Polymer Measures and Branching Diffusions

Leonid Koralov

- M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, "Continuous Model for Homopolymers", JFA (2009).
- L. Koralov, "Branching Diffusion Processes" .

Assume: $v \geq 0, \operatorname{supp}(v)$ - compact.
$\beta \geq 0$ - inverse temperature.
$P_{0, T}$ - Wiener measure on $C\left([0, T], \mathbb{R}^{d}\right)$.

Gibbs measure $\mathrm{P}_{\beta, T}$ defined by:
$\frac{d \mathrm{P}_{\beta, T}}{d \mathrm{P}_{0, T}}(x)=\frac{\exp \left(\beta \int_{0}^{T} v(x(t)) d t\right)}{Z_{\beta, T}(0)}, x \in C\left([0, T], \mathbb{R}^{d}\right)$.
$Z_{\beta, T}(0)$ - partition function.

supp(v)

First set of questions: What is the typical behavior of $x(t), t \in[0, T]$, when $T \rightarrow \infty$? (for different values of β).

Define p_{β} as the fundamental solution of the heat equation

$$
\begin{aligned}
\frac{\partial p_{\beta}}{\partial t}(t, y, x) & =\frac{1}{2} \Delta_{x} p_{\beta}(t, y, x)+\beta v(x) p_{\beta}(t, y, x) \\
p_{\beta}(0, y, x) & =\delta(x-y)
\end{aligned}
$$

$$
\text { For } 0=t_{0}<t_{1}<t_{2}<\ldots<t_{n} \leq T \text { and } x_{0}=0
$$

$$
\frac{\mathbf{P}_{\beta, T}\left(x\left(t_{1}\right) \in d x_{1}, \ldots, x\left(t_{n}\right) \in d x_{n}\right)}{d x_{1} \ldots d x_{n}}=
$$

$$
\frac{\int_{\mathbb{R}^{d}} \prod_{i=0}^{n-1} p_{\beta}\left(t_{i+1}-t_{i}, x_{i}, x_{i+1}\right) p_{\beta}\left(T-t_{n}, x_{n}, z\right) d z}{\int_{\mathbb{R}^{d}} p_{\beta}(T, 0, z) d z} .
$$

So we are interested in the asymptotics of the solutions (and fundamental solutions) for the parabolic equation with the operator

$$
L^{\beta} u=\frac{1}{2} \Delta_{x} u+\beta v(x) u .
$$

For initial condition $u(0, \cdot)=g$,

$$
u(t, \cdot)=-\frac{1}{2 \pi i} \int_{\operatorname{Re} \lambda=\lambda_{0}+1} e^{\lambda t} R_{\lambda}^{\beta} g d \lambda .
$$

Resolvent: $R_{\lambda}^{\beta}=\left(L^{\beta}-\lambda\right)^{-1}$.

Resolvent Identity:

$$
R_{\lambda}^{\beta}=R_{\lambda}^{0}\left(I+\beta v(x) R_{\lambda}^{0}\right)^{-1} .
$$

Analytic and asymptotic properties of R_{λ}^{0} are known (e.g. $R_{0}(\lambda, x)=\frac{e^{-\sqrt{2 \lambda}|x|}}{-2 \pi|x|}, \quad d=3$).

Spaces: both sides in the resolvent identity: $L_{\text {exp }}^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ and $C \exp \left(\mathbb{R}^{d}\right) \rightarrow C\left(\mathbb{R}^{d}\right)$.

$$
\begin{aligned}
\|f\|_{L_{\exp }^{2}\left(\mathbb{R}^{d}\right)} & =\left(\int_{\mathbb{R}^{d}} f^{2}(x) e^{|x|^{2}} d x\right)^{\frac{1}{2}} . \\
\|f\|_{C_{\exp }\left(\mathbb{R}^{d}\right)} & =\sup _{x \in \mathbb{R}^{d}}\left(|f(x)| e^{|x|^{2}}\right) .
\end{aligned}
$$

Spectrum:

$\sigma\left(H_{\beta}\right)=(-\infty, 0] \cup\left\{\lambda_{j}(\beta)\right\}, \quad j \leq N, \quad \lambda_{j}(\beta) \geq 0$.
Let $\lambda_{0}=\max _{j}\left(\lambda_{j}\right)$. Then

$$
\lim _{T \rightarrow \infty} \frac{\ln Z_{\beta, T}}{T}=\lambda_{0}(\beta)
$$

Lemma: (asymptotics of $\lambda_{0}(\beta)$ as $\beta \downarrow \beta_{\mathrm{cr}}$)

Lemma: - For $\beta>\beta_{\mathrm{cr}}$: $\operatorname{In} Z_{\beta, T} \sim \lambda_{0}(\beta) T$.

