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Assume: v ≥ 0, supp(v) - compact.

β ≥ 0 - inverse temperature.

P0,T - Wiener measure on C([0, T ],Rd).

Gibbs measure Pβ,T defined by:

dPβ,T
dP0,T

(x) =
exp(β

∫ T
0 v(x(t))dt)

Zβ,T(0)
, x ∈ C([0, T ],Rd).

Zβ,T (0) - partition function.
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First set of questions: What is the typical

behavior of x(t), t ∈ [0, T ], when T → ∞?

(for different values of β).

Define pβ as the fundamental solution of the

heat equation

∂pβ

∂t
(t, y, x) =

1

2
Δxpβ(t, y, x) + βv(x)pβ(t, y, x),

pβ(0, y, x) =δ(x− y).

For 0 = t0 < t1 < t2 < ... < tn ≤ T and x0 = 0,

Pβ,T (x(t1) ∈ dx1, ..., x(tn) ∈ dxn)

dx1...dxn
=

∫
Rd
∏n−1
i=0 pβ(ti+1 − ti, xi, xi+1)pβ(T − tn, xn, z)dz∫

Rd
pβ(T,0, z)dz

.
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So we are interested in the asymptotics of

the solutions (and fundamental solutions) for

the parabolic equation with the operator

Lβu =
1

2
Δxu+ βv(x)u.

For initial condition u(0, ·) = g,

u(t, ·) = − 1

2πi

∫
Reλ=λ0+1

eλtR
β
λgdλ.

Resolvent: Rβλ = (Lβ − λ)−1.

Resolvent Identity:

R
β
λ = R0

λ(I + βv(x)R0
λ)

−1.

Analytic and asymptotic properties of R0
λ are

known (e.g. R0(λ, x) = e−
√

2λ|x|
−2π|x| , d = 3).
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Spaces: both sides in the resolvent identity:

L2
exp(R

d) → L2(Rd) and Cexp(Rd) → C(Rd).

||f ||L2
exp(R

d) = (
∫
Rd
f2(x)e|x|2dx)

1
2.

||f ||Cexp(Rd)
= sup

x∈Rd
(|f(x)|e|x|2).

Spectrum:

σ(Hβ) = (−∞,0]∪{λj(β)}, j ≤ N, λj(β) ≥ 0.

Let λ0 = maxj(λj). Then

lim
T→∞

lnZβ,T
T

= λ0(β)
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Lemma: (asymptotics of λ0(β) as β ↓ βcr)

Lemma: – For β > βcr: lnZβ,T ∼ λ0(β)T .

– For β < βcr: limT→∞Zβ,T = c(β) ∼ c
β−βcr

(as β ↑ βcr).
– For β = βcr:

d = 3 : Zβ,T ∼ k3
√
T as T → ∞.

d = 4 : Zβ,T ∼ k4T/ lnT as T → ∞.

d ≥ 5 : Zβ,T ∼ kdT as T → ∞.
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Results on the behavior of x(t), t ∈ [0, T ].

Case 1 (β > βcr). Let S(T), T − S(T) → ∞,

s > 0 be fixed.

Let yT (t) = x(S(T) + t), 0 ≤ t ≤ s.

Theorem: yT(t) converges, as T → ∞, to a

stationary Markov process with finite invari-

ant measure.
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Case 2 (β < βcr). Let yT (t) = x(t · T)/
√
T ,

0 ≤ t ≤ 1.

Theorem: yT(t) converges, as T → ∞, to

d-dimensional Brownian motion.

Case 3 (β = βcr, d = 3).

Let yT (t) = x(t · T)/
√
T , 0 ≤ t ≤ 1.

Theorem: yT(t) converges, as T → ∞, to

a time-dependent rotation-invariant diffusion

on Rd. The process |yT (t)| converges to a

one-dimensional diffusion with reflection at

the origin.
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Proof outline (Simplest case β > βcr.)
If uβ solves parabolic eq-n with initial data g,

uβ(t, ·) = − 1

2πi

∫
Reλ=λ0+1

eλtR
β
λgdλ.

Zβ,t = ......, pβ(t, y, x) = ........

Let Lβψβ = λ0(β)ψβ, ||ψβ||L2 = 1, ψβ ≥ 0.
After moving the contour,

uβ(t, ·) ∼ ....

