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Assume: v > 0, supp(v) - compact.
B >0 - inverse temperature.

Py - Wiener measure on C([0,T],R%).

Gibbs measure Pg defined by:

T
dpﬂ(gp) _ eXp(ﬁ fo U(Qf(t)>dt)7 = C([O,T],Rd)

dPo T Zg1(0)

Zgr(0) - partition function.

realization of
a polymer
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First set of questions: What is the typical
behavior of x(t), t € [0,T], when T — o007
(for different values of 3).

Define pg as the fundamental solution of the
heat equation

o 1
2ty @) =580p(t v, @) + Bu(@)py(t,y, @),

pg(0,y,x) =6(x — y).

ForO=tg <t <to<..<tp <T and xg =0,

Pgr (z(t1) € dz1,...,z(tn) € dzn) —
d:ljl...dxn

Jra 120 pﬁ(tz—l—l tis i, T 1)Pg(T — tn, Tn, 2)dz
fdeﬁ(Ta 0, Z)dZ



So we are interested in the asymptotics of
the solutions (and fundamental solutions) for
the parabolic equation with the operator

LPu = %Axu + Bv(x)u.

For initial condition «(0,-) =g,

1

u(t,) = ———

/ M RP \IAA.
271 JReA=M\g+1

Resolvent: Rf = (LP =)L

Resolvent Identity:

Ry = RU + Bu(@)RY)

Analytic and asymptotic properties of R?\ are

known (e.g. Ro(M\, z) = —27[x]



Spaces: both sides in the resolvent identity:
L2p(RY) — L2(RY) and Cexp(RY) — C(RY).

1112,y = ([, 2@l da)z.

£l ey (mty = SUP (I (@)]el*).
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Spectrum:
Let \g = max;(A;). Then
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Lemma: (asymptotics of A\g(8) as 3 | Bcr)
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Lemma: — For 8> Ber: InZg 1 ~ Xg(B)T.

— For B8 < Ber: limp_oo Zgr = c(B) ~ ﬁ
(as BT Ber).

— For B = Bcr:

d=3: Zﬁ,TNk3\/TaST—>OO.

d= 4. ZZB,Tﬂ ~ kuj]ﬂ/ INT as T' — oo.

d>5: Zgp~kgl asT — oo.



Results on the behavior of z(t¢), ¢t € [0,T].

Case 1 (8 > Bcr). Let S(T), T — S(T) — oo,
s > 0 be fixed.

Let y1'(¢) = 2(S(T) +1t), 0<t<s.

x(t)

Theorem: y!(¢) converges, as T — oo, to a
stationary Markov process with finite invari-

ant measure.



Case 2 (3 < fer). Let yl'(t) = «(t-T)/VT,
0<t<1.

Theorem: vl(¢t) converges, as T — oo, to
d-dimensional Brownian motion.

Case 3 (8 = Bcr, d = 3).
Let yT'(t) = x(t-T)/VT, 0<t<1.
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Theorem: vl(¢t) converges, as T — oo, to
a time-dependent rotation-invariant diffusion
on RZ. The process |yl (t)| converges to a
one-dimensional diffusion with reflection at
the origin.



Proof outline (Simplest case 3 > (Gcr.)
If ug solves parabolic eg-n with initial data g,
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ﬁ( ) 2Tt JReA=M\g+1 I
Zgt = e , pelt,y,z) = .o
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Let Lgg = Ao(B)¥g, ||1¥gll;2 =1, ¥ > 0.
After moving the contour,

’UJﬁ(t, )~
Zg1(x) ~ exp(Ao(B)D)|gllp1vs(),
p(t,y, ) ~ exp(Ao(B8))Yg(y)ys(z).
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Density of (z(S(T) +t1),...,z(S(T) + tn)) is:

pg(S(T) +t1,0,21)pg(ts — t1,x1,22) X ...

- Pg(tn—tn—1,Tn—1,2n)Zg 14, (xn)(Zs7(0)) 1.

Define:

pa(t,y, z)Ys(x)

Ys(y)
Then T3 IS the transition density of the Markov
process with generator

exp(—Ao(B)1).

Tﬁ(ta Y, 33) —

The asymptotics of (x) is:

Yg(@1)rg(ta—ts, @1, 22) . m3(tn—tn_1, Tp_1, Tn).
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A feature of the case when 3 = 3.

For |y| < e 1, evt<|z| <e Vi

4

pa(t,y, ) ~ o exp(—|z|?/2t)y (y),

For eVt < |y|, |z| < e 1Vt

0 ) (0 )4 6—(|y|+|w|)2/2t
p 7y7x ~ ) 73j *
g PoR5 Y (2m)32|y[l|vE

The law of the limiting process does not
depend on v ! Its transition density can be
written out explicitly.
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Part 2: Homopolymers with zero-range
potential

Define
2
e T Y. T __4rm
Uy = (@ + g)v(g)a ||U||L1(R3) — 3

Let P“ be the corresponding Gibbs measure
(B = 1 and x is the initial point).

Theorem: For each v € R and T' > 0 there
are limits

understood in the sense of weak convergence
of measures on C([0,T],R3).