- For $\beta<\beta_{\mathrm{cr}}: \lim _{T \rightarrow \infty} Z_{\beta, T}=c(\beta) \sim \frac{c}{\beta-\beta_{\mathrm{cr}}}$ (as $\beta \uparrow \beta_{\mathrm{cr}}$).
- For $\beta=\beta_{\mathrm{Cr}}$:
$d=3: \quad Z_{\beta, T} \sim k_{3} \sqrt{T}$ as $T \rightarrow \infty$.
$d=4: \quad Z_{\beta, T} \sim k_{4} T / \ln T$ as $T \rightarrow \infty$.
$d \geq 5: \quad Z_{\beta, T} \sim k_{d} T$ as $T \rightarrow \infty$.

Results on the behavior of $x(t), t \in[0, T]$.

Case 1 ($\beta>\beta_{\mathrm{cr}}$). Let $S(T), T-S(T) \rightarrow \infty$, $s>0$ be fixed.

Let $y^{T}(t)=x(S(T)+t), 0 \leq t \leq s$.

Theorem: $y^{T}(t)$ converges, as $T \rightarrow \infty$, to a stationary Markov process with finite invariant measure.

Case $2\left(\beta<\beta_{\mathrm{Cr}}\right)$. Let $y^{T}(t)=x(t \cdot T) / \sqrt{T}$, $0 \leq t \leq 1$.
Theorem: $y^{T}(t)$ converges, as $T \rightarrow \infty$, to d-dimensional Brownian motion.

Case 3 ($\beta=\beta_{\mathrm{cr}}, d=3$).
Let $y^{T}(t)=x(t \cdot T) / \sqrt{T}, 0 \leq t \leq 1$.

Theorem: $y^{T}(t)$ converges, as $T \rightarrow \infty$, to a time-dependent rotation-invariant diffusion on \mathbb{R}^{d}. The process $\left|y^{T}(t)\right|$ converges to a one-dimensional diffusion with reflection at the origin.

Proof outline (Simplest case $\beta>\beta_{c r}$.) If u_{β} solves parabolic eq-n with initial data g,

$$
\begin{aligned}
u_{\beta}(t, \cdot) & =-\frac{1}{2 \pi i} \int_{\operatorname{Re} \lambda=\lambda_{0}+1} e^{\lambda t} R_{\lambda}^{\beta} g d \lambda . \\
Z_{\beta, t} & =\ldots \ldots . \quad p_{\beta}(t, y, x)=\ldots \ldots .
\end{aligned}
$$

Let $L_{\beta} \psi_{\beta}=\lambda_{0}(\beta) \psi_{\beta},\left\|\psi_{\beta}\right\|_{L^{2}}=1, \psi_{\beta} \geq 0$. After moving the contour,

$$
\begin{gathered}
u_{\beta}(t, \cdot) \sim \ldots \\
Z_{\beta, t}(x) \sim \exp \left(\lambda_{0}(\beta) t\right)\left\|\psi_{\beta}\right\|_{L^{1}} \psi_{\beta}(x), \\
p_{\beta}(t, y, x) \sim \exp \left(\lambda_{0}(\beta) t\right) \psi_{\beta}(y) \psi_{\beta}(x) .
\end{gathered}
$$

Density of $\left(x\left(S(T)+t_{1}\right), \ldots, x\left(S(T)+t_{n}\right)\right)$ is:

$$
\begin{gather*}
p_{\beta}\left(S(T)+t_{1}, 0, x_{1}\right) p_{\beta}\left(t_{2}-t_{1}, x_{1}, x_{2}\right) \times \ldots \\
\ldots p_{\beta}\left(t_{n}-t_{n-1}, x_{n-1}, x_{n}\right) Z_{\beta, T-t_{n}}\left(x_{n}\right)\left(Z_{\beta, T}(0)\right)^{-1} . \tag{*}
\end{gather*}
$$

Define:

$$
r_{\beta}(t, y, x)=\frac{p_{\beta}(t, y, x) \psi_{\beta}(x)}{\psi_{\beta}(y)} \exp \left(-\lambda_{0}(\beta) t\right)
$$

Then r_{β} is the transition density of the Markov process with generator

$$
\frac{1}{2} \Delta g+\frac{\left(\nabla \psi_{\beta}, \nabla g\right)}{\psi_{\beta}}
$$

The asymptotics of (*) is:
$\psi_{\beta}^{2}\left(x_{1}\right) r_{\beta}\left(t_{2}-t_{1}, x_{1}, x_{2}\right) \cdot \ldots \cdot r_{\beta}\left(t_{n}-t_{n-1}, x_{n-1}, x_{n}\right)$.

