Asymptotic speed of second class particles in a rarefaction fan

Eric Cator
Delft University of Technology, The Netherlands
Joint work, partly with Leandro Pimentel, partly with James Martin

Introduction

- Hammersley-Aldous-Diaconis process
- Busemann functions
- Multiclass process
- Second class particles in a rarefaction fan
- Example

Hammersley-Aldous-Diaconis process

LPP in \mathbb{R}^{2}
Consider a Poisson process \mathcal{P} on \mathbb{R}^{2}. For $\mathbf{x} \leq \mathbf{y} \in \mathbb{R}^{2}$, define $\Pi(\mathbf{x}, \mathbf{y})$ as the set of up-right paths from \mathbf{x} to \mathbf{y}. Define

$$
L(\mathbf{x}, \mathbf{y})=\max _{\varpi \in \Pi(\mathbf{x}, \mathbf{y})} \#(\mathcal{P} \cap \varpi)
$$

Call $\varpi(\mathbf{x}, \mathbf{y})$ the lowest path that attains the maximum.

Hammersley-Aldous-Diaconis process

LPP in \mathbb{R}^{2}

Consider a Poisson process \mathcal{P} on \mathbb{R}^{2}. For $\mathbf{x} \leq \mathbf{y} \in \mathbb{R}^{2}$, define $\Pi(\mathbf{x}, \mathbf{y})$ as the set of up-right paths from \mathbf{x} to \mathbf{y}. Define

$$
L(\mathbf{x}, \mathbf{y})=\max _{\varpi \in \Pi(\mathbf{x}, \mathbf{y})} \#(\mathcal{P} \cap \varpi) .
$$

Call $\varpi(\mathbf{x}, \mathbf{y})$ the lowest path that attains the maximum.

Particle process

Given an initial configuration ν, which is a counting process on \mathbb{R}, that counts negatively when going to the left, we define for $t \geq 0, x \in \mathbb{R}$:

$$
L_{\nu}(x, t)=\sup _{z \leq x}(\nu(z)+L((z, 0),(x, t))) .
$$

$L_{\nu}(\cdot, t)$ is the counting process that describes the particle configuration at time t.

Busemann functions

α-rays
A continuous path $\gamma:[0, \infty) \rightarrow \mathbb{R}^{2}$ is called an α-ray, for $\alpha \in(\pi, 3 \pi / 2)$, if

1. For all $s \geq t \geq 0, \gamma(s) \leq \gamma(t)$ and $\gamma([t, s])=\varpi(\gamma(s), \gamma(t))$.
2. $\|\gamma(t)\| \rightarrow \infty$ and $\gamma(t) /\|\gamma(t)\| \rightarrow(\cos \alpha, \sin \alpha)$.

Busemann functions

α-rays
A continuous path $\gamma:[0, \infty) \rightarrow \mathbb{R}^{2}$ is called an α-ray, for $\alpha \in(\pi, 3 \pi / 2)$, if

1. For all $s \geq t \geq 0, \gamma(s) \leq \gamma(t)$ and $\gamma([t, s])=\varpi(\gamma(s), \gamma(t))$.
2. $\|\gamma(t)\| \rightarrow \infty$ and $\gamma(t) /\|\gamma(t)\| \rightarrow(\cos \alpha, \sin \alpha)$.

Theorem (Wüttrich)

Fix α. With probability one, there exists a unique α-ray starting at \mathbf{x}, for all $\mathbf{x} \in \mathbb{R}^{2}$; denote it by $\varpi_{\alpha}(\mathbf{x})$.
For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}, \varpi_{\alpha}(\mathbf{x})$ and $\varpi_{\alpha}(\mathbf{y})$ will coalesce.

Busemann functions

α-rays
A continuous path $\gamma:[0, \infty) \rightarrow \mathbb{R}^{2}$ is called an α-ray, for
$\alpha \in(\pi, 3 \pi / 2)$, if

1. For all $s \geq t \geq 0, \gamma(s) \leq \gamma(t)$ and $\gamma([t, s])=\varpi(\gamma(s), \gamma(t))$.
2. $\|\gamma(t)\| \rightarrow \infty$ and $\gamma(t) /\|\gamma(t)\| \rightarrow(\cos \alpha, \sin \alpha)$.

