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Hammersley-Aldous-Diaconis process

LPP in R?
Consider a Poisson process P on R?. For x <y € R?, define
MN(x,y) as the set of up-right paths from x to y. Define

L(x,y) = max #(PNw).
well(x,y)

Call w(x,y) the lowest path that attains the maximum.
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Particle process

Given an initial configuration v, which is a counting process on
R, that counts negatively when going to the left, we define for
t>0,xeR:

LI/(X’ t) = sup (V(Z) + L((Zv 0)7 (Xv t))) :

z<x

L,(-, t) is the counting process that describes the particle
configuration at time t.



Busemann functions

a-rays

A continuous path « : [0, 00) — R? is called an a-ray, for

a € (m,37/2), if
1. Foralls >t >0, v(s) <~(t) and y([t, s]) = w(v(s),7(1))-
2. ||Iv(t)]| — ccand y(t)/||v(t)|| — (cos a, sin ).
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Fix «. With probability one, there exists a unique a-ray starting
at x, for all x € R?; denote it by w,(X).

For all X,y € R?, w,(x) and w,(y) will coalesce.



Busemann functions

a-rays

A continuous path « : [0, 00) — R? is called an a-ray, for

a € (m,37/2), if
1. Foralls >t >0, v(s) <~(t) and y([t, s]) = w(v(s),7(1))-
2. ()l — oo and A(8)/II7()]| — (cosa,sina).

Theorem (Wittrich)

Fix «. With probability one, there exists a unique a-ray starting
at x, for all x € R?; denote it by w,(X).

For all X,y € R?, w,(x) and w,(y) will coalesce.

The proof closely follows ideas by Newman and co-authors for
First Passage Percolation.



Busemann functions

Definition
For fixed a € (7,37 /2) we define the Busemann function

B, :R? xR2 = R: B,(x,¥) = L(y, €a(X,Y)) — L(X,Ca(X,Y)),

where ¢, (X,Y) is a coalescing point of m,(x) and m,(y).
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Busemann functions

Definition
For fixed a € (7,37 /2) we define the Busemann function

B, :R? xR2 = R: B,(x,¥) = L(y, €a(X,Y)) — L(X,Ca(X,Y)),
where ¢, (X,Y) is a coalescing point of m,(x) and m,(y).

Properties

> Ba(X,2) = Ba(X,Y) + Ba(Y, 2).

lis}

» Forany p e R?, B,(- +p,- +p) = Ba(, ).
> Bo(0, (x, 1)) = sup,<, (Ba(0,(2,0)) + L((2,0), (x,1))).

These properties show that x — B,(0, (x,0)) is a stationary
configuration of the Hammersley-Aldous-Diaconis model.



Multiclass process

Theorem
Suppose a1 < ap. Define B,,, and B,, simultaneously. Then for
every xy < xpand t € R

Ba1 ((X1 ) t)v (X27 t)) < Baz((X1, t)a (X27 t))



Multiclass process

Theorem
Suppose a1 < ap. Define B,,, and B,, simultaneously. Then for
every xy < xpand t € R

Ba1 ((X1 ) t)v (X27 t)) < Baz((x1v t)a (X2a t))

Proof

Set x4 = (x1,t) and x2 = (xo, t). Define ¢4 as coalescing point
of wq, (X1) and w,, (X2), and likewise c,. Define m as the
crossing of wy, (X2) and waq,(X1).

B,,(X1,%X2) — By, (X1, X2) L(co,X2) — L(€2,X1) — (L(c1,X2) — L(€1,X1))
= L(c1,x1) + L(c2,X2) — (L(c1, m) + L(m, Xz))
—(L(c2, m) + L(m, xy)
= L(e1,xy) —(L(c1,m)+ L
+L(c2,X2) — (L(C2,m) + L(m, x2))

0.

Y



Multiclass process

Uniqueness

Ferrari and Martin ('09) proved that there is a unique ergodic
multiclass system that is invariant in the Hammersley process.
Our construction with the Busemann functions must therefore
be the same! This allows explicit calculations for several
Busemann functions at the same time.