A feature of the case when $\beta=\beta_{\mathrm{cr}}$.

$$
\begin{aligned}
& \text { For }|y| \leq \varepsilon^{-1}, \varepsilon \sqrt{t} \leq|x| \leq \varepsilon^{-1} \sqrt{t} \text { : } \\
& \qquad p_{\beta}(t, y, x) \sim \frac{\varkappa}{|x| \sqrt{t}} \exp \left(-|x|^{2} / 2 t\right) \psi(y)
\end{aligned}
$$

For $\varepsilon \sqrt{t} \leq|y|,|x| \leq \varepsilon^{-1} \sqrt{t}$:

$$
p_{\beta}(t, y, x) \sim p_{0}(t, y, x)+\frac{e^{-(|y|+|x|)^{2} / 2 t}}{(2 \pi)^{3 / 2}|y||x| \sqrt{t}} .
$$

The law of the limiting process does not depend on v ! Its transition density can be written out explicitly.

Part 2: Homopolymers with zero-range potential

Define

$$
v_{\gamma}^{\varepsilon}=\left(\frac{\pi^{2}}{8 \varepsilon^{2}}+\frac{\gamma}{\varepsilon}\right) v\left(\frac{x}{\varepsilon}\right), \quad\|v\|_{L^{1}\left(\mathbb{R}^{3}\right)}=\frac{4 \pi}{3} .
$$

Let $\mathrm{P}_{\gamma, T}^{x, \varepsilon}$ be the corresponding Gibbs measure ($\beta=1$ and x is the initial point).

Theorem: For each $\gamma \in \mathbb{R}$ and $T>0$ there are limits

$$
\overline{\mathrm{P}}_{\gamma, T}^{x}=\lim _{\varepsilon \downarrow 0} \mathrm{P}_{\gamma, T}^{x, \varepsilon},
$$

understood in the sense of weak convergence of measures on $C\left([0, T], \mathbb{R}^{3}\right)$.

How can we describe $\overline{\mathrm{P}}_{\gamma, T}^{x}$?

Theorem ([Albeverio, et. al.]) All the selfadjoint extensions of the Laplacian acting on $C_{0}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)$ to an operator acting on $L^{2}\left(\mathbb{R}^{3}\right)$ form a one-parameter family $\mathcal{L}_{\gamma}, \gamma \in \mathbb{R}$. The spectrum of \mathcal{L}_{γ} is given by

$$
\begin{gathered}
\operatorname{spec}\left(\mathcal{L}_{\gamma}\right)=(-\infty, 0] \cup\left\{\frac{\gamma^{2}}{2}\right\}, \quad \gamma>0 \\
\operatorname{spec}\left(\mathcal{L}_{\gamma}\right)=(-\infty, 0], \quad \gamma \leq 0
\end{gathered}
$$

The kernel of the resolvent of \mathcal{L}_{γ} is given by
$R_{\lambda, \gamma}(x, y)=\frac{e^{-\sqrt{2 \lambda}|x-y|}}{\pi|x-y|}+\frac{1}{\sqrt{2 \lambda}-\gamma} \frac{e^{-\sqrt{2 \lambda}(|x|+|y|)}}{2 \pi|x||y|}$, $\lambda \notin \operatorname{spec}\left(\mathcal{L}_{\gamma}\right)$.

Define $\bar{p}_{\gamma}(t, x, y)$ as the kernel of $\exp \left(t \mathcal{L}_{\gamma}\right)$, $t>0$, and

$$
\bar{Z}_{\gamma}(t, x)=\int_{\mathbb{R}^{3}} \bar{p}_{\gamma}(t, x, y) d y
$$

Define the measures $\overline{\mathrm{P}}_{\gamma, T}^{x}, x \in \mathbb{R}^{3}$, via their finite-dimensional distributions

