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A directed polymer model
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A path φ ≡ {0 < t1 < . . . < tN−1 < t}.
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A directed polymer model

The environment: B1,B2, . . . independent standard 1-dim
Brownian motions.

For φ ≡ {0 < t1 < . . . < tN−1 < t}, define

E(φ) = B1(t1) + B2(t2)− B2(t1) + · · ·+ BN(t)− BN(tN−1).

Boltzmann measure:

P(dφ) = Z N
t (β)−1eβE(φ)dφ, Z N

t (β) =

∫
eβE(φ)dφ.
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The free energy density

Theorem (O’C-Yor ’01, O’C-Moriarty ’07)

Almost surely,

lim
N→∞

1
N

log Z N
N (β) = inf

t>0
[tβ2 −Ψ(t)]− logβ2 =: f (β),

where Ψ(z) = Γ′(z)/Γ(z).

For small β,

lim
N→∞

1
N

log
Z N

N (β)

EZ N
N (β)

∼ 5
24
β4.

cf. Lacoin (2009).
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Fluctuations

Theorem (Seppalainen-Valko 2010)

There exist finite, positive β-dependent constants C, b0 and N0
such that for b ≥ b0 and N ≥ N0,

P
(
| log Z N

N (β)− f (β)N| ≥ bN1/3
)
≤ Cb−3/2.

Neil O’Connell, University of Warwick Directed polymers and the quantum Toda lattice



A scaling property

By Brownian scaling,

(Z N
t (β), t ≥ 0)

d
= (β−2(N−1)Z N

β2t (1), t ≥ 0).

Define
Z N

t = Z N
t (1).
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As an interacting particle system . . .

Set X N
t = log Z N

t . Then

dX N
t = eX N−1

t −X N
t dt + dBN

t .

Infinite system has product-form invariant measure for each
given intensity.

This allows computation of the free energy density following
Rost (1986) / Seppalainen (1998), analogous to TASEP.
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Connection with random matrices

The law of Z N
t (β) is well-understood in the zero temperature

limit. Define

MN
t = lim

β→∞

1
β

log Z N
t (β)

= max
0=t0≤t1≤···≤tN−1≤tn=t

N∑
i=1

Bi(ti)− Bi(ti−1).

The process (MN
t , t ≥ 0) is BN ‘reflected off’ BN−1 ‘reflected

off’ . . . ‘reflected off’ B2 ‘reflected off’ B1.

By Brownian scaling, the law of MN
t /
√

t is independent of t .
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Connection with random matrices

Theorem (Baryshnikov ’01, Gravner-Tracy-Widom ’01)

The random variable MN
1 has the same law as the largest

eigenvalue of a N × N GUE random matrix, that is

P(MN
1 ≤ y) =

∫
max1≤i≤N xi≤y

cNe−
PN

i=1 x2
i /2h(x)2dx

where
h(x) =

∏
1≤i<j≤N

(xi − xj)

and cN is a normalisation constant.
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Connection with random matrices

This yields very precise information about the law and
asymptotic behavior of MN . For example,

P(MN
N ≤ y) = det[1− KN ]L2([y ,∞)

where KN is the ‘Hermite kernel’, and

lim
N→∞

P
(

MN
N ≤ 2N + yN1/3

)
= F2(y),

where
F2(y) = det[1− KAiry ]L2([y ,∞)

is the Tracy-Widom distribution.
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Connection with random matrices

In fact [Bougerol-Jeulin ’02, O’C-Yor ’02] the stochastic process
(MN

t , t ≥ 0) has the same law as the top line of a system of N
Dyson Brownian motions. That is, it has the same law as the
first coordinate of a Brownian motion conditioned never to exit

CN = {x ∈ RN : x1 > · · · > xN},

started from the origin. This is a diffusion in CN with generator

1
2

h(x)−1∆CN h(x) = ∆/2 +∇ log h · ∇.
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The quantum Toda lattice

The quantum Toda lattice is a quantum integrable system with
Hamiltonian given by

H = ∆− 2
N−1∑
i=1

exi+1−xi .

