Limiting Distribution: Gaussian Regime
Quenched CLT: T, = > (T; — Ti_4)

Use Lindberg-Feller Condition

Quenched CLT = Averaged CLT:

Tn—n/VP_ Tn—Ean—i_Ean—n/VP
vn o n vn

@ Terms on right are asymptotically independent.
e (E,T,— n/vp)/\/nis approximately mean zero Gaussian.

What happens when k < 27?
Do we get quenched stable laws?
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Quenched Limits: k < 2

Theorem (P.’07)

If k < 2 then P — a.s. there exist random subsequences ny = ny(w),
and my = my(w) such that

. T — EuTh
(a) lim P, | - —= < x| = d(x)
k—o0 v/ Var, Ty,

— if —1
(b) lim P, MSX - 0 ’_X<
k—o00 V'Var, T, 1—e 1 jfx> -1
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@ Which limit is more likely?
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Quenched Limits: k < 2

Theorem (P.’07)

If k < 2 then P — a.s. there exist random subsequences ny = ny(w),
and my = my(w) such that

. T — EuTh
(a) lim P, | - —= < x| = d(x)
k—o0 v/ Var, Ty,

. Tm, — EuTm 0 ifx < —1
b im P, | ————* < x| =
(b) - fim, ( VVar,Tm, — ) {1 —e X jfx> -1
FAQ

@ Which limit is more likely?

@ What other subsequential limits are possible?
@ Where do the k-stable distributions come from.
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Weak Quenched Limits: x < 2

For any x € R,

p (T BT _
nl /K
is a random variable.

@ Doesn’t converge almost surely to a deterministic constant.
@ Maybe converges in some weaker sense (in distribution).
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Random distributions

My = Probability distributions on R (with Prohorov metric p).

P,(Tfelnc.) k<2

,Un,w(') = Th—E.Th

P, N K> 2.

Lnw iS an My-valued random variable.
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Random distributions

My = Probability distributions on R (with Prohorov metric p).

P,(Tfelnc.) k<2

,Un,w(') = Th—E.Th

P, N K> 2.

Lnw iS an My-valued random variable.
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_ Weakquenchedlimits  MainResuts
Random distributions

My = Probability distributions on R (with Prohorov metric p).

P,(Tfelnc.) k<2
(") = p (T—EuTy 2
w\ " m c - K > .
Iin 1S @an Mj-valued random variable.
Quenched CLT (x > 2):
lim pn = N(0,02) € My, P—as.

Weak Quenched Limits (x < 2):
n . converges weakly (in distribution) on Mj.
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Weak Quenched Limiting Distributions: x < 2

Theorem (P. & Samorodnitsky ’10)
If k < 2, then there exists a A > 0 such that

Unw == HXk»
n—oo

where p, . is a random probability distribution defined by

ai,f21>

where {a;};>1 are the points of a non-homogeneous Poisson point
process with intensity \xx 51,

prs(A) =P (i ai(ri—1) €A
i=1
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Non-homogeneous Poisson point processes

Let {I';};>1 be a PPP with constant intesity 1.
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Non-homogeneous Poisson point processes

Let {I';};>1 be a PPP with constant intesity 1.

0 0.2 0.4 0.6 0.8 1 12 14 16 18
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Weak Quenched Limits: Averaged Centering (k < 1)
Lot jn. (1) = P (if <)

Theorem (P. & Samorodnitsky ’10)
If k < 1, then there exists a A > 0 such that

,an,w — ﬂk,m
n—oo

where i . is a random probability distribution defined by

ai7i21)

where {a;}i>1 are the points of a non-homogeneous Poisson point
process with intensity \kx 51,

firx(A) =P (Z airi € A

i=1
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Weak Quenched Limits: Averaged Centering (k < 1)
Let fin.() = P (75 € )

Theorem (P. & Samorodnitsky ’10)
If k < 1, then there exists a A > 0 such that

Ian,w — ﬂk,m
n—oo

where i . is a random probability distribution defined by

ai7i21)

where {a;}i>1 are the points of a non-homogeneous Poisson point
process with intensity \kx 51,

firx(A) =P (Z ari €A

i=1

Note: Implies the averaged stable limit laws.
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Weak quenched limits Main Results

P (15 <) = Elina((—o.XD] = Elfnn((-c.x])
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Weak quenched limits Main Results

P (15 <) = Elina((—o.XD] = Elfnn((-c.x])

E [jirs((—o0, X)] =E |P [ > am < x|a, i>1
i>1
=P Za,-r,- <X
i>1

@ a;7; are atoms of PPP with intensity Axl(x + 1)x—"*' dx.
@ 1 &7;is a r-stable random variable.
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Proofs

Potential: - _
22:10 log pk, i>0
V(i):=<0, i=0
Sili—logpk, <0
Trap: Atypical section where the potential is increasing.

