Random walks in random environments on trees

Yueyun HU (University of Paris 13)

Workshop on Interacting Processes in Random Environments
Toronto 2011

Random walks in random environments (S_n) on \mathbb{Z}^1

Let $\omega=\{\omega_x, x\in\mathbb{Z}^1\}$ be a family of i.i.d. random variables (and non constant) taking values in (0,1). The ω plays the role of random environment. Assume that for some constant $\epsilon>0$, $\epsilon\leq\omega_x\leq1-\epsilon$ almost surely.

Given ω , let $\{S_n, n \geq 0\}$ be a Markov chain taking values in \mathbb{Z}^1 starting from 0 with probability transition : (\mathbb{P}_{ω} means the probability conditioned on ω)

$$\mathbb{P}_{\omega}\left(S_{n+1} = y | S_n = x\right) = \begin{cases} \omega_{\mathsf{x}}, & \text{if } y = x + 1\\ 1 - \omega_{\mathsf{x}}, & \text{if } y = x - 1. \end{cases}$$

Random walks in random environments (S_n) on \mathbb{Z}^1

Let $\omega=\{\omega_x, x\in\mathbb{Z}^1\}$ be a family of i.i.d. random variables (and non constant) taking values in (0,1). The ω plays the role of random environment. Assume that for some constant $\epsilon>0$, $\epsilon\leq\omega_x\leq1-\epsilon$ almost surely.

Given ω , let $\{S_n, n \geq 0\}$ be a Markov chain taking values in \mathbb{Z}^1 starting from 0 with probability transition : (\mathbb{P}_{ω} means the probability conditioned on ω)

$$\mathbb{P}_{\omega}\left(S_{n+1} = y | S_n = x\right) = \begin{cases} \omega_x, & \text{if } y = x+1; \\ 1 - \omega_x, & \text{if } y = x-1. \end{cases}$$

Asymptotic behaviors of (S_n)

References

- P. Révész : Random walk in random and non-random environments (1st edition : 1990, 2nd edition : 2005)
- O. Zeitouni: Lecture notes in Mathematics, 2004.

Recurrence/transience criteria : Solomon (1975)

- (S_n) is recurrent if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) = 0$;
- $S_n \to \infty$ if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) < 0$.

Asymptotic behaviors of (S_n)

References

- P. Révész : Random walk in random and non-random environments (1st edition : 1990, 2nd edition : 2005)
- O. Zeitouni: Lecture notes in Mathematics, 2004.

Recurrence/transience criteria : Solomon (1975)

- (S_n) is recurrent if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x})=0$;
- $S_n \to \infty$ if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) < 0$.

Transient case : Kesten, Kozlov and Spiter (1976) when $S_n \to \infty$, $S_n \approx n^\rho$. The exponent ρ is explicitly determined by the law of ω_x and can vary in (0,1].

Recurrent case : Sinai (1982) when (S_n) is recurrent, $\frac{S_n}{\log^2 n}$ converges in law (to some non-degenerated law, explicitly computed by Kesten (1986) and Golosov (1986)).

Question : \mathbb{Z}^d ?, trees ?, ...

An example of answers on trees

Transient case: Kesten, Kozlov and Spiter (1976)

when $S_n \to \infty$, $S_n \approx n^{\rho}$. The exponent ρ is explicitly determined by the law of ω_x and can vary in (0,1].

Recurrent case: Sinai (1982)

when (S_n) is recurrent, $\frac{S_n}{\log^2 n}$ converges in law (to some non-degenerated law, explicitly computed by Kesten (1986) and Golosov (1986)).

Question : \mathbb{Z}^d ?, trees ?, ...

An example of answers on trees

Transient case: Kesten, Kozlov and Spiter (1976)

when $S_n \to \infty$, $S_n \approx n^{\rho}$. The exponent ρ is explicitly determined by the law of ω_x and can vary in (0,1].

Recurrent case: Sinai (1982)

when (S_n) is recurrent, $\frac{S_n}{\log^2 n}$ converges in law (to some non-degenerated law, explicitly computed by Kesten (1986) and Golosov (1986)).

Question : \mathbb{Z}^d ?, trees ?, ...

