The weak coupling limit of disordered copolymer models

Francesco Caravenna Università degli Studi di Milano-Bicocca

Joint work with Giambattista Giacomin (Université Paris Diderot)

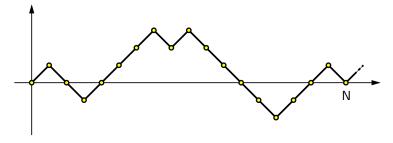
Fields Institute, Toronto ~ February 15, 2011

Outline

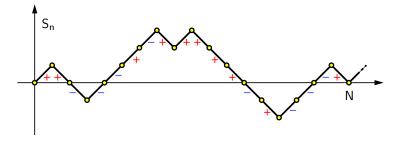
- 1. The basic copolymer model
- 2. The free energy
- 3. Generalized copolymer models
- 4. Strategy of the proof

Outline

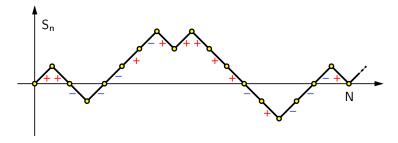
- 1. The basic copolymer model
- 2. The free energy
- Generalized copolymer models
- Strategy of the proof



▶ $S = \{S_n\}_{n \in \mathbb{N}_0}$ simple symmetric random walk on $\mathbb{Z} \to \mathsf{law} \ \mathbf{P}$

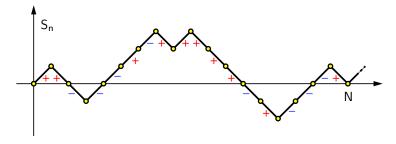


- lacksquare $S=\{S_n\}_{n\in\mathbb{N}_0}$ simple symmetric random walk on $\mathbb{Z}\ o\$ law \mathbf{P}
- $\omega = \{\omega_n\}_{n \in \mathbb{N}} \in \{+, -\}^{\mathbb{N}}$ fair coin tossing \to quenched law \mathbb{P}



- ▶ $S = \{S_n\}_{n \in \mathbb{N}_0}$ simple symmetric random walk on $\mathbb{Z} \to \text{law } \mathbf{P}$
- \bullet $\omega = \{\omega_n\}_{n \in \mathbb{N}} \in \{+, -\}^{\mathbb{N}}$ fair coin tossing \to quenched law \mathbb{P}

$$rac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := rac{1}{Z_{N,\omega}} \, \exp\left(egin{array}{cc} \sum_{n=1}^N & \omega_n & \cdot & \mathrm{sign}\left((S_{n-1},S_n)
ight)
ight) \end{array}$$

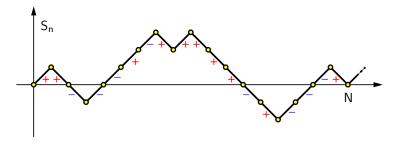


- $lacksquare S = \{S_n\}_{n \in \mathbb{N}_0}$ simple symmetric random walk on $\mathbb{Z} \ o \ \mathsf{law} \ \mathbf{P}$
- ▶ $\omega = \{\omega_n\}_{n \in \mathbb{N}} \in \{+, -\}^{\mathbb{N}}$ fair coin tossing \to quenched law \mathbb{P}

$$\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := \frac{1}{Z_{N,\omega}} \, \exp\left(-\sum_{n=1}^N \left(\omega_n + \frac{h}{n}\right) \mathrm{sign}\left((S_{n-1},S_n)\right) \right)$$

• $h \ge 0$ asymmetry

< ロト < @ ト < 重 ト < 重 ト の Q @

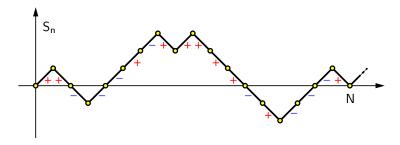


- $lacksquare S = \{S_n\}_{n \in \mathbb{N}_0}$ simple symmetric random walk on $\mathbb{Z} \ o \ \mathsf{law} \ \mathbf{P}$
- ▶ $\omega = \{\omega_n\}_{n \in \mathbb{N}} \in \{+, -\}^{\mathbb{N}}$ fair coin tossing \to quenched law \mathbb{P}

$$\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := \frac{1}{Z_{N,\omega}} \exp\left(\frac{\lambda}{\sum_{n=1}^{N} (\omega_n + h) \operatorname{sign}\left((S_{n-1}, S_n)\right)}\right)$$