Theorem (Wüttrich)

Fix α. With probability one, there exists a unique α-ray starting at \mathbf{x}, for all $\mathbf{x} \in \mathbb{R}^{2}$; denote it by $\varpi_{\alpha}(\mathbf{x})$.
For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}, \varpi_{\alpha}(\mathbf{x})$ and $\varpi_{\alpha}(\mathbf{y})$ will coalesce.

The proof closely follows ideas by Newman and co-authors for First Passage Percolation.

Busemann functions

Definition

For fixed $\alpha \in(\pi, 3 \pi / 2)$ we define the Busemann function

$$
B_{\alpha}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}: B_{\alpha}(\mathbf{x}, \mathbf{y})=L\left(\mathbf{y}, \mathbf{c}_{\alpha}(\mathbf{x}, \mathbf{y})\right)-L\left(\mathbf{x}, \mathbf{c}_{\alpha}(\mathbf{x}, \mathbf{y})\right)
$$

where $c_{\alpha}(\mathbf{x}, \mathbf{y})$ is a coalescing point of $\pi_{\alpha}(\mathbf{x})$ and $\pi_{\alpha}(\mathbf{y})$.

Busemann functions

Definition

For fixed $\alpha \in(\pi, 3 \pi / 2)$ we define the Busemann function

$$
B_{\alpha}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}: B_{\alpha}(\mathbf{x}, \mathbf{y})=L\left(\mathbf{y}, \mathbf{c}_{\alpha}(\mathbf{x}, \mathbf{y})\right)-L\left(\mathbf{x}, \mathbf{c}_{\alpha}(\mathbf{x}, \mathbf{y})\right)
$$

where $c_{\alpha}(\mathbf{x}, \mathbf{y})$ is a coalescing point of $\pi_{\alpha}(\mathbf{x})$ and $\pi_{\alpha}(\mathbf{y})$.
Properties

- $B_{\alpha}(\mathbf{x}, \mathbf{z})=B_{\alpha}(\mathbf{x}, \mathbf{y})+B_{\alpha}(\mathbf{y}, \mathbf{z})$.
- For any $\mathbf{p} \in \mathbb{R}^{2}, B_{\alpha}(\cdot+\mathbf{p}, \cdot+\mathbf{p}) \stackrel{\mathcal{D}}{=} B_{\alpha}(\cdot, \cdot)$.
- $B_{\alpha}(\mathbf{0},(x, t))=\sup _{z \leq x}\left(B_{\alpha}(\mathbf{0},(z, 0))+L((z, 0),(x, t))\right)$.

Busemann functions

Definition

For fixed $\alpha \in(\pi, 3 \pi / 2)$ we define the Busemann function

$$
B_{\alpha}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}: B_{\alpha}(\mathbf{x}, \mathbf{y})=L\left(\mathbf{y}, \mathbf{c}_{\alpha}(\mathbf{x}, \mathbf{y})\right)-L\left(\mathbf{x}, \mathbf{c}_{\alpha}(\mathbf{x}, \mathbf{y})\right),
$$

where $c_{\alpha}(\mathbf{x}, \mathbf{y})$ is a coalescing point of $\pi_{\alpha}(\mathbf{x})$ and $\pi_{\alpha}(\mathbf{y})$.

Properties

- $B_{\alpha}(\mathbf{x}, \mathbf{z})=B_{\alpha}(\mathbf{x}, \mathbf{y})+B_{\alpha}(\mathbf{y}, \mathbf{z})$.
- For any $\mathbf{p} \in \mathbb{R}^{2}, B_{\alpha}(\cdot+\mathbf{p}, \cdot+\mathbf{p}) \stackrel{\mathcal{D}}{=} B_{\alpha}(\cdot, \cdot)$.
- $B_{\alpha}(\mathbf{0},(x, t))=\sup _{z \leq x}\left(B_{\alpha}(\mathbf{0},(z, 0))+L((z, 0),(x, t))\right)$.