$$
\begin{aligned}
& \overline{\mathrm{P}}_{\gamma, T}^{x}\left(\omega\left(t_{1}\right) \in A_{1}, \ldots, \omega\left(t_{k}\right) \in A_{k}\right)= \\
& \bar{Z}_{\gamma}^{-1}(T, x) \int_{A_{1}} \ldots \int_{A_{k}} \int_{\mathbb{R}^{3}} \bar{p}_{\gamma}\left(t_{1}, x, x_{1}\right) \ldots \\
& \ldots \bar{p}_{\gamma}\left(t_{k}-t_{k-1}, x_{k-1}, x_{k}\right) \bar{p}_{\gamma}\left(T-t_{k}, x_{k}, y\right) d y d x_{k} \ldots d x_{1}, \\
& \text { where } k \geq 1,0 \leq t_{1} \leq \ldots \leq t_{k} \leq T \text { and } \\
& A_{1}, \ldots, A_{k} \text { are Borel sets in } \mathbb{R}^{3} .
\end{aligned}
$$

Distribution above the critical point ($\gamma=\gamma(T)$ is bounded and $\gamma(T) \sqrt{T} \rightarrow+\infty$ as $T \rightarrow+\infty)$:

Let $S(T)$ be such that
$\lim _{T \rightarrow+\infty} \gamma(T) \sqrt{S(T)}=\lim _{T \rightarrow+\infty} \gamma(T) \sqrt{T-S(T)}=+\infty$.

Let $s>0$ be fixed. Consider the process

$$
y^{T}(t)=\gamma(T) \omega\left(S(T)+t / \gamma^{2}(T)\right), \quad 0 \leq t \leq s
$$

Theorem: The distribution of the process $y^{T}(t)$ with respect to the measure $\overline{\mathrm{P}}_{\gamma(T), T}^{x}$ converges as $T \rightarrow+\infty$, weakly in the space $C\left([0, s], \mathbb{R}^{3}\right)$, to the distribution of a stationary Markov process.

Distribution near and below the critical point
($\gamma=\gamma(T)$ is such that $\gamma(T) \sqrt{T} \rightarrow \varkappa \in[-\infty,+\infty)$ as $T \rightarrow+\infty)$:

Let $y^{T}(t)=\omega(t T) / \sqrt{T}, 0 \leq t \leq 1$.

Theorem: (Self-similarity near the critical point) If $\gamma=\gamma(T)$ is such that $\gamma(T) \sqrt{T} \rightarrow$ $\varkappa \in(-\infty,+\infty)$ as $T \rightarrow+\infty$, then the distribution of the process $y^{T}(t)$ with respect to the measure $\overline{\mathrm{P}}_{\gamma(T), T}^{x}$ converges as $T \rightarrow+\infty$ to the measure $\bar{P}_{\varkappa, 1}^{0}$.

If $\gamma=\gamma(T)$ is such that $\gamma(T) \sqrt{T} \rightarrow-\infty$ as $T \rightarrow+\infty$, then the distribution of the process $y^{T}(t)$ with respect to the measure $\overline{\mathrm{P}}_{\gamma, T}^{x}$ converges as $T \rightarrow+\infty$ to the distribution of the 3 -dimensional Brownian motion.

Part 3: Branching Diffusions

v - intensity of branching.

Initially - one particle located at $x \in \mathbb{R}^{d}$. Goal

- to describe the distribution of particles when t is large.

Again, look at the operator

$$
L^{\beta} u(x)=\frac{1}{2} \Delta u(x)+\beta v(x) u(x) .
$$

Theorem: For $\beta>\beta_{c r}$ the number of particles in a given domain U at time t has the asymptotics (as $t \rightarrow \infty$):

$$
n_{t}(U) \sim e^{\lambda_{0}(\beta) t} \xi_{\beta}^{x} \int_{U} \psi_{\beta}(y) d y
$$

For $\beta<\beta_{\text {cr }}$:

$$
n_{t}\left(\mathbb{R}^{d}\right) \sim \eta_{\beta}^{x} .
$$

Equations on correlation functions

$\rho_{1}\left(t, x, y_{1}\right)$ - particle density
$\rho_{n}\left(t, x, y_{1}, \ldots, y_{n}\right)$ - higher order correlation functions.

