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Weak quenched limits Introduction

RWRE in Z with i.i.d. environment

An environment ω = {ωx}x∈Z ∈ Ω = [0,1]Z.
P an i.i.d. product measure on Ω.

ωx1− ωx

x x + 1x− 1

Quenched law Pω: fix an environment.
Xn a random walk: X0 = 0, and

Pω(Xn+1 = x + 1|Xn = x) := ωx

Averaged law P: average over environments.

P(G) :=

∫
Ω

Pω(G)dP(ω)
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Weak quenched limits Introduction

Recurrence/Transience and LLN

ρx =
1− ωx

ωx

Theorem (Solomon ’75)

E [log ρ0] < 0⇒ Xn → +∞
E [log ρ0] > 0⇒ Xn → −∞
E [log ρ0] = 0⇒ Xn is recurrent.

Theorem (Solomon ’75)

If E [log ρ0] < 0 then

lim
n→∞

Xn

n
= vP =

{
1−E [ρ0]
1+E [ρ0] E [ρ0] < 1

0 E [ρ0] ≥ 1.
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Weak quenched limits Introduction

Averaged Limiting Distributions

κ > 0 solves Eρκ = 1.

Theorem (Kesten, Kozlov, Spitzer ’75)
There exists a constant b such that

(a) κ ∈ (0,1)⇒ lim
n→∞

P
(

Xn

nκ
≤ x

)
= 1− Lκ,b(x−1/κ)

(b) κ ∈ (1,2)⇒ lim
n→∞

P
(

Xn − nvP

n1/κ ≤ x
)

= 1− Lκ,b(−x)

(c) κ > 2⇒ lim
n→∞

P
(

Xn − nvP

b
√

n
≤ x

)
= Φ(x)

where Lκ,b is a κ-stable distribution function.

Limits for Xn: P(Tn > t) ≈ P(Xt < n).
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Weak quenched limits Introduction

Averaged Limiting Distributions

Tn := inf{k ≥ 0 : Xk = n}. (Hitting Times)

Theorem (Kesten, Kozlov, Spitzer ’75)
There exists a constant b such that
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Tn =
∑n

i=1(Ti − Ti−1)
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Weak quenched limits Quenched Limit Laws

Quenched Limiting Distribution: Gaussian Regime

Theorem (Goldsheid ’06, P. ’06)
If κ > 2 then

lim
n→∞

Pω

(
Tn − EωTn

σ
√

n
≤ x

)
= Φ(x), P − a.s.

where σ2 = E(VarωT1), and

lim
n→∞

Pω

(
Xn − nvP + Zn(ω)

v3/2
P σ
√

n
≤ x

)
= Φ(x), P − a.s.

where Zn(ω) depends only on the environment.

Requires a random centering.
Scaling constant is different from averaged CLT.
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Weak quenched limits Quenched Limit Laws

Quenched Limiting Distribution: Gaussian Regime

Quenched CLT: Tn =
∑n

i=1(Ti − Ti−1)
Use Lindberg-Feller Condition

Quenched CLT⇒ Averaged CLT:

Tn − n/vP√
n

=
Tn − EωTn√

n
+

EωTn − n/vP√
n

Terms on right are asymptotically independent.
(EωTn − n/vP)/

√
n is approximately mean zero Gaussian.

Question
What happens when κ < 2?
Do we get quenched stable laws?
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Weak quenched limits Quenched Limit Laws

Quenched Limits: κ < 2

Theorem (P. ’07)

If κ < 2 then P − a.s. there exist random subsequences nk = nk (ω),
and mk = mk (ω) such that

(a) lim
k→∞

Pω

(
Tnk − EωTnk√

VarωTnk

≤ x

)
= Φ(x)

(b) lim
k→∞

Pω

(
Tmk − EωTmk√

VarωTmk

≤ x

)
=

{
0 if x < −1
1− e−x−1 if x ≥ −1

FAQ
Which limit is more likely?
What other subsequential limits are possible?
Where do the κ-stable distributions come from.
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Weak quenched limits Main Results

Weak Quenched Limits: κ < 2

For any x ∈ R,

Pω

(
Tn − EωTn

n1/κ ≤ x
)

is a random variable.

Doesn’t converge almost surely to a deterministic constant.
Maybe converges in some weaker sense (in distribution).
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Weak quenched limits Main Results

Random distributions

M1 = Probability distributions on R (with Prohorov metric ρ).