Multiclass process

Uniqueness

Ferrari and Martin ('09) proved that there is a unique ergodic
multiclass system that is invariant in the Hammersley process.
Our construction with the Busemann functions must therefore
be the same! This allows explicit calculations for several
Busemann functions at the same time.

Queueing construction

Consider a Poisson counting process S; of services on R,
intensity 11, and an independent arrival process Ay, intensity
w2 < py. CGonstruct the corresponding stationary queue Qy, and
define the departure process D;(z fo 11a(z)>03 dS1(2).



Multiclass process

Queueing construction

Define Sy as the first and second class particles and D; as the
second class particles. Then (Sy, Dy) is invariant under the
Hammersley evolution. Note that Dy is a Poisson process with
intensity po.

Now define recursively for i > 2, S; = D;_; as the i™ service
process, define an independent arrival process A; of intensity
wivt1 < pj, and the corresponding departure process D;. The
sequence (Sy, S, ..., Sp) is stationary for the Hammersley
evolution.



Multiclass process

Queueing construction

Define Sy as the first and second class particles and D; as the
second class particles. Then (Sy, Dy) is invariant under the
Hammersley evolution. Note that Dy is a Poisson process with
intensity po.

Now define recursively for i > 2, S; = D;_; as the i™ service
process, define an independent arrival process A; of intensity
wivt1 < pj, and the corresponding departure process D;. The
sequence (Sy, S, ..., Sp) is stationary for the Hammersley
evolution.

Busemann functions

Take angles a1 > ... > «ap. The vector valued process

z— (By,(0,(2,0)),...,B4,(0,(z,0))) is stationary for the
Hammersley evolution, with intensity i; = v/tan ;. Therefore,

19

(Bay(0,(-,0)),....Ba,(0,(0))) 2 (S, Ss,.... Sn).



Second class particles in a rarefaction fan

Second class particle as a competition interface
Consider an initial condition v. Add a second class particle at
Xo, define X(t) as its position at time t. Then X(t) is the
position of a competition interface: for x > X,

{X(t) <x} =
{sup,<x, [1(2) + L((2,0), (x, 1))] < sUP,sx, [¥(2) + L((2,0), (x, )]}
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Second class particle as a competition interface
Consider an initial condition v. Add a second class particle at
Xo, define X(t) as its position at time t. Then X(t) is the
position of a competition interface: for x > X,

{X(t) <x} =
{sup,<x, [1(2) + L((2,0), (x, 1))] < sUP,sx, [¥(2) + L((2,0), (x, )]}

Asymptotic direction
We know that second class particles almost surely have an
asymptotic direction, or angle; denote itby A € [0, 7/2). It
follows that

P(A> «) = lim P(X(t) < t/tana).

t—o0



Second class particles in a rarefaction fan

Asymptotic direction
Define x,(t) = (t/tana, t) and z = (z,0). Then

P(A>a) = P(sup[v(z)+ L(z,Xa(t))] < sup [v(2) + L(z,X.(1))])

— P(sup [(2) + (L2 Xa(1) - LO.Xo(0)] <

sup [v(2) + (L(z. Xa(t)) — L(0,Xa(1)))])

Z>Xo



Second class particles in a rarefaction fan
Asymptotic direction
Define x,(t) = (t/tana, t) and z = (z,0). Then

P(A>a) = P(sup[v(z)+ L(z,Xa(t))] < sup [v(2) + L(z,X.(1))])

— P(sup [(2) + (L2 Xa(1) - LO.Xo(0)] <

sup [v(2) + (L(z. Xa(t)) — L(0,Xa(1)))])

Z>Xo

We know that uniformly on compacta,
L(z,x,(t)) — L(0,x,(t)) — B,(0,2).

So if we can prove that the exit point is Op(1), then

PA>a)=P <sup [v(2) + B.(0,2)] < sup [v(2) + Ba(O,z)]) .

