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Hammersley-Aldous-Diaconis process
LPP in R2

Consider a Poisson process P on R2. For x ≤ y ∈ R2, define
Π(x,y) as the set of up-right paths from x to y. Define

L(x,y) = max
$∈Π(x,y)

#(P ∩$).

Call $(x,y) the lowest path that attains the maximum.

Particle process
Given an initial configuration ν, which is a counting process on
R, that counts negatively when going to the left, we define for
t ≥ 0, x ∈ R:

Lν(x , t) = sup
z≤x

(ν(z) + L((z,0), (x , t))) .

Lν(·, t) is the counting process that describes the particle
configuration at time t .
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Busemann functions

α-rays
A continuous path γ : [0,∞)→ R2 is called an α-ray, for
α ∈ (π,3π/2), if

1. For all s ≥ t ≥ 0, γ(s) ≤ γ(t) and γ([t , s]) = $(γ(s), γ(t)).
2. ‖γ(t)‖ → ∞ and γ(t)/‖γ(t)‖ → (cosα, sinα).

Theorem (Wüttrich)
Fix α. With probability one, there exists a unique α-ray starting
at x, for all x ∈ R2; denote it by $α(x).
For all x,y ∈ R2, $α(x) and $α(y) will coalesce.

The proof closely follows ideas by Newman and co-authors for
First Passage Percolation.
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Busemann functions

Definition
For fixed α ∈ (π,3π/2) we define the Busemann function

Bα : R2 × R2 → R : Bα(x,y) = L(y,cα(x,y))− L(x,cα(x,y)),

where cα(x,y) is a coalescing point of πα(x) and πα(y).

Properties

I Bα(x, z) = Bα(x,y) + Bα(y, z).

I For any p ∈ R2, Bα(·+ p, ·+ p)
D
= Bα(·, ·).

I Bα(0, (x , t)) = supz≤x (Bα(0, (z,0)) + L((z,0), (x , t))) .

These properties show that x 7→ Bα(0, (x ,0)) is a stationary
configuration of the Hammersley-Aldous-Diaconis model.
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Multiclass process
Theorem
Suppose α1 ≤ α2. Define Bα1 and Bα2 simultaneously. Then for
every x1 ≤ x2 and t ∈ R

Bα1((x1, t), (x2, t)) ≤ Bα2((x1, t), (x2, t)).

Proof
Set x1 = (x1, t) and x2 = (x2, t). Define c1 as coalescing point
of $α1(x1) and $α1(x2), and likewise c2. Define m as the
crossing of $α1(x2) and $α2(x1).

Bα2 (x1,x2)− Bα1 (x1,x2) = L(c2,x2)− L(c2,x1)− (L(c1,x2)− L(c1,x1))

= L(c1,x1) + L(c2,x2)− (L(c1,m) + L(m,x2))

−(L(c2,m) + L(m,x1))

= L(c1,x1)− (L(c1,m) + L(m,x1))

+L(c2,x2)− (L(c2,m) + L(m,x2))

≥ 0.
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Multiclass process

Uniqueness
Ferrari and Martin (’09) proved that there is a unique ergodic
multiclass system that is invariant in the Hammersley process.
Our construction with the Busemann functions must therefore
be the same! This allows explicit calculations for several
Busemann functions at the same time.

Queueing construction
Consider a Poisson counting process S1 of services on R,
intensity µ1, and an independent arrival process A1, intensity
µ2 < µ1. Construct the corresponding stationary queue Q1, and
define the departure process D1(z) =

∫ z
0 1{Q(z)>0} dS1(z).
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Multiclass process
Queueing construction
Define S1 as the first and second class particles and D1 as the
second class particles. Then (S1,D1) is invariant under the
Hammersley evolution. Note that D1 is a Poisson process with
intensity µ2.
Now define recursively for i ≥ 2, Si = Di−1 as the i th service
process, define an independent arrival process Ai of intensity
µi+1 < µi , and the corresponding departure process Di . The
sequence (S1,S2, . . . ,Sn) is stationary for the Hammersley
evolution.

Busemann functions
Take angles α1 ≥ . . . ≥ αn. The vector valued process
z 7→ (Bα1(0, (z,0)), . . . ,Bαn (0, (z,0))) is stationary for the
Hammersley evolution, with intensity µi =

√
tanαi . Therefore,

(Bα1(0, (·,0)), . . . ,Bαn (0, (·,0)))
D
= (S1,S2, . . . ,Sn).
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Second class particles in a rarefaction fan

Second class particle as a competition interface
Consider an initial condition ν. Add a second class particle at
x0, define X (t) as its position at time t . Then X (t) is the
position of a competition interface: for x > x0,

{X (t) ≤ x} =
{supz≤x0

[ν(z) + L((z,0), (x , t))] ≤ supz>x0
[ν(z) + L((z,0), (x , t))]}.

Asymptotic direction
We know that second class particles almost surely have an
asymptotic direction, or angle; denote it by A ∈ [0, π/2). It
follows that

P(A ≥ α) = lim
t→∞

P(X (t) ≤ t/ tanα).
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Second class particles in a rarefaction fan
Asymptotic direction
Define xα(t) = (t/ tanα, t) and z = (z,0). Then

P(A ≥ α) = P
(

sup
z≤x0

[ν(z) + L(z,xα(t))] ≤ sup
z>x0

[ν(z) + L(z,xα(t))]
)

= P
(

sup
z≤x0

[ν(z) + (L(z,xα(t))− L(0,xα(t)))] ≤

sup
z>x0

[ν(z) + (L(z,xα(t))− L(0,xα(t)))]
)

We know that uniformly on compacta,

L(z,xα(t))− L(0,xα(t)) −→ Bα(0, z).