For fixed y_{1}, \ldots, y_{n}, they satisfy the equations $\partial_{t} \rho_{1}\left(t, x, y_{1}\right)=\frac{1}{2} \Delta \rho_{1}\left(t, x, y_{1}\right)+\beta v(x) \rho_{1}\left(t, x, y_{1}\right)$, $\rho_{1}\left(0, x, y_{1}\right)=\delta_{y_{1}}(x)$.

$$
\partial_{t} \rho_{n}\left(t, x, y_{1}, \ldots, y_{n}\right)=\frac{1}{2} \Delta \rho_{n}\left(t, x, y_{1}, \ldots, y_{n}\right)+
$$

$+\beta v(x)\left(\rho_{n}\left(t, x, y_{1}, \ldots, y_{n}\right)+H_{n}\left(t, x, y_{1}, \ldots, y_{n}\right)\right)$,

$$
\rho_{n}\left(0, x, y_{1}, \ldots, y_{n}\right) \equiv 0
$$

Here

$$
H_{n}=\sum_{U \subset Y, U \neq \emptyset} \rho_{|U|}(t, x, U) \rho_{n-|U|}(t, x, Y \backslash U)
$$

Let r be the distance from $\lambda_{0}(\beta)$ to the rest of the spectrum.
Let $P_{t}: C_{\exp } \rightarrow C$ be the operator that maps the initial function g to the solution of $u_{t}^{\prime}=$ $L^{\beta} u$.

Lemma 1: Let $K \subset \mathbb{R}^{d}$ be a compact set. For each $\varepsilon \in(0, r)$, the function $\rho_{1}(t, x, y)$ satisfies

$$
\rho_{1}(t, x, y)=\exp \left(\lambda_{0} t\right) \psi_{\beta}(x) \psi_{\beta}(y)+q(t, x, y)
$$

where
$\sup _{x \in K}|q(t, x, y)| \leq A_{\varepsilon} \exp \left(\left(\lambda_{0}-\varepsilon\right) t-|y| \sqrt{2\left(\lambda_{0}-\varepsilon\right)}\right)$.
for $t \geq 1 / 2$.

Lemma 2 Let $K \subset \mathbb{R}^{d}$ be a compact set. For each $\varepsilon \in(0, r)$, the function ρ_{n} satisfies

$$
\begin{gathered}
\rho_{n}\left(t, x, y_{1}, \ldots, y_{n}\right)=\exp \left(n \lambda_{0} t\right) f_{n}(x) \psi_{\beta}\left(y_{1}\right) \cdot \ldots \cdot \psi_{\beta}\left(y_{n}\right) \\
+q_{n}\left(t, x, y_{1}, \ldots, y_{n}\right),
\end{gathered}
$$

where
$\sup _{x \in K}\left|q_{n}\left(t, x, y_{1}, \ldots, y_{n}\right)\right| \leq A_{\varepsilon}^{n} \exp \left(n \lambda_{0} t\right) \Pi_{\varepsilon}^{n}\left(t, y_{1}, \ldots, y_{n}\right)$. $x \in K$
for $t \geq 1 / 2$.

The functions f_{1}, f_{2}, \ldots are defined inductively: $f_{1}=\psi_{\beta}$ and

$$
f_{n}=\beta \sum_{k=1}^{n-1} \frac{n!}{k!(n-k)!} I_{n}\left(v f_{k} f_{n-k}\right), \quad n \geq 2,
$$

where $\quad I_{n}(g):=\int_{0}^{\infty} \exp \left(-n \lambda_{0} s\right) P_{s} g d s$.
Π_{ε}^{n} - decays sufficiently fast in t, y_{1}, \ldots, y_{n}.

Proof of the Theorem (case $\beta>\beta_{\mathrm{cr}}$)

Look at the asymptotics of the moments.
$\mathbb{E}\left(n_{t}^{x}(U)\right)^{n}=\int_{U} \ldots \int_{U} \rho_{n}\left(t, x, y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}$.
Divide by $\exp \left(n \lambda_{0} t\right)$ and check that the limiting quantities satisfy the Carleman condition.

Sufficient to check that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{1}{f_{n}(x)}\right)^{\frac{1}{2 n}}=\infty \tag{*}
\end{equation*}
$$

From the properties of I_{n} it follows that $\exists A$ s.t.:

$$
\begin{gathered}
\left\|f_{n}\right\|_{C} \leq A \sum_{k=1}^{n-1} \frac{(n-1)!}{k!(n-k)!}\left\|f_{k}\right\|_{C}\left\|f_{n-k}\right\|_{C}, \quad n \geq 2 \\
\left\|f_{1}\right\|_{C} \leq A
\end{gathered}
$$

From here, by induction on n it follows that $\left\|f_{n}\right\|_{C} \leq A^{2 n-1} n!$, which in turn implies (*) since $n!\leq((n+1) / 2)^{n}$.