These properties show that $x \mapsto B_{\alpha}(0,(x, 0))$ is a stationary configuration of the Hammersley-Aldous-Diaconis model.

Multiclass process

Theorem
Suppose $\alpha_{1} \leq \alpha_{2}$. Define $B_{\alpha_{1}}$ and $B_{\alpha_{2}}$ simultaneously. Then for every $x_{1} \leq x_{2}$ and $t \in \mathbb{R}$

$$
B_{\alpha_{1}}\left(\left(x_{1}, t\right),\left(x_{2}, t\right)\right) \leq B_{\alpha_{2}}\left(\left(x_{1}, t\right),\left(x_{2}, t\right)\right) .
$$

Multiclass process

Theorem
Suppose $\alpha_{1} \leq \alpha_{2}$. Define $B_{\alpha_{1}}$ and $B_{\alpha_{2}}$ simultaneously. Then for every $x_{1} \leq x_{2}$ and $t \in \mathbb{R}$

$$
B_{\alpha_{1}}\left(\left(x_{1}, t\right),\left(x_{2}, t\right)\right) \leq B_{\alpha_{2}}\left(\left(x_{1}, t\right),\left(x_{2}, t\right)\right) .
$$

Proof
Set $\mathbf{x}_{1}=\left(x_{1}, t\right)$ and $\mathbf{x}_{2}=\left(x_{2}, t\right)$. Define \mathbf{c}_{1} as coalescing point of $\varpi_{\alpha_{1}}\left(\mathbf{x}_{1}\right)$ and $\varpi_{\alpha_{1}}\left(\mathbf{x}_{2}\right)$, and likewise \mathbf{c}_{2}. Define \mathbf{m} as the crossing of $\varpi_{\alpha_{1}}\left(\mathbf{x}_{2}\right)$ and $\varpi_{\alpha_{2}}\left(\mathbf{x}_{1}\right)$.

$$
\begin{aligned}
B_{\alpha_{2}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-B_{\alpha_{1}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & L\left(\mathbf{c}_{2}, \mathbf{x}_{2}\right)-L\left(\mathbf{c}_{2}, \mathbf{x}_{1}\right)-\left(L\left(\mathbf{c}_{1}, \mathbf{x}_{2}\right)-L\left(\mathbf{c}_{1}, \mathbf{x}_{1}\right)\right) \\
= & L\left(\mathbf{c}_{1}, \mathbf{x}_{1}\right)+L\left(\mathbf{c}_{2}, \mathbf{x}_{2}\right)-\left(L\left(\mathbf{c}_{1}, \mathbf{m}\right)+L\left(\mathbf{m}, \mathbf{x}_{2}\right)\right) \\
& \quad-\left(L\left(\mathbf{c}_{2}, \mathbf{m}\right)+L\left(\mathbf{m}, \mathbf{x}_{1}\right)\right) \\
= & L\left(\mathbf{c}_{1}, \mathbf{x}_{1}\right)-\left(L\left(\mathbf{c}_{1}, \mathbf{m}\right)+L\left(\mathbf{m}, \mathbf{x}_{1}\right)\right) \\
& \quad+L\left(\mathbf{c}_{2}, \mathbf{x}_{2}\right)-\left(L\left(\mathbf{c}_{2}, \mathbf{m}\right)+L\left(\mathbf{m}, \mathbf{x}_{2}\right)\right) \\
\geq & 0 .
\end{aligned}
$$

Multiclass process

Uniqueness

Ferrari and Martin ('09) proved that there is a unique ergodic multiclass system that is invariant in the Hammersley process. Our construction with the Busemann functions must therefore be the same! This allows explicit calculations for several Busemann functions at the same time.

Multiclass process

Uniqueness

Ferrari and Martin ('09) proved that there is a unique ergodic multiclass system that is invariant in the Hammersley process. Our construction with the Busemann functions must therefore be the same! This allows explicit calculations for several Busemann functions at the same time.