Z<Xp Z>Xp



Second class particles in a rarefaction fan

The condition we need on the initial condition v is:

a, = lim supM < liminf @ =: b,.
Z—500 Z——oc0 Z

Each « corresponds to an intensity 1, of the stationary process
induced by B,: u, = Vtana.

Theorem
For a € (7,37 /2) such that a, < u, < b,, we have that

z<Xp Z>Xo

P(A>a—7) =P (sup [1(2) — B4(0,2)] < sup [v(2) — Ba(O,z)]> .



Second class particles in a rarefaction fan

Higher class particles

Suppose we have a second class particle (index 0) at xo. Now
we add a third class particle (index 1) at x;. We have seen that
almost surely,

{Ao > ag—r} = {sup [(2) — Bap(0.2)] < sUp [1(2) — Ba, (0, z)]} .
z<Xop Z>Xo

Remark that the third class particle does not see the difference

between first and second class particles. So define

v1 = v + dx,, then almost surely.

{Ar > ay-7) = {sup [11(2) = Bay (0,2)] < sup [14(2) - B, (o,z)]} .

Z<Xp Z>Xp



Second class particles in a rarefaction fan

Theorem

Let v satisfy the rarefaction condition. Suppose we have a
second class particle at xg, a third class particle at xq, up to a
n+ 2 class particle at x,,. Define A, ..., A, as the asymptotic
angles of these particles. Define the i initial condition as

i—1
vi=v+ Z Ox;-
J=0

For any angles ay, ..., an € (7, 37/2) such that
ay < llag, - - - Hap < by, We have

IP)( AO ZOKQ—W,...,AnZOén—T('):
P(SUP<x, [1(2) = Bay(0,2)] < SUP,., [¥(2) — Bay(0,2)] ...
-+ SUP, <y, [Vn(2) — Ba,(0,2)] < sup,., [vn(2) — B.,(0,z)])



Example
Two second class particle in the empty halfline
(2) = —o0 ifz<0,
T o0 ifz>o.

Put a second class particle at x, > 0 and a third class at
X{ > Xo. Then for any ag, aq € (0,7/2) we get

/ F(\, p) dpdt / £\ dA,

1 max(po,41)

P(Ag > a0, A1 > ay) =/

Ho

X1—1 — A2xox1 —(Axo+1)(px1—1) —Axg— :
P;\2epx1+ 01(/{)2 )pxi=1) g=Axo—pxy if A < p,

f(A, p) =
XoXq (€7 Mo~PX1 — g=MXi=pXo) if A > p,
and
e~ M1 _ @ AMxot+x1)
A

fd()\) = X1 e_)\X1 _ (X1 _ Xo)e—A(X0+X1) _



Example

Corollary

X1 —Xo
X1+ Xo

m+m>

]P)(AO > A1)

P(Ao < A1) = log <

P(A = Ar) =1 —

X1—X0_Io Xo + X4
X1+ Xo X1



Example

Calculation
Suppose ag > aq, SO g > piq.
P(A >ap—m A > a1 —m) =
=P (0 < —By,(0,(x0,0)) and
(1= Bay(0,(x0,0)))+ < 1~ Ba, (0, (x1,0)))
=P (Bw(0, (%0, 0)) = 0, B4, (0, (x1,0)) = 0)
= P(5([0, x0]) = 0, D([0, x{]) = 0).



Example

Calculation
Suppose ag > aq, SO g > fi1.
P(A >ap—m A > a1 —m) =
=P (0 < —By,(0,(x0,0)) and
(1= Bay(0,(x0,0)))+ < 1~ Ba, (0, (x1,0)))

=P (Bw(0, (%0, 0)) = 0, B4, (0, (x1,0)) = 0)

= P(S([0, xo]) = 0, D([0, x1]) = 0).
Departures depend on Q(0) ~ Geo(s1/po)- If Q(0) > 0, then
no services in [0, x1]. Suppose Q(0) = 0 and the first arrival

time is ¢, then there are no services in [0, xp] U [t, X1], where
[t,x1] = 0 if t > x1. These are elementary probabilities.
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