Polymer Measures and Branching Diffusions

Leonid Koralov

- M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, "Continuous Model for Homopolymers", JFA (2009).
- L. Koralov, "Branching Diffusion Processes".

Assume: $v \ge 0$, supp(v) - compact. $\beta \ge 0$ - inverse temperature.

 $P_{0,T}$ - Wiener measure on $C([0,T],\mathbb{R}^d)$.

Gibbs measure $P_{\beta,T}$ defined by:

$$\frac{d\mathsf{P}_{\beta,T}}{d\mathsf{P}_{0,T}}(x) = \frac{\exp(\beta \int_0^T v(x(t))dt)}{Z_{\beta,T}(0)}, \ x \in C([0,T],\mathbb{R}^d).$$

 $Z_{\beta,T}(0)$ - partition function.

First set of questions: What is the typical behavior of x(t), $t \in [0,T]$, when $T \to \infty$? (for different values of β).

Define p_{β} as the fundamental solution of the heat equation

$$\frac{\partial p_{\beta}}{\partial t}(t, y, x) = \frac{1}{2} \Delta_{x} p_{\beta}(t, y, x) + \beta v(x) p_{\beta}(t, y, x),$$
$$p_{\beta}(0, y, x) = \delta(x - y).$$

For
$$0 = t_0 < t_1 < t_2 < ... < t_n \le T$$
 and $x_0 = 0$,

$$\frac{\mathsf{P}_{\beta,T}\left(x(t_1)\in dx_1,...,x(t_n)\in dx_n\right)}{dx_1...dx_n}=$$

$$\frac{\int_{\mathbb{R}^d} \prod_{i=0}^{n-1} p_{\beta}(t_{i+1} - t_i, x_i, x_{i+1}) p_{\beta}(T - t_n, x_n, z) dz}{\int_{\mathbb{R}^d} p_{\beta}(T, 0, z) dz}.$$

So we are interested in the asymptotics of the solutions (and fundamental solutions) for the parabolic equation with the operator

$$L^{\beta}u = \frac{1}{2}\Delta_x u + \beta v(x)u.$$

For initial condition $u(0,\cdot)=g$,

$$u(t,\cdot) = -\frac{1}{2\pi i} \int_{\text{Re}\lambda = \lambda_0 + 1} e^{\lambda t} R_{\lambda}^{\beta} g d\lambda.$$

Resolvent: $R_{\lambda}^{\beta} = (L^{\beta} - \lambda)^{-1}$.

Resolvent Identity:

$$R_{\lambda}^{\beta} = R_{\lambda}^{0} (I + \beta v(x) R_{\lambda}^{0})^{-1}.$$

Analytic and asymptotic properties of R_{λ}^{0} are known (e.g. $R_{0}(\lambda,x)=\frac{e^{-\sqrt{2\lambda}|x|}}{-2\pi|x|},\quad d=3).$

Spaces: both sides in the resolvent identity: $L^2_{\text{exp}}(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ and $C_{\text{exp}}(\mathbb{R}^d) \to C(\mathbb{R}^d)$.

$$||f||_{L^{2}_{\exp}(\mathbb{R}^{d})} = \left(\int_{\mathbb{R}^{d}} f^{2}(x) e^{|x|^{2}} dx \right)^{\frac{1}{2}}.$$

$$||f||_{C_{\exp}(\mathbb{R}^{d})} = \sup_{x \in \mathbb{R}^{d}} (|f(x)| e^{|x|^{2}}).$$

Spectrum:

$$\sigma(H_{\beta}) = (-\infty, 0] \cup \{\lambda_j(\beta)\}, \quad j \leq N, \quad \lambda_j(\beta) \geq 0.$$
 Let $\lambda_0 = \max_j(\lambda_j)$. Then
$$\lim_{T \to \infty} \frac{\ln Z_{\beta,T}}{T} = \lambda_0(\beta)$$

Lemma: (asymptotics of $\lambda_0(\beta)$ as $\beta \downarrow \beta_{Cr}$)

Lemma: - For $\beta > \beta_{cr}$: In $Z_{\beta,T} \sim \lambda_0(\beta)T$.

- For $\beta<\beta_{\rm Cr}$: $\lim_{T\to\infty}Z_{\beta,T}=c(\beta)\sim\frac{c}{\beta-\beta_{\rm Cr}}$ (as $\beta\uparrow\beta_{\rm Cr}$).
- For $\beta = \beta_{cr}$:

d=3: $Z_{\beta,T}\sim k_3\sqrt{T}$ as $T\to\infty$.

d=4: $Z_{\beta,T}\sim k_4T/\ln T$ as $T\to\infty$.

 $d \geq$ 5: $Z_{\beta,T} \sim k_d T$ as $T \rightarrow \infty$.

Results on the behavior of x(t), $t \in [0, T]$.

