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Random walks in random environments (Sn) on Z
1

Let ω = {ωx , x ∈ Z
1} be a family of i.i.d. random variables (and

non constant) taking values in (0, 1). The ω plays the role of
random environment. Assume that for some constant ǫ > 0,
ǫ ≤ ωx ≤ 1 − ǫ almost surely.

Given ω, let {Sn, n ≥ 0} be a Markov chain taking values in Z
1

starting from 0 with probability transition : (Pω means the
probability conditioned on ω)

Pω

(

Sn+1 = y
∣

∣Sn = x
)

=

{

ωx , if y = x + 1 ;
1 − ωx , if y = x − 1.
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Asymptotic behaviors of (Sn)

References

• P. Révész : Random walk in random and non-random

environments (1st edition : 1990, 2nd edition : 2005)

• O. Zeitouni : Lecture notes in Mathematics, 2004.

Recurrence/transience criteria : Solomon (1975)

• (Sn) is recurrent if and only if E(log 1−ωx

ωx
) = 0 ;

• Sn → ∞ if and only if E(log 1−ωx

ωx
) < 0.
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How big is (Sn) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when Sn → ∞, Sn ≈ nρ. The exponent ρ is explicitly determined
by the law of ωx and can vary in (0, 1].

Recurrent case : Sinai (1982)

when (Sn) is recurrent, Sn

log2 n
converges in law (to some

non-degenerated law, explicitly computed by Kesten (1986) and
Golosov (1986)).

Question : Zd ?, trees ?, ...

An example of answers on trees :

We may find both subdiffusive and slow movement behaviors in a
class of recurrent RWREs on trees.
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RWRE on (regular) trees

Random environments
Let T be a regular tree rooted at ∅ and each individual has
b-children [we can also take a Galton-Watson tree T]. Let
ω = {(ω(x , y), y ∈ T)x∈T} be a family of independent random
vectors such that

∑

y∈T :y∼x ω(x , y) = 1, ω(x , y) > 0 if x ∼ y

(x ∼ y means x and y are adjacent).

Random walk in random environment (Xn)

Conditioned on ω, (Xn) is a Markov chain taking values in T with
probability transition :

Pω

(

Xn+1 = y
∣

∣Xn = x
)

= ω(x , y).
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Notations

For each vertex x ∈ T\{∅}, we denote its parent by
←
x , and its

children by (x (1), · · · , x (b)). Write |x | for the generation of x .
Instead of looking at ω(x , y) (for y ∼ x and x ∈ T), it is often
more convenient to use the notation

A(x) :=
ω(
←
x , x)

ω(
←
x ,

←
←
x )

, |x | ≥ 2.
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Recurrence/transience criteria

Lyons and Pemantle (1992)’s theorem :

Assume that all A(x) have the same law as some A and A has
good integrability. Let p := inf0≤t≤1 E(A

t).

1. If p b > 1, then RWRE (Xn) is a.s. transient.

2. If p b ≤ 1, then RWRE (Xn) is a.s. recurrent ; moreover X is
positive recurrent if pb < 1.

Remark : Lyons and Pemantle (1992)’s theorem holds for a very
general tree (by replacing b by the branching number of the tree
T).
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A slightly more general setting

Hypothesis :

We assume that for all |x | ≥ 2, {A(x (1)), ..., A(x (b))} has the same
law as the vector {A1, ..., Ab}. Define and assume that

φ(t) := logE
(

b
∑

i=1

At
i

)

, is finite on (−δ, 1 + δ),

for some δ > 0 (If Ai
law
= A, then φ(t) = log(bE(At))).
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Lyons and Pemantle (1992)’s theorem says :

1. if inf0≤t≤1 φ(t) > 0, then RWRE (Xn) is a.s. transient.

2. If inf0≤t≤1 φ(t) = 0 (critical case), then RWRE (Xn) is a.s.
recurrent.

3. If inf0≤t≤1 φ(t) < 0, then (Xn) is a.s. positive recurrent.
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Critical case : inf0≤t≤1 φ(t) = 0

0 0

t t t

φ′(1) < 0 φ′(1) = 0 φ′(1) > 0

1 1 θ 1

κ

0

Figure: Three different shapes of φ in the critical case [and φ′(θ) = 0].
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Critical case : inf0≤t≤1 φ(t) = 0. Subdiffusive case

Theorem 1 (Hu and Shi 2007)

[GW without leaves]. If inf0≤t≤1 φ(t) = 0 and φ′(1) < 0, then
almost surely,

max
0≤i≤n

|Xi | = nν+o(1),

where

ν := 1 − max(
1

2
,

1

κ
),

and
κ := inf{t > 1 : φ(t) = 0} ∈ (1, ∞].
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Brownian motion ? Faraud (2008+) confirms it for κ > 5.