Queueing construction
Consider a Poisson counting process S_{1} of services on \mathbb{R}, intensity μ_{1}, and an independent arrival process A_{1}, intensity $\mu_{2}<\mu_{1}$. Construct the corresponding stationary queue Q_{1}, and define the departure process $D_{1}(z)=\int_{0}^{z} 1_{\{Q(z)>0\}} d S_{1}(z)$.

Multiclass process

Queueing construction
Define S_{1} as the first and second class particles and D_{1} as the second class particles. Then (S_{1}, D_{1}) is invariant under the Hammersley evolution. Note that D_{1} is a Poisson process with intensity μ_{2}.
Now define recursively for $i \geq 2, S_{i}=D_{i-1}$ as the $i^{\text {th }}$ service process, define an independent arrival process A_{i} of intensity $\mu_{i+1}<\mu_{i}$, and the corresponding departure process D_{i}. The sequence ($S_{1}, S_{2}, \ldots, S_{n}$) is stationary for the Hammersley evolution.

Multiclass process

Queueing construction
Define S_{1} as the first and second class particles and D_{1} as the second class particles. Then (S_{1}, D_{1}) is invariant under the Hammersley evolution. Note that D_{1} is a Poisson process with intensity μ_{2}.
Now define recursively for $i \geq 2, S_{i}=D_{i-1}$ as the $i^{\text {th }}$ service process, define an independent arrival process A_{i} of intensity $\mu_{i+1}<\mu_{i}$, and the corresponding departure process D_{i}. The sequence $\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ is stationary for the Hammersley evolution.

Busemann functions

Take angles $\alpha_{1} \geq \ldots \geq \alpha_{n}$. The vector valued process $z \mapsto\left(B_{\alpha_{1}}(\mathbf{0},(z, 0)), \ldots, B_{\alpha_{n}}(\mathbf{0},(z, 0))\right)$ is stationary for the Hammersley evolution, with intensity $\mu_{i}=\sqrt{\tan \alpha_{i}}$. Therefore,

$$
\left(B_{\alpha_{1}}(\mathbf{0},(\cdot, 0)), \ldots, B_{\alpha_{n}}(\mathbf{0},(\cdot, 0))\right) \stackrel{\mathcal{D}}{=}\left(S_{1}, S_{2}, \ldots, S_{n}\right) .
$$

Second class particles in a rarefaction fan

Second class particle as a competition interface
Consider an initial condition ν. Add a second class particle at x_{0}, define $X(t)$ as its position at time t. Then $X(t)$ is the position of a competition interface: for $x>x_{0}$,

$$
\begin{aligned}
& \{X(t) \leq x\}= \\
& \left\{\sup _{z \leq x_{0}}[\nu(z)+L((z, 0),(x, t))] \leq \sup _{z>x_{0}}[\nu(z)+L((z, 0),(x, t))]\right\} .
\end{aligned}
$$

Second class particles in a rarefaction fan

Second class particle as a competition interface

Consider an initial condition ν. Add a second class particle at x_{0}, define $X(t)$ as its position at time t. Then $X(t)$ is the position of a competition interface: for $x>x_{0}$,

$$
\begin{aligned}
& \{X(t) \leq x\}= \\
& \left\{\sup _{z \leq x_{0}}[\nu(z)+L((z, 0),(x, t))] \leq \sup _{z>x_{0}}[\nu(z)+L((z, 0),(x, t))]\right\} .
\end{aligned}
$$

Asymptotic direction

We know that second class particles almost surely have an asymptotic direction, or angle; denote it by $A \in[0, \pi / 2)$. It follows that

$$
\mathbb{P}(\boldsymbol{A} \geq \alpha)=\lim _{t \rightarrow \infty} \mathbb{P}(X(t) \leq t / \tan \alpha) .
$$