Case 1 ($\beta > \beta_{Cr}$). Let $S(T), T - S(T) \rightarrow \infty$, s > 0 be fixed.

Let
$$y^{T}(t) = x(S(T) + t), 0 \le t \le s.$$

Theorem: $y^T(t)$ converges, as $T \to \infty$, to a stationary Markov process with finite invariant measure.

Case 2 ($\beta < \beta_{\text{Cr}}$). Let $y^T(t) = x(t \cdot T)/\sqrt{T}$, $0 \le t \le 1$.

Theorem: $y^T(t)$ converges, as $T \to \infty$, to d-dimensional Brownian motion.

Case 3 (
$$\beta = \beta_{\text{Cr}}, d = 3$$
).
Let $y^{T}(t) = x(t \cdot T)/\sqrt{T}, 0 \le t \le 1$.

Theorem: $y^T(t)$ converges, as $T \to \infty$, to a time-dependent rotation-invariant diffusion on \mathbb{R}^d . The process $|y^T(t)|$ converges to a one-dimensional diffusion with reflection at the origin.

Proof outline (Simplest case $\beta > \beta_{cr}$.) If u_{β} solves parabolic eq-n with initial data g,

$$u_{\beta}(t,\cdot) = -\frac{1}{2\pi i} \int_{\text{Re}\lambda = \lambda_0 + 1} e^{\lambda t} R_{\lambda}^{\beta} g d\lambda.$$
$$Z_{\beta,t} = \dots, \quad p_{\beta}(t,y,x) = \dots$$

Let $L_{\beta}\psi_{\beta}=\lambda_0(\beta)\psi_{\beta}$, $||\psi_{\beta}||_{L^2}=1$, $\psi_{\beta}\geq 0$. After moving the contour,

$$u_{\beta}(t,\cdot) \sim \dots$$

$$Z_{\beta,t}(x) \sim \exp(\lambda_0(\beta)t)||\psi_{\beta}||_{L^1}\psi_{\beta}(x),$$

$$p_{\beta}(t,y,x) \sim \exp(\lambda_0(\beta)t)\psi_{\beta}(y)\psi_{\beta}(x).$$

Density of $(x(S(T) + t_1), ..., x(S(T) + t_n))$ is:

$$p_{\beta}(S(T) + t_1, 0, x_1)p_{\beta}(t_2 - t_1, x_1, x_2) \times \dots$$
$$\dots p_{\beta}(t_n - t_{n-1}, x_{n-1}, x_n)Z_{\beta, T - t_n}(x_n)(Z_{\beta, T}(0))^{-1}. \quad (*)$$

Define:

$$r_{\beta}(t, y, x) = \frac{p_{\beta}(t, y, x)\psi_{\beta}(x)}{\psi_{\beta}(y)} \exp(-\lambda_{0}(\beta)t).$$

Then r_{β} is the transition density of the Markov process with generator

$$\frac{1}{2}\Delta g + \frac{(\nabla \psi_{\beta}, \nabla g)}{\psi_{\beta}}.$$

The asymptotics of (*) is:

$$\psi_{\beta}^{2}(x_{1})r_{\beta}(t_{2}-t_{1},x_{1},x_{2})\cdot ...\cdot r_{\beta}(t_{n}-t_{n-1},x_{n-1},x_{n}).$$

A feature of the case when $\beta = \beta_{Cr}$.

For
$$|y| \le \varepsilon^{-1}$$
, $\varepsilon \sqrt{t} \le |x| \le \varepsilon^{-1} \sqrt{t}$:
$$p_{\beta}(t, y, x) \sim \frac{\varkappa}{|x| \sqrt{t}} \exp(-|x|^2/2t) \psi(y),$$

For
$$\varepsilon \sqrt{t} \le |y|, |x| \le \varepsilon^{-1} \sqrt{t}$$
:

$$p_{\beta}(t,y,x) \sim p_0(t,y,x) + \frac{e^{-(|y|+|x|)^2/2t}}{(2\pi)^{3/2}|y||x|\sqrt{t}}.$$

The law of the limiting process does not depend on v! Its transition density can be written out explicitly.

Part 2: Homopolymers with zero-range potential

Define

$$v_{\gamma}^{\varepsilon} = (\frac{\pi^2}{8\varepsilon^2} + \frac{\gamma}{\varepsilon})v(\frac{x}{\varepsilon}), \quad ||v||_{L^1(\mathbb{R}^3)} = \frac{4\pi}{3}.$$

Let $\mathsf{P}^{x,\varepsilon}_{\gamma,T}$ be the corresponding Gibbs measure $(\beta=1 \text{ and } x \text{ is the initial point}).$

Theorem: For each $\gamma \in \mathbb{R}$ and T > 0 there are limits

$$\overline{\mathsf{P}}_{\gamma,T}^x = \lim_{\varepsilon \downarrow 0} \mathsf{P}_{\gamma,T}^{x,\varepsilon},$$

understood in the sense of weak convergence of measures on $C([0,T],\mathbb{R}^3)$.