• If the ω are non random and T is a Galton-Watson tree, the
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Critical case : inf0≤t≤1 φ(t) = 0. Slow movement :

Theorem 2 (Faraud, Hu and Shi (2010+))

If inf0≤t≤1 φ(t) = 0 and φ′(1) ≥ 0, then almost surely,

lim
n→∞

1

log3 n
max

0≤i≤n
|Xi | = c ,

where

c :=

{

8
3π2φ′′(1)

, if φ′(1) = 0 ;
2θ

3π2φ′′(θ)
, if φ′(1) > 0,

,

where θ ∈ (0, 1] denotes the unique zero :φ′(θ) = 0.

Remark : Discontinuity of c when θ → 1 !
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Discontinuity in the limits

Let φ′(1) = 0. Let β > 1 and consider a new random environment

ω(β) which corresponds to (Aβ
i , 1 ≤ i ≤ b). Let (X

(β)
n ) be the

RWRE in the environment ω(β). Our result says : almost surely,

lim
n→∞

1

log3 n
max

0≤i≤n
|X

(β)
i | =











8
3π2φ′′(1)

, if β = 1 ;

2
3π2βφ′′(1/β) , if β > 1.

We see the discontinuity of the limit at β = 1.



Introduction Results An associated branching random walk Proof of Theorem 2 Proof of Theorem 3 Proof of Theorem 1

An associated branching random walk

The potential process associated with the random environment is
defined by V (∅) := 0 and

V (x) := −
∑

y∈ ]]∅, x ]]

log A(y), x ∈ T\{∅},

so that (V (x), x ∈ T) is a branching random walk.
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A relationship between (Xn) and V

In the recurrent case, for any k ≥ 0, let

τk := inf{j ≥ 1 : |Xj | = k}, inf ∅ := ∞.

So τ0 is the first return time to the root if the walk starts from ∅.
Let ̺n := Pω{τn < τ0}. Then almost surely, if for some positive
constant c ,

̺n = e−(c+o(1))n1/3

,

then

lim
n→∞

1

(log n)3
max

0≤k≤n
|Xk | = c−3.
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A lower bound of ̺n in terms of V

There exists some 0 < c(ω) < ∞ such that for any n ≥ 1,

̺n := Pω{τn < τ0} ≥ max
|x |=n

Pω{Tx < τ0} ≥
c(ω)

n
exp

(

− min
|x |=n

V (x)
)

,

where, for any vertex x , Tx := inf{j ≥ 0 : Xj = x} and

V (x) := max
y∈[[∅, x ]]

V (y).
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Rate of V

Theorem 3 (Independently obtained by Fang and Zeitouni
(2010))

Assume inft∈[0, 1] φ(t) = 0 and let θ ∈ (0, 1] be such that
φ′(θ) = 0. We have

lim
n→∞

1

n1/3
min
|x |=n

V (x) =
(3π2σ2

θ

2

)1/3

, P-a.s.,

where

σ2
θ :=

1

θ
E

{

∑

|x |=1

V (x)2
e
−θV (x)

}

.
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Behaviors of ̺n

Recall that

̺n := Pω{τn < τ0} ≥
c(ω)

n
exp

(

− min
|x |=n

V (x)
)

.

There are 2 cases :

1. if φ′(1) > 0, then the above lower bound for ̺n is sharp.

2. if φ′(1) = 0, ̺n ≫ exp
(

− min|x |=n V (x)
)

.
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Upper bound of ̺n : case φ′(1) = 0

For each |x | = n, by considering the first j ∈ [1, n] such that
V (xj) − V (xj) ≥ a(n − j)1/3, we get that

τn = inf
|x |=n

Tx ≥ min
1≤j≤n

inf{Ty : |y | = j and E (y) holds},

with E (y) given as follows :

a(n − i)1/3

ij

V (yi) − V (yi)



Introduction Results An associated branching random walk Proof of Theorem 2 Proof of Theorem 3 Proof of Theorem 1

Upper bound of ̺n : case φ′(1) = 0

Hence

̺n = Pω{τn > τ0} ≤
n

∑

j=1

∑

|y |=j

1E(y)e
V (y1)−V (y).

An important formula (many-to-one, change of measure...) see
Biggins and Kyprianou (1997) :

For any n ≥ 1 and any measurable function F : Rn → [0, ∞), we
have

E

{

∑

|x |=n

e−V (x)F (V (xi), 1 ≤ i ≤ n)
}

= E

{

F (Si , 1 ≤ i ≤ n)
}

,

where (Sn) is a centered random walk.



Introduction Results An associated branching random walk Proof of Theorem 2 Proof of Theorem 3 Proof of Theorem 1

Upper bound of ̺n : case φ′(1) = 0

Hence

̺n = Pω{τn > τ0} ≤
n

∑

j=1

∑

|y |=j

1E(y)e
V (y1)−V (y).

An important formula (many-to-one, change of measure...) see
Biggins and Kyprianou (1997) :

For any n ≥ 1 and any measurable function F : Rn → [0, ∞), we
have

E

{

∑

|x |=n

e−V (x)F (V (xi), 1 ≤ i ≤ n)
}

= E

{

F (Si , 1 ≤ i ≤ n)
}

,

where (Sn) is a centered random walk.