An example of answers on trees

Transient case: Kesten, Kozlov and Spiter (1976)

when $S_n \to \infty$, $S_n \approx n^{\rho}$. The exponent ρ is explicitly determined by the law of ω_x and can vary in (0,1].

Recurrent case: Sinai (1982)

when (S_n) is recurrent, $\frac{S_n}{\log^2 n}$ converges in law (to some non-degenerated law, explicitly computed by Kesten (1986) and Golosov (1986)).

Question : \mathbb{Z}^d ?, trees ?, ...

An example of answers on trees:

RWRE on (regular) trees

Random environments

Let $\mathbb T$ be a regular tree rooted at \varnothing and each individual has b-children [we can also take a Galton-Watson tree $\mathbb T$]. Let $\omega = \{(\omega(x,y),y\in \mathbb T)_{x\in \mathbb T}\}$ be a family of independent random vectors such that $\sum_{y\in T:y\sim x}\omega(x,y)=1,\ \omega(x,y)>0$ if $x\sim y$ $(x\sim y \text{ means } x \text{ and } y \text{ are adjacent}).$

Random walk in random environment (X_n) Conditioned on ω , (X_n) is a Markov chain taking values in \mathbb{T} with probability transition :

$$\mathbb{P}_{\omega}(X_{n+1} = y | X_n = x) = \omega(x, y).$$

RWRE on (regular) trees

Random environments

Let $\mathbb T$ be a regular tree rooted at \varnothing and each individual has b-children [we can also take a Galton-Watson tree $\mathbb T$]. Let $\omega = \{(\omega(x,y),y\in\mathbb T)_{x\in\mathbb T}\}$ be a family of independent random vectors such that $\sum_{y\in T:y\sim x}\omega(x,y)=1,\ \omega(x,y)>0$ if $x\sim y$ $(x\sim y \text{ means } x \text{ and } y \text{ are adjacent}).$

Random walk in random environment (X_n)

Conditioned on ω , (X_n) is a Markov chain taking values in \mathbb{T} with probability transition :

$$\mathbb{P}_{\omega}(X_{n+1}=y|X_n=x)=\omega(x,y).$$

Notations

For each vertex $x \in \mathbb{T} \setminus \{\emptyset\}$, we denote its parent by $\overset{\leftarrow}{x}$, and its children by $(x^{(1)}, \cdots, x^{(b)})$. Write |x| for the generation of x. Instead of looking at $\omega(x, y)$ (for $y \sim x$ and $x \in \mathbb{T}$), it is often more convenient to use the notation

$$A(x) := \frac{\omega(\overleftarrow{x}, x)}{\omega(\overleftarrow{x}, \overleftarrow{x})}, \qquad |x| \ge 2.$$

Recurrence/transience criteria

Lyons and Pemantle (1992)'s theorem :

Assume that all A(x) have the same law as some A and A has good integrability. Let $p := \inf_{0 \le t \le 1} \mathbb{E}(A^t)$.

- 1. If pb > 1, then RWRE (X_n) is a.s. transient.
- 2. If $p b \le 1$, then RWRE (X_n) is a.s. recurrent; moreover X is positive recurrent if pb < 1.

Remark: Lyons and Pemantle (1992)'s theorem holds for a very general tree (by replacing b by the branching number of the tree \mathbb{T}).

A slightly more general setting

Hypothesis:

We assume that for all $|x| \ge 2$, $\{A(x^{(1)}), ..., A(x^{(b)})\}$ has the same law as the vector $\{A_1, ..., A_b\}$. Define and assume that

$$\phi(t) := \log \mathbb{E}\Big(\sum_{i=1}^{\mathsf{b}} A_i^t\Big), \quad \text{is finite on } (-\delta, 1+\delta),$$

for some $\delta > 0$ (If $A_i \stackrel{\text{law}}{=} A$, then $\phi(t) = \log(b\mathbb{E}(A^t))$).

Lyons and Pemantle (1992)'s theorem says :

- 1. if $\inf_{0 \le t \le 1} \phi(t) > 0$, then RWRE (X_n) is a.s. transient.
- 2. If $\inf_{0 \le t \le 1} \phi(t) = 0$ (critical case), then RWRE (X_n) is a.s. recurrent.
- 3. If $\inf_{0 \le t \le 1} \phi(t) < 0$, then (X_n) is a.s. positive recurrent.