How can we describe $\overline{\mathsf{P}}_{\gamma,T}^x$?

Theorem ([Albeverio, et. al.]) All the self-adjoint extensions of the Laplacian acting on $C_0^{\infty}(\mathbb{R}^3\setminus\{0\})$ to an operator acting on $L^2(\mathbb{R}^3)$ form a one-parameter family \mathcal{L}_{γ} , $\gamma\in\mathbb{R}$. The spectrum of \mathcal{L}_{γ} is given by

$$\operatorname{spec}(\mathcal{L}_{\gamma}) = (-\infty, 0] \cup \left\{ \frac{\gamma^2}{2} \right\}, \quad \gamma > 0,$$

$$\operatorname{spec}(\mathcal{L}_{\gamma}) = (-\infty, 0], \quad \gamma \leq 0.$$

The kernel of the resolvent of \mathcal{L}_{γ} is given by

$$\begin{split} R_{\lambda,\gamma}(x,y) &= \frac{e^{-\sqrt{2\lambda}|x-y|}}{\pi|x-y|} + \frac{1}{\sqrt{2\lambda}-\gamma} \frac{e^{-\sqrt{2\lambda}(|x|+|y|)}}{2\pi|x||y|}, \\ \lambda \not\in \operatorname{spec}(\mathcal{L}_{\gamma}). \end{split}$$

Define $\overline{p}_{\gamma}(t,x,y)$ as the kernel of $\exp(t\mathcal{L}_{\gamma})$, t>0, and

$$\overline{Z}_{\gamma}(t,x) = \int_{\mathbb{R}^3} \overline{p}_{\gamma}(t,x,y) dy,$$

Define the measures $\overline{\mathsf{P}}^x_{\gamma,T}$, $x \in \mathbb{R}^3$, via their finite-dimensional distributions

$$\overline{P}_{\gamma,T}^{x}(\omega(t_1) \in A_1, ..., \omega(t_k) \in A_k) =$$

$$\overline{Z}_{\gamma}^{-1}(T,x) \int_{A_1} \dots \int_{A_k} \int_{\mathbb{R}^3} \overline{p}_{\gamma}(t_1,x,x_1) \dots$$

...
$$\overline{p}_{\gamma}(t_k-t_{k-1},x_{k-1},x_k)\overline{p}_{\gamma}(T-t_k,x_k,y)dydx_k...dx_1,$$

where $k \geq 1$, $0 \leq t_1 \leq ... \leq t_k \leq T$ and $A_1, ..., A_k$ are Borel sets in \mathbb{R}^3 .

Distribution above the critical point

 $(\gamma = \gamma(T) \text{ is bounded and } \gamma(T)\sqrt{T} \to +\infty$ as $T \to +\infty$):

Let S(T) be such that

$$\lim_{T \to +\infty} \gamma(T) \sqrt{S(T)} = \lim_{T \to +\infty} \gamma(T) \sqrt{T - S(T)} = +\infty.$$

Let s > 0 be fixed. Consider the process

$$y^T(t) = \gamma(T)\omega(S(T) + t/\gamma^2(T)), \quad 0 \le t \le s.$$

Theorem: The distribution of the process $y^T(t)$ with respect to the measure $\overline{\mathsf{P}}^x_{\gamma(T),T}$ converges as $T\to +\infty$, weakly in the space $C([0,s],\mathbb{R}^3)$, to the distribution of a stationary Markov process.

Distribution near and below the critical point

 $(\gamma = \gamma(T) \text{ is such that } \gamma(T)\sqrt{T} \to \varkappa \in [-\infty, +\infty)$ as $T \to +\infty$):

Let
$$y^T(t) = \omega(tT)/\sqrt{T}$$
, $0 \le t \le 1$.

Theorem: (Self-similarity near the critical point) If $\gamma = \gamma(T)$ is such that $\gamma(T)\sqrt{T} \to \varkappa \in (-\infty, +\infty)$ as $T \to +\infty$, then the distribution of the process $y^T(t)$ with respect to the measure $\overline{\mathsf{P}}^x_{\gamma(T),T}$ converges as $T \to +\infty$ to the measure $\overline{\mathsf{P}}^0_{\varkappa,1}$.

If $\gamma=\gamma(T)$ is such that $\gamma(T)\sqrt{T}\to -\infty$ as $T\to +\infty$, then the distribution of the process $y^T(t)$ with respect to the measure $\overline{\mathsf{P}}^x_{\gamma,T}$ converges as $T\to +\infty$ to the distribution of the 3-dimensional Brownian motion.

Part 3: Branching Diffusions

v - intensity of branching.