Second class particles in a rarefaction fan

Asymptotic direction
Define $\mathbf{x}_{\alpha}(t)=(t / \tan \alpha, t)$ and $\mathbf{z}=(z, 0)$. Then

$$
\begin{aligned}
\mathbb{P}(\boldsymbol{A} \geq \alpha)= & \mathbb{P}\left(\sup _{z \leq x_{0}}\left[\nu(z)+L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)\right] \leq \sup _{z>x_{0}}\left[\nu(z)+L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)\right]\right) \\
= & \mathbb{P}\left(\sup _{z \leq x_{0}}\left[\nu(z)+\left(L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)-L\left(\mathbf{0}, \mathbf{x}_{\alpha}(t)\right)\right)\right] \leq\right. \\
& \left.\sup _{z>x_{0}}\left[\nu(z)+\left(L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)-L\left(\mathbf{0}, \mathbf{x}_{\alpha}(t)\right)\right)\right]\right)
\end{aligned}
$$

Second class particles in a rarefaction fan

Asymptotic direction
Define $\mathbf{x}_{\alpha}(t)=(t / \tan \alpha, t)$ and $\mathbf{z}=(z, 0)$. Then

$$
\begin{aligned}
\mathbb{P}(\boldsymbol{A} \geq \alpha)= & \mathbb{P}\left(\sup _{z \leq x_{0}}\left[\nu(z)+L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)\right] \leq \sup _{z>x_{0}}\left[\nu(z)+L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)\right]\right) \\
= & \mathbb{P}\left(\sup _{z \leq x_{0}}\left[\nu(z)+\left(L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)-L\left(\mathbf{0}, \mathbf{x}_{\alpha}(t)\right)\right)\right] \leq\right. \\
& \left.\sup _{z>x_{0}}\left[\nu(z)+\left(L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)-L\left(\mathbf{0}, \mathbf{x}_{\alpha}(t)\right)\right)\right]\right)
\end{aligned}
$$

We know that uniformly on compacta,

$$
L\left(\mathbf{z}, \mathbf{x}_{\alpha}(t)\right)-L\left(\mathbf{0}, \mathbf{x}_{\alpha}(t)\right) \longrightarrow B_{\alpha}(\mathbf{0}, \mathbf{z}) .
$$

So if we can prove that the exit point is $O_{p}(1)$, then
$\mathbb{P}(\boldsymbol{A} \geq \alpha)=\mathbb{P}\left(\sup _{z \leq x_{0}}\left[\nu(z)+B_{\alpha}(\mathbf{0}, \mathbf{z})\right] \leq \sup _{z>x_{0}}\left[\nu(z)+B_{\alpha}(\mathbf{0}, \mathbf{z})\right]\right)$.

Second class particles in a rarefaction fan

The condition we need on the initial condition ν is:

$$
a_{\nu}:=\limsup _{z \rightarrow \infty} \frac{\nu(z)}{z}<\liminf _{z \rightarrow-\infty} \frac{\nu(z)}{z}=: b_{\nu}
$$

Each α corresponds to an intensity μ_{α} of the stationary process induced by $B_{\alpha}: \mu_{\alpha}=\sqrt{\tan \alpha}$.
Theorem
For $\alpha \in(\pi, 3 \pi / 2)$ such that $a_{\nu}<\mu_{\alpha}<b_{\nu}$, we have that
$\mathbb{P}(\boldsymbol{A} \geq \alpha-\pi)=\mathbb{P}\left(\sup _{z \leq x_{0}}\left[\nu(z)-B_{\alpha}(\mathbf{0}, \mathbf{z})\right] \leq \sup _{z>x_{0}}\left[\nu(z)-B_{\alpha}(\mathbf{0}, \mathbf{z})\right]\right)$.