Critical case : $\inf_{0 \le t \le 1} \phi(t) = 0$

FIGURE: Three different shapes of ϕ in the critical case [and $\phi'(\theta) = 0$].

Critical case : $\inf_{0 \le t \le 1} \phi(t) = 0$. Subdiffusive case

Theorem 1 (Hu and Shi 2007)

[GW without leaves]. If $\inf_{0 \le t \le 1} \phi(t) = 0$ and $\phi'(1) < 0$, then almost surely,

$$\max_{0\leq i\leq n}|X_i|=n^{\nu+o(1)},$$

where

$$\nu := 1 - \max(\frac{1}{2}, \frac{1}{\kappa}),$$

and

$$\kappa := \inf\{t > 1 : \phi(t) = 0\} \in (1, \infty].$$

References

- Ben Arous and Hammond (2011, arXiv), Hammond (2011, arXiv), Gantert, Muller, Popov and Vachkovskaia (2011, arXiv), Ben Arous and Cerny (2008), Comets and Simenhaus (2008).
- E. Aidékon (2008a, 2008b) for rate of convergence and large deviations (transient case).
- Case $\kappa > 2$: is there an invariance principle to (reflected) Brownian motion? Faraud (2008+) confirms it for $\kappa > 5$.
- If the ω are non random and $\mathbb T$ is a Galton-Watson tree, the model corresponds to the so-called biased random walk on (Galton-Watson) trees (see Peres and Zeitouni (2008) for a CLT in the recurrent case and Dembo and Sun (2010+) for the multi-type GW).

Critical case : $\inf_{0 \le t \le 1} \phi(t) = 0$. Slow movement :

Theorem 2 (Faraud, Hu and Shi (2010+))

If $\inf_{0 \le t \le 1} \phi(t) = 0$ and $\phi'(1) \ge 0$, then almost surely,

$$\lim_{n\to\infty}\frac{1}{\log^3 n}\max_{0\leq i\leq n}|X_i|=c,$$

where

$$c := \left\{ egin{array}{ll} rac{8}{3\pi^2\phi''(1)}, & ext{if } \phi'(1) = 0\,; \ rac{2 heta}{3\pi^2\phi''(heta)}, & ext{if } \phi'(1) > 0, \end{array}
ight.,$$

where $\theta \in (0,1]$ denotes the unique zero $:\phi'(\theta)=0.$

Remark : Discontinuity of c when $\theta \rightarrow 1$!

Discontinuity in the limits

Let $\phi'(1)=0$. Let $\beta>1$ and consider a new random environment $\omega^{(\beta)}$ which corresponds to $(A_i^\beta,1\leq i\leq b)$. Let $(X_n^{(\beta)})$ be the RWRE in the environment $\omega^{(\beta)}$. Our result says : almost surely,

$$\lim_{n \to \infty} \frac{1}{\log^3 n} \max_{0 \le i \le n} |X_i^{(\beta)}| = \begin{cases} \frac{8}{3\pi^2 \phi''(1)}, & \text{if } \beta = 1; \\ \\ \frac{2}{3\pi^2 \beta \phi''(1/\beta)}, & \text{if } \beta > 1. \end{cases}$$

We see the discontinuity of the limit at $\beta = 1$.

An associated branching random walk

The potential process associated with the random environment is defined by $V(\emptyset) := 0$ and

$$V(x) := -\sum_{y \in [\![\varnothing], x]\![} \log A(y), \qquad x \in \mathbb{T} \setminus \{\varnothing\},$$

so that $(V(x), x \in \mathbb{T})$ is a branching random walk.

A relationship between (X_n) and V

In the recurrent case, for any $k \geq 0$, let

$$\tau_k := \inf\{j \ge 1 : |X_j| = k\}, \quad \inf \varnothing := \infty.$$

So τ_0 is the first *return* time to the root if the walk starts from \varnothing . Let $\varrho_n := P_\omega \{ \tau_n < \tau_0 \}$. Then almost surely, if for some positive constant c.