The eigenfunctions ψλ of H are naturally indexed by λ ∈ ιRN ,
given explicitly by an integral formula due to Givental (1997).

There is a positive eigenfunction ψ0 with Hψ0 = 0.

Funny fact: ψ0(x) is the ‘volume’ of the set of ‘Gelfand-Tsetlin
patterns’ with top row x , but with indicator functions 1a≤b
replaced by double exponentials exp(−ea−b).
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The process Z N
t

Theorem

The stochastic process log Z N
t , t > 0 has the same law as the

*first coordinate* of the diffusion in RN with generator

L =
1
2
ψ−1

0 Hψ0 =
1
2

∆ +∇ logψ0 · ∇

started from ‘−∞′.

This diffusion can be thought of as a geometric analogue of
Dyson’s Brownian motion.
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The other coordinates

Set X N
1 (t) = log Z N

t and, for k = 2, . . . ,N,

X N
1 (t) + · · ·+ X N

k (t) = log
∫

eE(φ1)+···+E(φk )dφ1 . . . dφk ,

where the integral is over non-intersecting paths φ1, . . . , φk from
(0,1), . . . , (0, k) to (t ,N − k + 1), . . . , (t ,N).

Theorem

The process X N is a diffusion process in RN with generator L.

cf. Greene’s theorem: this is based on a geometric variant of
the RSK correspondence (cf. Kirillov 2000).

Generalizes a theorem of Matsumoto and Yor (1999), which in
turn is a geometric analogue of Pitman’s ‘2M − X ’ theorem.
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Proof uses theory of Markov functions

Set X 1 = B1. It is easy to see that (X 1, . . . ,X N) is a Markov
process in R× R2 · · · × RN which satisfies a simple SDE. The
Markov property of X N follows from an intertwining relation plus
some technical results concerning the entrance from ‘−∞’.
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The entrance law

The entrance law µt from ‘−∞’ is given by

µt (dx) = ψ0(x)

∫
ιRN

exp

(
1
2

N∑
i=1

λ2
i t

)
ψλ(x)sN(λ)dλ,

where
sN(λ) =

1
(2πι)NN!

∏
j 6=k

Γ(λj − λk )−1

is the Sklyanin measure - the Plancherel measure for the
quantum Toda lattice [Sklyanin 1985, Semenov-Tian-Shanski
1994, Kharchev-Lebedev 1999].

The measure µt (dx) is a ‘deformation’ of the GUE.
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The law of the partition function

Corollary

For s > 0,

Ee−sZ N
t =

∫
s

P
λi
∏

i

Γ(−λi)
Ne

1
2

P
i λ

2
i tsN(λ)dλ,

where the integral is along vertical lines with <λi < 0 for all i .

This uses a remarkable identity, conjectured by Bump (1989),
proved by Stade (2002), and extended / elucidated in the
present context by Gerasimov, Lebedev and Oblezin (2008).
Moreover, the RHS is a Fredholm determinant.
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Connection with random matrices

The probability measure on ιRN with density proportional to

e
P

i λ
2
i t/2sN(λ) ≡ 1

(2πι)NN!
e

P
i λ

2
i t/2

∏
i>j

(λi − λj)
∏
i<j

sinπ(λi − λj)

π

is (up to a factor of ιπ) the law, at time 1/t , of the radial part of a
Brownian motion in the symmetric space of positive definite
Hermitian matrices. In particular, it is a determinantal point
process, so Ee−sZ N

t can be written as a Fredholm determinant.
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Crossover distributions

The law of log Z N
t should converge (in an appropriate scaling)

to the ‘crossover distributions’ recently introduced in the context
of the KPZ / stochastic heat equation by Sassamoto-Spohn
(2010) and Amir-Corwin-Quastel (2010) - building on recent
work of Tracy and Widom on ASEP - and also via a different
approach by Dotsenko-Klumov (2010).

The above RSK-type construction extends naturally to the
continuum setting.
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