Second class particles in a rarefaction fan

Higher class particles
Suppose we have a second class particle (index 0) at x_{0}. Now we add a third class particle (index 1) at x_{1}. We have seen that almost surely,

$$
\left\{\boldsymbol{A}_{0} \geq \alpha_{0}-\pi\right\}=\left\{\sup _{z \leq x_{0}}\left[\nu(z)-\boldsymbol{B}_{\alpha_{0}}(\mathbf{0}, \mathbf{z})\right] \leq \sup _{z>x_{0}}\left[\nu(z)-\boldsymbol{B}_{\alpha_{0}}(\mathbf{0}, \mathbf{z})\right]\right\} .
$$

Remark that the third class particle does not see the difference between first and second class particles. So define $\nu_{1}=\nu+\delta_{x_{0}}$, then almost surely.

$$
\left\{\boldsymbol{A}_{1} \geq \alpha_{1}-\pi\right\}=\left\{\sup _{z \leq x_{0}}\left[\nu_{1}(z)-B_{\alpha_{1}}(\mathbf{0}, \mathbf{z})\right] \leq \sup _{z>x_{0}}\left[\nu_{1}(z)-B_{\alpha_{1}}(\mathbf{0}, \mathbf{z})\right]\right\} .
$$

Second class particles in a rarefaction fan

Theorem

Let ν satisfy the rarefaction condition. Suppose we have a second class particle at x_{0}, a third class particle at x_{1}, up to a $n+2$ class particle at x_{n}. Define A_{0}, \ldots, A_{n} as the asymptotic angles of these particles. Define the $i^{\text {th }}$ initial condition as

$$
\nu_{i}=\nu+\sum_{j=0}^{i-1} \delta_{x_{i}} .
$$

For any angles $\alpha_{0}, \ldots, \alpha_{n} \in(\pi, 3 \pi / 2)$ such that $a_{\nu}<\mu_{\alpha_{0}}, \ldots, \mu_{\alpha_{n}}<b_{\nu}$, we have

$$
\begin{aligned}
& \mathbb{P}\left(A_{0} \geq \alpha_{0}-\pi, \ldots, A_{n} \geq \alpha_{n}-\pi\right)= \\
& \quad \mathbb{P}\left(\sup _{z \leq x_{0}}\left[\nu(z)-B_{\alpha_{0}}(\mathbf{0}, \mathbf{z})\right] \leq \sup _{z>x_{0}}\left[\nu(z)-B_{\alpha_{0}}(\mathbf{0}, \mathbf{z})\right], \ldots\right. \\
& \left.\quad \ldots \sup _{z \leq x_{0}}\left[\nu_{n}(z)-B_{\alpha_{n}}(\mathbf{0}, \mathbf{z})\right] \leq \sup _{z>x_{0}}\left[\nu_{n}(z)-B_{\alpha_{n}}(\mathbf{0}, \mathbf{z})\right]\right)
\end{aligned}
$$

Example

Two second class particle in the empty halfline

$$
\nu(z)= \begin{cases}-\infty & \text { if } z \leq 0, \\ 0 & \text { if } z>0 .\end{cases}
$$

Put a second class particle at $x_{0}>0$ and a third class at $x_{1}>x_{0}$. Then for any $\alpha_{0}, \alpha_{1} \in(0, \pi / 2)$ we get

$$
\begin{aligned}
& \mathbb{P}\left(A_{0} \geq \alpha_{0}, A_{1} \geq \alpha_{1}\right)=\int_{\mu_{0}}^{\infty} \int_{\mu_{1}}^{\infty} f(\lambda, \rho) d \rho d \lambda+\int_{\max \left(\mu_{0}, \mu_{1}\right)}^{\infty} f_{d}(\lambda) d \lambda, \\
& f(\lambda, \rho)= \begin{cases}\frac{\rho x_{1}-1}{\lambda^{2}} e^{-\rho x_{1}}+\frac{\lambda^{2} x_{0} x_{1}-\left(\lambda x_{0}+1\right)\left(\rho x_{1}-1\right)}{\lambda^{2}} e^{-\lambda x_{0}-\rho x_{1}} & \text { if } \lambda<\rho, \\
x_{0} x_{1}\left(e^{-\lambda x_{0}-\rho x_{1}}-e^{-\lambda x_{1}-\rho x_{0}}\right) & \text { if } \lambda>\rho,\end{cases}
\end{aligned}
$$

and

$$
f_{\mathrm{d}}(\lambda)=x_{1} e^{-\lambda x_{1}}-\left(x_{1}-x_{0}\right) e^{-\lambda\left(x_{0}+x_{1}\right)}-\frac{e^{-\lambda x_{1}}-e^{-\lambda\left(x_{0}+x_{1}\right)}}{\lambda} .
$$