$$\varrho_n = e^{-(c+o(1))n^{1/3}}$$

then

$$\lim_{n\to\infty}\frac{1}{(\log n)^3}\max_{0\le k\le n}|X_k|=c^{-3}.$$

A lower bound of ϱ_n in terms of V

There exists some $0 < c(\omega) < \infty$ such that for any $n \ge 1$,

$$\varrho_n := P_{\omega}\{\tau_n < \tau_0\} \ge \max_{|x|=n} P_{\omega}\{T_x < \tau_0\} \ge \frac{c(\omega)}{n} \exp\left(-\min_{|x|=n} \overline{V}(x)\right),$$

where, for any vertex x, $T_x := \inf\{j \ge 0 : X_j = x\}$ and

$$\overline{V}(x) := \max_{y \in \llbracket \varnothing, x \rrbracket} V(y).$$

Rate of \overline{V}

Theorem 3 (Independently obtained by Fang and Zeitouni (2010))

Assume $\inf_{t\in[0,\,1]}\phi(t)=0$ and let $\theta\in(0,\,1]$ be such that $\phi'(\theta)=0.$ We have

$$\lim_{n\to\infty} \frac{1}{n^{1/3}} \min_{|x|=n} \overline{V}(x) = \left(\frac{3\pi^2 \sigma_{\theta}^2}{2}\right)^{1/3}, \quad \mathbb{P}\text{-a.s.}$$

where

$$\sigma_{\theta}^2 := \frac{1}{\theta} \mathbb{E} \Big\{ \sum_{|\mathbf{x}|=1} V(\mathbf{x})^2 e^{-\theta V(\mathbf{x})} \Big\}.$$

Behaviors of ϱ_n

Recall that

$$\varrho_n := P_{\omega} \{ \tau_n < \tau_0 \} \ge \frac{c(\omega)}{n} \exp \left(- \min_{|x|=n} \overline{V}(x) \right).$$

There are 2 cases:

- 1. if $\phi'(1) > 0$, then the above lower bound for ϱ_n is sharp.
- 2. if $\phi'(1) = 0$, $\varrho_n \gg \exp\left(-\min_{|x|=n} \overline{V}(x)\right)$.

Upper bound of ϱ_n : case $\phi'(1) = 0$

For each |x|=n, by considering the first $j\in [1,n]$ such that $\overline{V}(x_j)-V(x_j)\geq a(n-j)^{1/3}$, we get that

$$\tau_n = \inf_{|x|=n} T_x \ge \min_{1 \le j \le n} \inf\{T_y : |y| = j \text{ and } E(y) \text{ holds}\},$$

with E(y) given as follows:

Upper bound of ϱ_n : case $\phi'(1) = 0$

Hence

$$\varrho_n = P_{\omega}\{\tau_n > \tau_0\} \leq \sum_{j=1}^n \sum_{|y|=j} \mathbf{1}_{E(y)} e^{V(y_1) - \overline{V}(y)}.$$

An important formula (many-to-one, change of measure...) see Biggins and Kyprianou (1997) :

For any $n \geq 1$ and any measurable function $F : \mathbb{R}^n \to [0, \infty)$, we have

$$\mathbb{E}\Big\{\sum_{|x|=n}e^{-V(x)}F(V(x_i),\ 1\leq i\leq n)\Big\}=\mathbb{E}\Big\{F(S_i,\ 1\leq i\leq n)\Big\},$$

where (S_n) is a centered random walk.

Upper bound of
$$\varrho_n$$
: case $\phi'(1) = 0$

Hence

$$\varrho_n = P_{\omega}\{\tau_n > \tau_0\} \leq \sum_{j=1}^n \sum_{|y|=j} \mathbf{1}_{E(y)} e^{V(y_1) - \overline{V}(y)}.$$

An important formula (many-to-one, change of measure...) see Biggins and Kyprianou (1997) :

For any $n \geq 1$ and any measurable function $F : \mathbb{R}^n \to [0, \infty)$, we have

$$\mathbb{E}\Big\{\sum_{|x|=n}e^{-V(x)}F(V(x_i),\ 1\leq i\leq n)\Big\}=\mathbb{E}\Big\{F(S_i,\ 1\leq i\leq n)\Big\},$$

where (S_n) is a centered random walk.