Zβ,t(x) ∼ exp(λ0(β)t)||ψβ||L1ψβ(x),

pβ(t, y, x) ∼ exp(λ0(β)t)ψβ(y)ψβ(x).
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Density of (x(S(T) + t1), ..., x(S(T) + tn)) is:

pβ(S(T) + t1,0, x1)pβ(t2 − t1, x1, x2) × ...

...pβ(tn−tn−1, xn−1, xn)Zβ,T−tn(xn)(Zβ,T (0))−1. (∗)

Define:

rβ(t, y, x) =
pβ(t, y, x)ψβ(x)

ψβ(y)
exp(−λ0(β)t).

Then rβ is the transition density of the Markov

process with generator

1

2
Δg+

(∇ψβ,∇g)
ψβ

.

The asymptotics of (∗) is:

ψ2
β(x1)rβ(t2−t1, x1, x2)·...·rβ(tn−tn−1, xn−1, xn).
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A feature of the case when β = βcr.

For |y| ≤ ε−1, ε
√
t ≤ |x| ≤ ε−1

√
t:

pβ(t, y, x) ∼ κ

|x|√t exp(−|x|2/2t)ψ(y),

For ε
√
t ≤ |y|, |x| ≤ ε−1

√
t:

pβ(t, y, x) ∼ p0(t, y, x) +
e−(|y|+|x|)2/2t

(2π)3/2|y||x|√t.

The law of the limiting process does not

depend on v ! Its transition density can be

written out explicitly.
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Part 2: Homopolymers with zero-range

potential

Define

vεγ = (
π2

8ε2
+
γ

ε
)v(

x

ε
), ||v||L1(R3) =

4π

3
.

Let Px,εγ,T be the corresponding Gibbs measure

(β = 1 and x is the initial point).

Theorem: For each γ ∈ R and T > 0 there

are limits

Pxγ,T = lim
ε↓0 Px,εγ,T ,

understood in the sense of weak convergence

of measures on C([0, T ],R3).

How can we describe Pxγ,T ?
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Theorem ([Albeverio, et. al.]) All the self-

adjoint extensions of the Laplacian acting on

C∞
0 (R3\{0}) to an operator acting on L2(R3)

form a one-parameter family Lγ, γ ∈ R. The

spectrum of Lγ is given by

spec(Lγ) = (−∞,0] ∪
{
γ2

2

}
, γ > 0,

spec(Lγ) = (−∞,0], γ ≤ 0.

The kernel of the resolvent of Lγ is given by

Rλ,γ(x, y) =
e−

√
2λ|x−y|

π|x− y| +
1√

2λ− γ

e−
√

2λ(|x|+|y|)
2π|x||y| ,

λ /∈ spec(Lγ).
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Define pγ(t, x, y) as the kernel of exp(tLγ),
t > 0, and

Zγ(t, x) =
∫
R3
pγ(t, x, y)dy,

Define the measures Pxγ,T , x ∈ R3, via their

finite-dimensional distributions

Pxγ,T (ω(t1) ∈ A1, ..., ω(tk) ∈ Ak) =

Z
−1
γ (T, x)

∫
A1

...
∫
Ak

∫
R3
pγ(t1, x, x1)...

...pγ(tk−tk−1, xk−1, xk)pγ(T−tk, xk, y)dydxk...dx1,

where k ≥ 1, 0 ≤ t1 ≤ ... ≤ tk ≤ T and

A1, ..., Ak are Borel sets in R3.
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Distribution above the critical point

(γ = γ(T) is bounded and γ(T)
√
T → +∞

as T → +∞):

Let S(T) be such that

lim
T→+∞

γ(T)
√
S(T) = lim

T→+∞
γ(T)

√
T − S(T) = +∞.

Let s > 0 be fixed. Consider the process

yT(t) = γ(T)ω(S(T) + t/γ2(T)), 0 ≤ t ≤ s.

Theorem: The distribution of the process

yT(t) with respect to the measure Pxγ(T),T

converges as T → +∞, weakly in the space

C([0, s],R3), to the distribution of a station-

ary Markov process.
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Distribution near and below the critical

point

(γ = γ(T) is such that γ(T)
√
T → κ ∈ [−∞,+∞)

as T → +∞):

Let yT (t) = ω(tT)/
√
T , 0 ≤ t ≤ 1.