How can we describe P 1 7
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Theorem ([Albeverio, et. al.]) All the self-
adjoint extensions of the Laplacian acting on
CS°(R3\ {0}) to an operator acting on L2(R3)
form a one-parameter family £, y € R. The
spectrum of L is given by

,YQ

spec(Ly) = (—o0,0] U {?} , v >0,

SpeC(,ny) — (_007 0]7 Y S 0.
The kernel of the resolvent of L, is given by
e—Vﬁlw—m+ 1 e~ V2A(al+yD
mlz -yl V2A—ny  27ally]

R)x,’y(xa y) =

A & spec(Ly).
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Define p,(t,z,y) as the kernel of exp(tLy),
t >0, and

Zy(t,2) = | py(t,2,y)dy,

Define the measures PJ r, = € R3, via their
finite-dimensional distributions

Py r(w(ty) € Ay, . w(ty) € Ap) =

—1 _
YA T, x / / / t1,c,x1)...
~ ( ) A A, R3p7( 1 1)

Py (e —th—1, Tp—1, T )Py (T =g, Tpy y)dydxy,...dxe

where £ > 1, 0 < t; < ... < ¢t < T and
A1, ..., A; are Borel sets in R3.
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Distribution above the critical point
(y = 4(T) is bounded and y(T)VT — oo
as T — —I—OQ)

Let S(T) be such that
lim ~(T)y/S(T) = _lim ’y(T)\/T— S(T) = +o0.

T——4o00

Let s > 0 be fixed. Consider the process

y' (1) = y(D)w(S(T) +t/7°(T)), 0<t<s.

Theorem: The distribution of the process
y!'(t) with respect to the measure PJpy 7
converges as T' — oo, weakly in the space
C([0, s],R3), to the distribution of a station-

ary Markov process.
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Distribution near and below the critical
point

(v = v(T) is such that v(T)VT — s € [—o0, +00)
as T — +o0):

Let yT'(t) = w(tT)/VT, 0 <t < 1.

Theorem: (Self-similarity near the critical
point) If v = ~(T) is such that ~(T)VT —
»n € (—o00,+00) as T — oo, then the distri-
bution of the process y!(t) with respect to
the measure 5§(T),T converges as T — —+oo

to the measure Pjo{,l.

If v = ~(T) is such that ~(T)VT — —oco as
T — 400, then the distribution of the pro-
cess y1'(t) with respect to the measure 5§,T
converges as 1T' — +oo to the distribution of

the 3-dimensional Brownian motion.
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Part 3: Branching Diffusions

v - intensity of branching.

Initially - one particle located at z € R%. Goal
- to describe the distribution of particles when
t is large.

Again, look at the operator

LPu(z) = %Au(m) + Bv(x)u(x).
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Theorem: For 3 > Bcr the number of par-
ticles in a given domain U at time t has the
asymptotics (as t — o00):

na(U) ~ 0D | 5(y)dy,
For ﬁ < ﬁcr:

ng(RY) ~ 5.
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Equations on correlation functions

p1(t,x,yq1) - particle density
on(t,z,y1,...,yn) - higher order correlation func-
tions.

For fixed yq,...,yn, they satisfy the equations
1
Orp1(t, x,y1) = EApl(taﬂ%yl)-l-ﬁv(fE)pl(t, T,Y1),

pl(oa Z, yl) — 5y1 (x)

1
Otpn(t, , Y1, -y Yn) = EApn(t,w,yl, o Yn)+

+5”U(33) (,On(t, T, Y1, 7yn) + Hn(ta X, Y1, 7yn)) ’

pn(0, 2,91, ...,yn) = 0.

Here

Hyp = Z p|U|(t7$7U)pn—|U|(tax7Y\U)
UCY,U#D
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Let » be the distance from \g(3) to the rest
of the spectrum.

Let P : Cexp — C be the operator that maps
the initial function g to the solution of u} =
LPu.

Lemma 1: Let K C RY be a compact set.
For each ¢ € (0,7), the function pi(t,z,y)
satisfies

p1(t, z,y) = exp(Aot)vg(x)g(y) + q(t, z,y),

where

Sg}% |q(t,a:,y)| < Ae eXp((AO_E)t_lyl\/Q(AO T E))
T

fort > 1/2.
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Lemma 2 Let K C RY be a compact set. For

each € € (0,r), the function p, satisfies

pn(t, T,Y1, s Yn) = €Xp(nAot) fn(z)Vg(y1)----3(yn)

+qn(t7 ,Yi, "'7yn)7

where

Tre

fort>1/2.

T he functions f1, fo, ... are defined inductively:

f1 =g and

© @)
where In(g) ::/O exp(—nAgs) Psgds.

MY - decays sufficiently fast in ¢, y1,...,yn.
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Proof of the Theorem (case 3 > Bcr)

Look at the asymptotics of the moments.

E(nf(U))" = /U.../Upn(t,w,yl,..-,yn)dyl-..dyn-

Divide by exp(nAgt) and check that the limit-
ing quantities satisfy the Carleman condition.

Sufficient to check that
1

o0 1 >0
nz::1 <fn(33)> - )

From the properties of I,, it follows that A
s.t.:

n—1 n — 1)1
Ille <4 T pe S Silfllclifailie: n 22
I f1lle < A.

From here, by induction on n it follows that
| fallc < A%*~1Inl, which in turn implies (x)
since n! < ((n+1)/2)™.
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