Upper bound of ϱ_n : case $\phi'(1) = 0$

Then,

$$\mathbb{E}(\varrho_{n}) \leq \sum_{j=1}^{n} \mathbb{E}\left\{e^{S_{j}}\mathbf{1}_{\{\overline{S}_{j}-S_{j}>a(n-j)^{1/3}, \, \overline{S}_{i}-S_{i}\leq a(n-i)^{1/3}, \, \forall i < j\}}e^{-\overline{S}_{j}}\right\}
\leq \sum_{j=1}^{n} e^{-a(n-j)^{1/3}} \mathbb{P}\left\{\overline{S}_{i}-S_{i}\leq a(n-i)^{1/3}, \, \forall i < j\right\}
= e^{-\min(a, \frac{3\pi^{2}\sigma^{2}}{8a^{2}})(1+o(1))n^{1/3}},$$

by an application of Mogul'skii (1974).

Upper bound on ϱ_n : case $\phi'(1) = 0$

Then

$$\mathbb{E}(\rho_n) \leq e^{-\min(a,\frac{3\pi^2\sigma^2}{8a^2})(1+o(1))n^{1/3}}.$$

Taking $a=\frac{3\pi^2\sigma^2}{8a^2}$, namely $a=(\frac{3\pi^2\sigma^2}{8})^{1/3}:=a_*$, gives the upper bound for ϱ_n :

$$\varrho_n \leq e^{-(a_* + o(1))n^{1/3}}.$$

The lower bound of ϱ_n : difficult part...

Proof of Theorem 3 (lower bound)

Let $a^* := (\frac{3\pi^2\sigma^2}{2})^{1/3}$ and $0 < a < a^* < b < (\frac{3\pi^2\sigma^2}{2a^2})^{1/3}$. We are going to bound $\mathbb{P}(\min_{|x|=n} \overline{V}(x) \le an^{1/3})$. For all |x|=n, let

$$H_{\mathsf{x}} := \inf\{j \in [1, n] : V(x_j) \le an^{1/3} - b(n-j)^{1/3}\}.$$

Proof of Theorem 3 (lower bound)

By considering $H_x = j$, we get

$$\begin{split} & \mathbb{P}\Big(\min_{|x|=n}\overline{V}(x) \leq an^{1/3}\Big) \\ \leq & \sum_{j=1}^{n} \mathbb{E}\Big(\sum_{|y|=j} \mathbf{1}_{\{V(y) \leq an^{1/3} - b(n-j)^{1/3}, \ an^{1/3} \geq V(y_{i}) > an^{1/3} - b(n-i)^{1/3}, \forall i \leq j\}\Big) \\ = & \sum_{i=1}^{n} \mathbb{E}e^{S_{j}}\mathbf{1}_{\{S_{j} \leq an^{1/3} - b(n-j)^{1/3}, \ an^{1/3} \geq S_{i} > an^{1/3} - b(n-i)^{1/3}, \forall i \leq j\}, \end{split}$$

by the change of probability formula.

Proof of Theorem 3 (lower bound)

It follows that

$$\mathbb{P}\Big(\min_{|x|=n} \overline{V}(x) \le an^{1/3}\Big)
\le \sum_{j=1}^{n} e^{an^{1/3} - b(n-j)^{1/3}} \mathbb{P}\Big(an^{1/3} \ge S_i > an^{1/3} - b(n-i)^{1/3}, \ \forall i \le j\Big)
= e^{(a-\min(b, \frac{3\pi^2\sigma^2}{2b^2}) + o(1))n^{1/3}}.$$

Hence by letting $b o a^*$ and $\epsilon o 0$, we obtain that for any $a < a^*$,

$$\limsup_{n\to\infty}\frac{1}{n^{1/3}}\log\mathbb{P}\Big(\min_{|x|=n}\overline{V}(x)\leq an^{1/3}\Big)\leq a-a^*,$$

implying the lower bound.

Proof of Theorem 1

Recall that $\tau_n := \inf \{i \geq 0 : |X_i| = n\}$ be the first hitting time at nth generation of the tree by the walk. We are mostly interested in

$$\varrho_n(x) := \mathbb{P}_{x,\omega} \Big(\tau_n < T_{\stackrel{\leftarrow}{x}} \Big), \qquad |x| \le n,$$

where $T_{\stackrel{\leftarrow}{x}}$ means the first hitting time on $\stackrel{\leftarrow}{x}$. In particular, for $x=\varnothing$ the root, $\varrho_n:=\varrho(\varnothing)$.