µn,ω(·) =

Pω
(

Tn−EωTn
n1/κ ∈ ·

)
κ < 2

Pω
(

Tn−EωTn√
n ∈ ·

)
κ > 2.

µn,ω is anM1-valued random variable.

Quenched CLT (κ > 2):

lim
n→∞

µn,ω = N(0, σ2) ∈M1, P − a.s.

Weak Quenched Limits (κ < 2):
µn,ω converges weakly (in distribution) onM1.
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Weak quenched limits Main Results

Weak Quenched Limiting Distributions: κ < 2

Theorem (P. & Samorodnitsky ’10)
If κ < 2, then there exists a λ > 0 such that

µn,ω =⇒
n→∞

µλ,κ,

where µλ,κ is a random probability distribution defined by

µλ,κ(A) = P

( ∞∑
i=1

ai(τi − 1) ∈ A
∣∣∣∣ai , i ≥ 1

)

where {ai}i≥1 are the points of a non-homogeneous Poisson point
process with intensity λκx−κ−1.
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Weak quenched limits Main Results

Non-homogeneous Poisson point processes

Let {Γi}i≥1 be a PPP with constant intesity 1.

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

Let ai = λ1/κΓ
−1/κ
i . Then, {ai}i≥1 is a PPP with intensity λκx−κ−1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

0

1
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Weak quenched limits Main Results

Weak Quenched Limits: Averaged Centering (κ < 1)

Let µ̃n,ω(·) = Pω
(

Tn
n1/κ ∈ ·

)
Theorem (P. & Samorodnitsky ’10)
If κ < 1, then there exists a λ > 0 such that

µ̃n,ω =⇒
n→∞

µ̃λ,κ,

where µ̃λ,κ is a random probability distribution defined by

µ̃λ,κ(A) = P

( ∞∑
i=1

aiτi ∈ A
∣∣∣∣ai , i ≥ 1

)

where {ai}i≥1 are the points of a non-homogeneous Poisson point
process with intensity λκx−κ−1.

Note: Implies the averaged stable limit laws.
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Weak quenched limits Main Results

P
(

Tn

n1/κ ≤ x
)

= E [µ̃n,ω((−∞, x ])] −→
n→∞

E [µ̃λ,κ((−∞, x ])]

E [µ̃λ,κ((−∞, x ])] = E

P

∑
i≥1

aiτi ≤ x
∣∣∣∣ai , i ≥ 1


= P

∑
i≥1

aiτi ≤ x

 .

aiτi are atoms of PPP with intensity λκΓ(κ+ 1)x−κ−1 dx .∑
i≥1 aiτi is a κ-stable random variable.
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Weak quenched limits Proofs

Proofs

Potential:

V (i) :=


∑i−1

k=0 log ρk , i > 0
0, i = 0∑−1

k=i − log ρk , i < 0

Trap: Atypical section where the potential is increasing.
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Weak quenched limits Proofs

Trapping Effects
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Weak quenched limits Proofs

Blocks of the environment

Ladder locations {νn} defined by ν0 = 0,

νn := inf{i > νn−1 : V (i) < V (νn−1)}

ν1 ν2 ν3 ν4 ν5 ν6 ν7

Cornell University Jonathon Peterson 2/17/2011 17 / 24



Weak quenched limits Proofs

Reduction to Tνn

νn =
∑n

i=1(νi − νi−1).

LLN implies
νn

n
→ ν̄ = Eν1

Enough to study

φn,ω(·) = Pω

(
Tνn − EωTνn

n1/κ ∈ ·
)

Want to show φn,ω =⇒ µλ,κ for some λ.
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Weak quenched limits Proofs

Crossing Hills

Probability of escaping a trap of Height H.

Pω(Tb < T−1) =
1

1 +
∑b

j=1 eV (j)

≈ e−V (b) = e−H

Time to escape trap of height H ≈ Exp(e−H).

0−1 b

V (b) = H
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Weak quenched limits Proofs

Comparison with exponentials

Want: Tν
Law≈ (EωTν)τ .

Decompose Tν into trials

Tν = S +
G∑

i=1

Fi

Where

S ∼ (Tν |Tν < T +
0 )

Fi ∼ (T +
0 |T +

0 < Tν)

G ∼ Geo(pω), where pω = Pω(Tν < T +
0 )

Couple G with an exponential τ

G =

⌊
τ

log(1/(1− pω))

⌋
.
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Weak quenched limits Proofs

Comparison with mixture of exponentials

Let
βi = βi(ω) = Eω(Tνi − Tνi−1).