So if we can prove that the exit point is Op(1), then

P(A ≥ α) = P

(
sup
z≤x0

[ν(z) + Bα(0, z)] ≤ sup
z>x0

[ν(z) + Bα(0, z)]

)
.
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Second class particles in a rarefaction fan

The condition we need on the initial condition ν is:

aν := lim sup
z→∞

ν(z)

z
< lim inf

z→−∞

ν(z)

z
=: bν .

Each α corresponds to an intensity µα of the stationary process
induced by Bα: µα =

√
tanα.

Theorem
For α ∈ (π,3π/2) such that aν < µα < bν , we have that

P(A ≥ α−π) = P

(
sup
z≤x0

[ν(z)− Bα(0, z)] ≤ sup
z>x0

[ν(z)− Bα(0, z)]

)
.



Second class particles in a rarefaction fan

Higher class particles
Suppose we have a second class particle (index 0) at x0. Now
we add a third class particle (index 1) at x1. We have seen that
almost surely,

{A0 ≥ α0−π} =

{
sup
z≤x0

[ν(z)− Bα0(0, z)] ≤ sup
z>x0

[ν(z)− Bα0(0, z)]

}
.

Remark that the third class particle does not see the difference
between first and second class particles. So define
ν1 = ν + δx0 , then almost surely.

{A1 ≥ α1−π} =

{
sup
z≤x0

[ν1(z)− Bα1(0, z)] ≤ sup
z>x0

[ν1(z)− Bα1(0, z)]

}
.



Second class particles in a rarefaction fan

Theorem
Let ν satisfy the rarefaction condition. Suppose we have a
second class particle at x0, a third class particle at x1, up to a
n + 2 class particle at xn. Define A0, . . . ,An as the asymptotic
angles of these particles. Define the i th initial condition as

νi = ν +
i−1∑
j=0

δxi .

For any angles α0, . . . , αn ∈ (π,3π/2) such that
aν < µα0 , . . . , µαn < bν , we have

P( A0 ≥ α0 − π, . . . ,An ≥ αn − π) =

P
(

supz≤x0
[ν(z)− Bα0(0, z)] ≤ supz>x0

[ν(z)− Bα0(0, z)] , . . .

. . . supz≤x0
[νn(z)− Bαn (0, z)] ≤ supz>x0

[νn(z)− Bαn (0, z)]
)



Example
Two second class particle in the empty halfline

ν(z) =

{
−∞ if z ≤ 0,
0 if z > 0.

Put a second class particle at x0 > 0 and a third class at
x1 > x0. Then for any α0, α1 ∈ (0, π/2) we get

P(A0 ≥ α0,A1 ≥ α1) =

∫ ∞
µ0

∫ ∞
µ1

f (λ, ρ) dρdλ+

∫ ∞
max(µ0,µ1)

fd (λ) dλ,

f (λ, ρ) =


ρx1−1
λ2 e−ρx1 + λ2x0x1−(λx0+1)(ρx1−1)

λ2 e−λx0−ρx1 if λ < ρ,

x0x1
(
e−λx0−ρx1 − e−λx1−ρx0

)
if λ > ρ,

and

fd(λ) = x1e−λx1 − (x1 − x0)e−λ(x0+x1) − e−λx1 − e−λ(x0+x1)

λ
.



Example

Corollary

P(A0 > A1) =
x1 − x0

x1 + x0

P(A0 < A1) = log
(

x0 + x1

x1

)

P(A0 = A1) = 1− x1 − x0

x1 + x0
− log

(
x0 + x1

x1

)



Example

Calculation
Suppose α0 > α1, so µ0 > µ1.

P( A0 ≥ α0 − π,An ≥ α1 − π) =

= P
(
0 ≤ −Bα0(0, (x0,0)) and

(1− Bα1(0, (x0,0)))+ ≤ 1− Bα1(0, (x1,0))
)

= P (Bα0(0, (x0,0)) = 0,Bα1(0, (x1,0)) = 0)

= P(S([0, x0]) = 0,D([0, x1]) = 0).

Departures depend on Q(0) ∼ Geo(µ1/µ0). If Q(0) > 0, then
no services in [0, x1]. Suppose Q(0) = 0 and the first arrival
time is t , then there are no services in [0, x0] ∪ [t , x1], where
[t , x1] = ∅ if t > x1. These are elementary probabilities.



Example

Calculation
Suppose α0 > α1, so µ0 > µ1.

P( A0 ≥ α0 − π,An ≥ α1 − π) =

= P
(
0 ≤ −Bα0(0, (x0,0)) and

(1− Bα1(0, (x0,0)))+ ≤ 1− Bα1(0, (x1,0))
)

= P (Bα0(0, (x0,0)) = 0,Bα1(0, (x1,0)) = 0)

= P(S([0, x0]) = 0,D([0, x1]) = 0).

Departures depend on Q(0) ∼ Geo(µ1/µ0). If Q(0) > 0, then
no services in [0, x1]. Suppose Q(0) = 0 and the first arrival
time is t , then there are no services in [0, x0] ∪ [t , x1], where
[t , x1] = ∅ if t > x1. These are elementary probabilities.



THANK YOU!!