Main technical estimate

Assume $\phi'(1) < 0$

1. If $\kappa \in (2, \infty]$, then

$$\varrho_n \approx \mathbb{E}(\varrho_n) \approx \frac{1}{n}.$$

2. If $\kappa \in (1,2]$, then

$$\varrho_n \approx \mathbb{E}(\varrho_n) \approx n^{-1/(\kappa-1)}.$$

Recurrence equation

Recurrence equation

For |x| = n, $\varrho_n(x) = 1$ and

$$\varrho_n(x) = \frac{\sum_{i=1}^b A(x^{(i)})\varrho_n(x^{(i)})}{1 + \sum_{i=1}^b A(x^{(i)})\varrho_n(x^{(i)})}, \qquad |x| < n.$$

Rough upper bound of ϱ_n

Since $\varrho_n(x) \leq \sum_{i=1}^b A(x^{(i)})\varrho_n(x^{(i)})$, by iterating these inequalities we get $\varrho_n(\emptyset) \leq M_n$, where

$$M_n := \sum_{|x|=n} \prod_{y \in (\varnothing,x]} A(y)$$

It is easy to check that (M_n) is a positive martingale, called Mandelbrot's multiplicative cascade.

Recurrence equation

Recurrence equation

For |x| = n, $\varrho_n(x) = 1$ and

$$\varrho_n(x) = \frac{\sum_{i=1}^b A(x^{(i)})\varrho_n(x^{(i)})}{1 + \sum_{i=1}^b A(x^{(i)})\varrho_n(x^{(i)})}, \qquad |x| < n.$$

Rough upper bound of ϱ_n

Since $\varrho_n(x) \leq \sum_{i=1}^b A(x^{(i)})\varrho_n(x^{(i)})$, by iterating these inequalities we get $\varrho_n(\emptyset) \leq M_n$, where

$$M_n := \sum_{|x|=n} \prod_{y \in (\varnothing,x]} A(y).$$

It is easy to check that (M_n) is a positive martingale, called Mandelbrot's multiplicative cascade.

It is known (Liu 2001) that $M_n \to M_\infty \in (0, \infty)$, if $\kappa < \infty$,

$$\mathbf{P}\big(M_{\infty}>x\big)\approx x^{-\kappa}.$$

$$\frac{\varrho_n}{\mathbb{E}(\varrho_n)} \xrightarrow{(d)} M_{\infty}$$

Where does come from κ ?

It is known (Liu 2001) that $M_n \to M_\infty \in (0,\infty)$, if $\kappa < \infty$,

$$\mathbf{P}\big(M_{\infty}>x\big)\approx x^{-\kappa}.$$

We have

$$\frac{\varrho_n}{\mathbb{E}(\varrho_n)} \xrightarrow{(d)} M_{\infty}.$$

An elementary inequality

Let $\xi \geq 0$ be a random variable. Assume that $\mathbb{E}(\xi^a) < \infty$ for some a > 1.

$$\mathbb{E}[(\frac{\xi}{1+\xi})^a] \leq \mathbb{E}(\xi^a),$$

and

$$\left[\mathbb{E}\left(\frac{\xi}{1+\xi}\right)\right]^a \leq \left[\mathbb{E}\xi\right]^a$$
.

$$\frac{\mathbb{E}[(\frac{\xi}{1+\xi})^a]}{[\mathbb{E}(\frac{\xi}{1+\xi})]^a} \le \frac{\mathbb{E}(\xi^a)}{[\mathbb{E}\xi]^a}$$

An elementary inequality

Let $\xi \geq 0$ be a random variable. Assume that $\mathbb{E}(\xi^a) < \infty$ for some a > 1.

$$\mathbb{E}[(\frac{\xi}{1+\xi})^a] \leq \mathbb{E}(\xi^a),$$

and

$$\left[\mathbb{E}\left(\frac{\xi}{1+\xi}\right)\right]^a \leq \left[\mathbb{E}\xi\right]^a$$
.

Then (!)
$$\frac{\mathbb{E}[(\frac{\xi}{1+\xi})^a]}{[\mathbb{E}(\frac{\xi}{1+\xi})]^a} \leq \frac{\mathbb{E}(\xi^a)}{[\mathbb{E}\xi]^a}.$$

THANK YOU!