Fotential 4(x)
. o .
8
T

50 I 1 I I 1 I 1 I
o 20 40 B0 a0 100 120 140 160 1a0
Location x
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Weak quenched limits Proofs

Trapping Effects

Zero Speed RWRE: F(w=314 755, F(w=1/3)F 45

Lacation n

[ 500 1000 1500 2000 2500 3000 3500 4000 4500

Time n

000

Fatential Vi)
T

Cornell University

20 40 &0 0 100 120 140 180
Location %

Peterso

180
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Blocks of the environment

Ladder locations {v,} defined by 1y = 0,

vpi=inf{i > vp_1: V(i) < V(vp_1)}

V) Vg 1% Vg Vs 14 1%
3 5 6 7
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Reductionto T,

Vn = 27:1(’4 - Vi—1)-

LLN implies

3|s
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Reductionto T,

Vn = Zln:1(’/i - Vi—1)-

LLN implies

3|s

Enough to study

n1/l-€

bnw(’) = P, (TVn_EWTVn € >

Want to show ¢, = p. . for some A.
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Crossing Hills

Probability of escaping a trap of Height H.
1

PTy<T )= —
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Crossing Hills

Probability of escaping a trap of Height H.

’
PTo<T )= —p— e /O =g"

Time to escape trap of height H ~ Exp(e").
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Comparison with exponentials

Law

Want: T, =~ (E,T,)T.
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Comparison with exponentials

Want: T, & (E,T,)r.
Decompose T, into trials

Where
S~(T,|T, < Tgr)
Firn (Tg | Ty < T)
G ~ Geo(p.), where p,, = P,(T, < T}")
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Comparison with exponentials

Want: T, & (E,T,)r.
Decompose T, into trials

Where

S~(T,|T, < Tar)
Firn (Tg | Ty < T)
G ~ Geo(p.), where p,, = P,(T, < T}")

Couple G with an exponential 7

o= | et
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_ L Weskquenchedlimiet L ket
Comparison with mixture of exponentials

Let
ﬂi = ﬁi(w) = Ew(Tu,' - Tzz,-_1)-

The coupling gives

T, — E,T, I
ey n1/KZﬂi(Ti*1)
i=1

where 7; are i.i.d. Exp(1).
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_ L Weskquenchedlimiet L ket
Comparison with mixture of exponentials

Let
ﬂi = ﬂi(w) = Ew(Tu,' - Tzz,-_1)-

The coupling gives

T, — E,T, I
ey n1/KZﬂi(Ti*1)
i=1

where 7; are i.i.d. Exp(1).

n
IWn*“Wm(M—E]%)—Q in P-probability.
i=1

n—oo
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Heuristics of Quenched Limit Laws

Recall,

n1/l{

bnw(’) = P, (TVn_EwTVn e )
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Heuristics of Quenched Limit Laws

Recall,

n1/l€

nal) =P

Reduced to study of

onw() = P (#Zﬂi(ﬂ -1)e ) -
i=

Tyn - Ew Tun )
— <.
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Heuristics of Quenched Limit Laws

Recall,

n1/l€

nal) =P

Reduced to study of

onw() = Po (#Zﬂi(ﬂ -1)¢ ) :
i—1

Tyn - Ew Tun )
— <.

Need to understand the distribution of {3;}7_,
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Point Process Convergence

Mp = Point processes » ;.. dx on (0, c0).

Nn — Nn Z(sﬁ /n1/n
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Point Process Convergence

Mp = Point processes » ;.. dx on (0, c0).

Nn = Nn Z(sﬁ /n1/n

Proposition (P. & Samorodnitsky "10)

Letxk < 2. Then N, = N, .., where N, ,. is a non-homogeneous
Poisson point process with intensity \kx =", for some X > 0.
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Point Process Convergence

Mp = Point processes » ;.. dx on (0, c0).

Nn — Nn Z(sﬁ /n1/n

Proposition (P. & Samorodnitsky "10)

Letxk < 2. Then N, = N, .., where N, ,. is a non-homogeneous
Poisson point process with intensity \kx =", for some X > 0.

© {3} is (almost) stationary.
@ The 3; have heavy tails: 81 = E, T, ~ e/

P(e" > x)~Cx™*  asx — .

© {p;} has good mixing properties.
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Define H : M, — M by

HOG =P Y xi(ri—1)e-|, for¢=> o

i>1 i>1

Remark: Only defined if 3~ x? < oc.
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Define H : M, — M by

i>1 i>1

H)(:)=P (ZXI‘(T/'UG-) , forC:Z&q.

Remark: Only defined if 3~ x? < oc.

Recall
® 0n = H(Ny) = P (5 S0y Bi(ri — 1) € )
@ yk = H(NA,N)
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Define H : Mp — M by
H()() =P (ZXI(TI1)€') ; fOI’C:Z(SX,-
i>1 i>1

Remark: Only defined if 3~ x? < oc.

Recall
® 0n = H(Ny) = P (5 S0y Bi(ri — 1) € )
@ yk = H(NA,N)

Since N, = N, ., would like to conclude that

H(Np) = H(Nj x)-
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Define H : Mp — M by
H()() =P (ZXI(TI1)€') ; fOI’CzZéX,-
i>1 i>1

Remark: Only defined if 3~ x? < oc.

Recall
® 0n = H(Ny) = P (5 S0y Bi(ri — 1) € )
@ yk = H(NA,N)

Since N, = N, ., would like to conclude that
H(Nn) = H(Njx)-

H is NOT continuous.
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