Introduction Results An associated branching random walk Proof of Theorem 2 Proof of Theorem 3 Proof of Theorem 1

Upper bound of ̺n : case φ′(1) = 0

Then,

E(̺n) ≤
n

∑

j=1

E

{

eSj 1{S j−Sj >a(n−j)1/3, S i−Si≤a(n−i)1/3, ∀i<j}e
−S j

}

≤
n

∑

j=1

e
−a(n−j)1/3

P

{

S i − Si ≤ a(n − i)1/3, ∀i < j
}

= e
−min(a, 3π2σ2

8a2 )(1+o(1))n1/3

,

by an application of Mogul’skii (1974).
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Upper bound on ̺n : case φ′(1) = 0

Then

E(̺n) ≤ e
−min(a, 3π2σ2

8a2 )(1+o(1))n1/3

.

Taking a = 3π2σ2

8a2 , namely a = (3π2σ2

8
)1/3 := a∗, gives the upper

bound for ̺n :

̺n ≤ e−(a∗+o(1))n1/3

.

The lower bound of ̺n : difficult part...
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Proof of Theorem 3 (lower bound)
Let a∗ := (3π2σ2

2
)1/3 and 0 < a < a∗ < b < (3π2σ2

2a2 )1/3. We are

going to bound P(min|x |=n V (x) ≤ an1/3). For all |x | = n, let

Hx := inf{j ∈ [1, n] : V (xj) ≤ an1/3 − b(n − j)1/3}.

n

V (xj)

an1/3

(a − b)n1/3

Hx
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Proof of Theorem 3 (lower bound)

By considering Hx = j , we get

P

(

min
|x |=n

V (x) ≤ an1/3
)

≤
n

∑

j=1

E(
∑

|y |=j

1{V (y)≤an1/3−b(n−j)1/3, an1/3≥V (yi )>an1/3−b(n−i)1/3,∀i≤j})

=
n

∑

j=1

EeSj 1{Sj≤an1/3−b(n−j)1/3, an1/3≥Si >an1/3−b(n−i)1/3,∀i≤j},

by the change of probability formula.
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Proof of Theorem 3 (lower bound)

It follows that

P

(

min
|x |=n

V (x) ≤ an1/3
)

≤
n

∑

j=1

ean1/3−b(n−j)1/3

P

(

an1/3 ≥ Si > an1/3 − b(n − i)1/3, ∀i ≤ j
)

= e
(a−min(b, 3π2σ2

2b2 )+o(1))n1/3

.

Hence by letting b → a∗ and ǫ → 0, we obtain that for any a < a∗,

lim sup
n→∞

1

n1/3
logP

(

min
|x |=n

V (x) ≤ an1/3
)

≤ a − a∗,

implying the lower bound.
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Proof of Theorem 1

Recall that τn := inf {i ≥ 0 : |Xi | = n} be the first hitting time at
nth generation of the tree by the walk. We are mostly interested in

̺n(x) := Px ,ω

(

τn < T←
x

)

, |x | ≤ n,

where T←
x

means the first hitting time on
←
x . In particular, for

x = ∅ the root, ̺n := ̺(∅).
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Main technical estimate

Assume φ′(1) < 0

1. If κ ∈ (2, ∞], then

̺n ≈ E(̺n) ≈
1

n
.

2. If κ ∈ (1, 2], then

̺n ≈ E(̺n) ≈ n−1/(κ−1).
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Recurrence equation

Recurrence equation

For |x | = n, ̺n(x) = 1 and

̺n(x) =

∑

b

i=1 A(x (i))̺n(x
(i))

1 +
∑

b

i=1 A(x (i))̺n(x (i))
, |x | < n.

Rough upper bound of ̺n

Since ̺n(x) ≤
∑

b

i=1 A(x (i))̺n(x
(i)), by iterating these inequalities

we get ̺n(∅) ≤ Mn, where

Mn :=
∑

|x |=n

∏

y∈(∅,x ]

A(y).

It is easy to check that (Mn) is a positive martingale, called
Mandelbrot’s multiplicative cascade.
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Where does come from κ ?

It is known (Liu 2001) that Mn → M∞ ∈ (0, ∞), if κ < ∞,

P

(

M∞ > x
)

≈ x−κ.

We have
̺n

E(̺n)

(d)
−→ M∞.
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An elementary inequality

Let ξ ≥ 0 be a random variable. Assume that E(ξa) < ∞ for some
a > 1.

E[(
ξ

1 + ξ
)a] ≤ E(ξa),

and

[E(
ξ

1 + ξ
)]a ≤ [Eξ]a.

Then ( !)

E[( ξ
1+ξ )

a]

[E( ξ
1+ξ )]

a
≤

E(ξa)

[Eξ]a
.
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THANK YOU !
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