Example

Corollary

$$
\begin{gathered}
\mathbb{P}\left(A_{0}>A_{1}\right)=\frac{x_{1}-x_{0}}{x_{1}+x_{0}} \\
\mathbb{P}\left(A_{0}<A_{1}\right)=\log \left(\frac{x_{0}+x_{1}}{x_{1}}\right) \\
\mathbb{P}\left(A_{0}=A_{1}\right)=1-\frac{x_{1}-x_{0}}{x_{1}+x_{0}}-\log \left(\frac{x_{0}+x_{1}}{x_{1}}\right)
\end{gathered}
$$

Example

Calculation

Suppose $\alpha_{0}>\alpha_{1}$, so $\mu_{0}>\mu_{1}$.

$$
\begin{aligned}
& \mathbb{P}\left(\boldsymbol{A}_{0} \geq \alpha_{0}-\pi, \boldsymbol{A}_{n} \geq \alpha_{1}-\pi\right)= \\
& =\mathbb{P}\left(0 \leq-B_{\alpha_{0}}\left(\mathbf{0},\left(x_{0}, 0\right)\right)\right. \text { and } \\
& \left.\left(1-B_{\alpha_{1}}\left(\mathbf{0},\left(x_{0}, 0\right)\right)\right)_{+} \leq 1-B_{\alpha_{1}}\left(\mathbf{0},\left(x_{1}, 0\right)\right)\right) \\
& =\mathbb{P}\left(B_{\alpha_{0}}\left(\mathbf{0},\left(x_{0}, 0\right)\right)=0, B_{\alpha_{1}}\left(\mathbf{0},\left(x_{1}, 0\right)\right)=0\right) \\
& =\mathbb{P}\left(S\left(\left[0, x_{0}\right]\right)=0, D\left(\left[0, x_{1}\right]\right)=0\right) \text {. }
\end{aligned}
$$

Example

Calculation

Suppose $\alpha_{0}>\alpha_{1}$, so $\mu_{0}>\mu_{1}$.

$$
\begin{aligned}
& \mathbb{P}\left(A_{0} \geq \alpha_{0}-\pi, A_{n} \geq \alpha_{1}-\pi\right)= \\
& \quad=\mathbb{P}\left(0 \leq-B_{\alpha_{0}}\left(\mathbf{0},\left(x_{0}, 0\right)\right)\right. \text { and } \\
& \left.\quad\left(1-B_{\alpha_{1}}\left(\mathbf{0},\left(x_{0}, 0\right)\right)\right)_{+} \leq 1-B_{\alpha_{1}}\left(\mathbf{0},\left(x_{1}, 0\right)\right)\right) \\
& \quad=\mathbb{P}\left(\boldsymbol{B}_{\alpha_{0}}\left(\mathbf{0},\left(x_{0}, 0\right)\right)=0, B_{\alpha_{1}}\left(\mathbf{0},\left(x_{1}, 0\right)\right)=0\right) \\
& = \\
& =\mathbb{P}\left(S\left(\left[0, x_{0}\right]\right)=0, D\left(\left[0, x_{1}\right]\right)=0\right) .
\end{aligned}
$$

Departures depend on $Q(0) \sim \operatorname{Geo}\left(\mu_{1} / \mu_{0}\right)$. If $Q(0)>0$, then no services in $\left[0, x_{1}\right]$. Suppose $Q(0)=0$ and the first arrival time is t, then there are no services in $\left[0, x_{0}\right] \cup\left[t, x_{1}\right]$, where $\left[t, x_{1}\right]=\emptyset$ if $t>x_{1}$. These are elementary probabilities.

THANK YOU!!