The coupling gives

Tνn − EωTνn

n1/κ ≈ 1
n1/κ

n∑
i=1

βi(τi − 1)

where τi are i.i.d. Exp(1).

lim
n→∞

n−2/κ Varω

(
Tνn −

n∑
i=1

βiτi

)
= 0, in P-probability.
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Weak quenched limits Proofs

Heuristics of Quenched Limit Laws

Recall,

φn,ω(·) = Pω

(
Tνn − EωTνn

n1/κ ∈ ·
)

Reduced to study of

σn,ω(·) = Pω

(
1

n1/κ

n∑
i=1

βi(τi − 1) ∈ ·
)
.

Need to understand the distribution of {βi}ni=1
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Weak quenched limits Proofs

Point Process Convergence

Mp = Point processes
∑

i≥1 δxi on (0,∞).

Nn = Nn(ω) =
n∑

i=1

δβi/n1/κ

Proposition (P. & Samorodnitsky ’10)
Let κ < 2. Then Nn =⇒ Nλ,κ, where Nλ,κ is a non-homogeneous
Poisson point process with intensity λκx−κ−1, for some λ > 0.

1 {βi} is (almost) stationary.
2 The βi have heavy tails: β1 = EωTν ≈ eH

P(eH > x) ∼ Cx−κ as x →∞.
3 {βi} has good mixing properties.
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Weak quenched limits Proofs

Define H :Mp −→M1 by

H(ζ)(·) = P

∑
i≥1

xi(τi − 1) ∈ ·
 , for ζ =

∑
i≥1

δxi .

Remark: Only defined if
∑

x2
i <∞.

Recall
σn,ω = H(Nn) = Pω

(
1

n1/κ

∑n
i=1 βi(τi − 1) ∈ ·

)
µλ,κ = H(Nλ,κ)

Since Nn =⇒ Nλ,κ, would like to conclude that

H(Nn) =⇒ H(Nλ,κ).

H is NOT continuous.

Cornell University Jonathon Peterson 2/17/2011 24 / 24



Weak quenched limits Proofs

Define H :Mp −→M1 by

H(ζ)(·) = P

∑
i≥1

xi(τi − 1) ∈ ·
 , for ζ =

∑
i≥1

δxi .

Remark: Only defined if
∑

x2
i <∞.

Recall
σn,ω = H(Nn) = Pω

(
1

n1/κ

∑n
i=1 βi(τi − 1) ∈ ·

)
µλ,κ = H(Nλ,κ)

Since Nn =⇒ Nλ,κ, would like to conclude that

H(Nn) =⇒ H(Nλ,κ).

H is NOT continuous.

Cornell University Jonathon Peterson 2/17/2011 24 / 24



Weak quenched limits Proofs

Define H :Mp −→M1 by

H(ζ)(·) = P

∑
i≥1

xi(τi − 1) ∈ ·
 , for ζ =

∑
i≥1

δxi .

Remark: Only defined if
∑

x2
i <∞.

Recall
σn,ω = H(Nn) = Pω

(
1

n1/κ

∑n
i=1 βi(τi − 1) ∈ ·

)
µλ,κ = H(Nλ,κ)

Since Nn =⇒ Nλ,κ, would like to conclude that

H(Nn) =⇒ H(Nλ,κ).

H is NOT continuous.

Cornell University Jonathon Peterson 2/17/2011 24 / 24



Weak quenched limits Proofs

Define H :Mp −→M1 by

H(ζ)(·) = P

∑
i≥1

xi(τi − 1) ∈ ·
 , for ζ =

∑
i≥1

δxi .

Remark: Only defined if
∑

x2
i <∞.

Recall
σn,ω = H(Nn) = Pω

(
1

n1/κ

∑n
i=1 βi(τi − 1) ∈ ·

)
µλ,κ = H(Nλ,κ)

Since Nn =⇒ Nλ,κ, would like to conclude that

H(Nn) =⇒ H(Nλ,κ).

H is NOT continuous.

Cornell University Jonathon Peterson 2/17/2011 24 / 24


	Introduction
	Quenched Limit Laws
	Main Results
	Proofs