Initially - one particle located at $x \in \mathbb{R}^d$. Goal - to describe the distribution of particles when t is large.

Again, look at the operator

$$L^{\beta}u(x) = \frac{1}{2}\Delta u(x) + \beta v(x)u(x).$$

Theorem: For $\beta > \beta_{\rm Cr}$ the number of particles in a given domain U at time t has the asymptotics (as $t \to \infty$):

$$n_t(U) \sim e^{\lambda_0(\beta)t} \xi_{\beta}^x \int_U \psi_{\beta}(y) dy,$$

For $\beta < \beta_{\rm Cr}$:

$$n_t(\mathbb{R}^d) \sim \eta_{\beta}^x$$
.

Equations on correlation functions

 $ho_1(t,x,y_1)$ - particle density $ho_n(t,x,y_1,...,y_n)$ - higher order correlation functions.

For fixed $y_1,...,y_n$, they satisfy the equations

$$\partial_t \rho_1(t, x, y_1) = \frac{1}{2} \Delta \rho_1(t, x, y_1) + \beta v(x) \rho_1(t, x, y_1),$$
$$\rho_1(0, x, y_1) = \delta_{y_1}(x).$$

$$\partial_t \rho_n(t, x, y_1, ..., y_n) = \frac{1}{2} \Delta \rho_n(t, x, y_1, ..., y_n) +$$

$$+\beta v(x) \left(\rho_n(t, x, y_1, ..., y_n) + H_n(t, x, y_1, ..., y_n) \right),$$

$$\rho_n(0, x, y_1, ..., y_n) \equiv 0.$$

Here

$$H_n = \sum_{U \subset Y, U \neq \emptyset} \rho_{|U|}(t, x, U) \rho_{n-|U|}(t, x, Y \setminus U).$$

Let r be the distance from $\lambda_0(\beta)$ to the rest of the spectrum.

Let $P_t: C_{\mathsf{exp}} \to C$ be the operator that maps the initial function g to the solution of $u'_t = L^{\beta}u$.

Lemma 1: Let $K \subset \mathbb{R}^d$ be a compact set. For each $\varepsilon \in (0,r)$, the function $\rho_1(t,x,y)$ satisfies

$$\rho_1(t, x, y) = \exp(\lambda_0 t) \psi_{\beta}(x) \psi_{\beta}(y) + q(t, x, y),$$

where

$$\sup_{x \in K} |q(t, x, y)| \le A_{\varepsilon} \exp((\lambda_0 - \varepsilon)t - |y| \sqrt{2(\lambda_0 - \varepsilon)}).$$

for $t \geq 1/2$.

Lemma 2 Let $K \subset \mathbb{R}^d$ be a compact set. For each $\varepsilon \in (0,r)$, the function ρ_n satisfies

$$\rho_n(t, x, y_1, ..., y_n) = \exp(n\lambda_0 t) f_n(x) \psi_{\beta}(y_1) \cdot ... \cdot \psi_{\beta}(y_n) + q_n(t, x, y_1, ..., y_n),$$

where

$$\sup_{x \in K} |q_n(t,x,y_1,...,y_n)| \le A_\varepsilon^n \exp(n\lambda_0 t) \Pi_\varepsilon^n(t,y_1,...,y_n).$$
 for $t \ge 1/2$.

The functions f_1, f_2, \ldots are defined inductively: $f_1 = \psi_\beta$ and

$$f_n = \beta \sum_{k=1}^{n-1} \frac{n!}{k!(n-k)!} I_n(v f_k f_{n-k}), \quad n \ge 2,$$

where
$$I_n(g) := \int_0^\infty \exp(-n\lambda_0 s) P_s g ds$$
.

 Π^n_{ε} - decays sufficiently fast in $t,\ y_1,...,y_n.$

Proof of the Theorem (case $\beta > \beta_{Cr}$)

Look at the asymptotics of the moments.

$$\mathbb{E}(n_t^x(U))^n = \int_U ... \int_U \rho_n(t, x, y_1, ..., y_n) dy_1 ... dy_n.$$

Divide by $\exp(n\lambda_0 t)$ and check that the limiting quantities satisfy the Carleman condition.

Sufficient to check that

$$\sum_{n=1}^{\infty} \left(\frac{1}{f_n(x)}\right)^{\frac{1}{2n}} = \infty. \tag{*}$$

From the properties of I_n it follows that $\exists A$ s.t.:

$$||f_n||_C \le A \sum_{k=1}^{n-1} \frac{(n-1)!}{k!(n-k)!} ||f_k||_C ||f_{n-k}||_C, \quad n \ge 2,$$

$$||f_1||_C \leq A.$$

From here, by induction on n it follows that $||f_n||_C \le A^{2n-1}n!$, which in turn implies (*) since $n! \le ((n+1)/2)^n$.