Theorem: (Self-similarity near the critical

point) If γ = γ(T) is such that γ(T)
√
T →

κ ∈ (−∞,+∞) as T → +∞, then the distri-

bution of the process yT (t) with respect to

the measure Pxγ(T),T converges as T → +∞
to the measure P0

κ,1.

If γ = γ(T) is such that γ(T)
√
T → −∞ as

T → +∞, then the distribution of the pro-

cess yT(t) with respect to the measure Pxγ,T
converges as T → +∞ to the distribution of

the 3-dimensional Brownian motion.
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Part 3: Branching Diffusions

v - intensity of branching.

Initially - one particle located at x ∈ Rd. Goal

- to describe the distribution of particles when

t is large.

Again, look at the operator

Lβu(x) =
1

2
Δu(x) + βv(x)u(x).
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Theorem: For β > βcr the number of par-

ticles in a given domain U at time t has the

asymptotics (as t→ ∞):

nt(U) ∼ eλ0(β)tξxβ

∫
U
ψβ(y)dy,

For β < βcr:

nt(R
d) ∼ ηxβ.
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Equations on correlation functions

ρ1(t, x, y1) - particle density

ρn(t, x, y1, ..., yn) - higher order correlation func-

tions.

For fixed y1, ..., yn, they satisfy the equations

∂tρ1(t, x, y1) =
1

2
Δρ1(t, x, y1)+βv(x)ρ1(t, x, y1),

ρ1(0, x, y1) = δy1(x).

∂tρn(t, x, y1, ..., yn) =
1

2
Δρn(t, x, y1, ..., yn)+

+βv(x) (ρn(t, x, y1, ..., yn) +Hn(t, x, y1, ..., yn)) ,

ρn(0, x, y1, ..., yn) ≡ 0.

Here

Hn =
∑

U⊂Y,U �=∅
ρ|U |(t, x, U)ρn−|U |(t, x, Y \ U).
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Let r be the distance from λ0(β) to the rest

of the spectrum.

Let Pt : Cexp → C be the operator that maps

the initial function g to the solution of u′t =

Lβu.

Lemma 1: Let K ⊂ Rd be a compact set.

For each ε ∈ (0, r), the function ρ1(t, x, y)

satisfies

ρ1(t, x, y) = exp(λ0t)ψβ(x)ψβ(y) + q(t, x, y),

where

sup
x∈K

|q(t, x, y)| ≤ Aε exp((λ0−ε)t−|y|
√

2(λ0 − ε)).

for t ≥ 1/2.
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Lemma 2 Let K ⊂ Rd be a compact set. For

each ε ∈ (0, r), the function ρn satisfies

ρn(t, x, y1, ..., yn) = exp(nλ0t)fn(x)ψβ(y1)·...·ψβ(yn)

+qn(t, x, y1, ..., yn),

where

sup
x∈K

|qn(t, x, y1, ..., yn)| ≤ Anε exp(nλ0t)Π
n
ε (t, y1, ..., yn).

for t ≥ 1/2.

The functions f1, f2, ... are defined inductively:

f1 = ψβ and

fn = β
n−1∑
k=1

n!

k!(n− k)!
In(vfkfn−k), n ≥ 2,

where In(g) :=
∫ ∞
0

exp(−nλ0s)Psgds.

Πnε - decays sufficiently fast in t, y1, ..., yn.

21



Proof of the Theorem (case β > βcr)

Look at the asymptotics of the moments.

E(nxt (U))n =
∫
U
...
∫
U
ρn(t, x, y1, ..., yn)dy1...dyn.

Divide by exp(nλ0t) and check that the limit-

ing quantities satisfy the Carleman condition.

Sufficient to check that

∞∑
n=1

(
1

fn(x)

) 1
2n

= ∞. (∗)

From the properties of In it follows that ∃A
s.t.:

||fn||C ≤ A
n−1∑
k=1

(n− 1)!

k!(n− k)!
||fk||C||fn−k||C, n ≥ 2,

||f1||C ≤ A.

From here, by induction on n it follows that

||fn||C ≤ A2n−1n!, which in turn implies (∗)
since n! ≤ ((n+ 1)/2)n.
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