• $\lambda \geq 0$ interaction strength \sim (temperature) $^{-1}$ • $h \geq 0$ asymmetry

4 □ ト ← □ ト ← □ ト ← □ ト へ □ ・ り へ ○



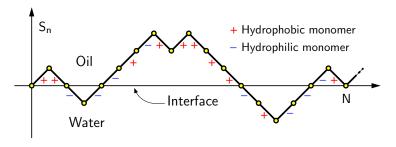
- $lacksquare S = \{S_n\}_{n \in \mathbb{N}_0}$ simple symmetric random walk on $\mathbb{Z} \ o \ \mathsf{law} \ \mathbf{P}$
- ▶ $\omega = \{\omega_n\}_{n \in \mathbb{N}} \in \{+, -\}^{\mathbb{N}}$ fair coin tossing \to quenched law \mathbb{P}

$$rac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := rac{1}{Z_{N,\omega}}\,\exp\left(\lambda\sum_{n=1}^N\left(\omega_n+h
ight)\mathrm{sign}\left(\left(S_{n-1},S_n
ight)
ight)
ight)$$

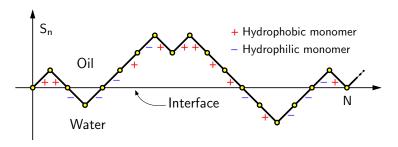
• $\lambda \geq 0$ interaction strength \sim (temperature) $^{-1}$ • $h \geq 0$ asymmetry

Localization or **Delocalization**?

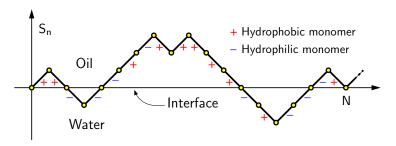
Francesco Caravenna



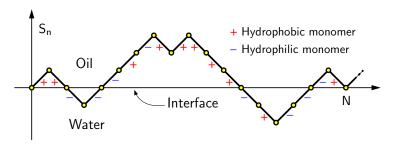
T. Garel, D. A. Huse, S. Leibler and H. Orland, Europhys. Lett. (1989)



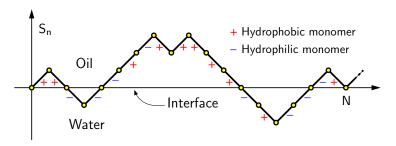
- T. Garel, D. A. Huse, S. Leibler and H. Orland, *Europhys. Lett.* (1989)
- Ya.G. Sinai, Theory Probab. Appl. (1993)
- S. Albeverio and X. Y. Zhou, J. Statist. Phys. (1996)



- T. Garel, D. A. Huse, S. Leibler and H. Orland, Europhys. Lett. (1989)
- Ya.G. Sinai, Theory Probab. Appl. (1993)
- S. Albeverio and X. Y. Zhou, J. Statist. Phys. (1996)
- ▶ E. Bolthausen and F. den Hollander, Ann. Probab. (1997)



- T. Garel, D. A. Huse, S. Leibler and H. Orland, *Europhys. Lett.* (1989)
- Ya.G. Sinai, Theory Probab. Appl. (1993)
- S. Albeverio and X. Y. Zhou, J. Statist. Phys. (1996)
- E. Bolthausen and F. den Hollander, Ann. Probab. (1997)
- M. Biskup, G. Giacomin, T. Bodineau, F.L. Toninelli, F.C., M. Gubinelli,
 N. Pétrélis, L. Zambotti, B. de Tilière, H. Lacoin, D. Cheliotis, . . .



- T. Garel, D. A. Huse, S. Leibler and H. Orland, *Europhys. Lett.* (1989)
- Ya.G. Sinai, Theory Probab. Appl. (1993)
- S. Albeverio and X. Y. Zhou, J. Statist. Phys. (1996)
- ► E. Bolthausen and F. den Hollander, Ann. Probab. (1997)
- M. Biskup, G. Giacomin, T. Bodineau, F.L. Toninelli, F.C., M. Gubinelli,
 N. Pétrélis, L. Zambotti, B. de Tilière, H. Lacoin, D. Cheliotis, . . .
- Several contributions in the physics literature too.

Definition of the model: $\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := \frac{1}{Z_{N,\omega}} \, \exp\big(-H_{N,\omega}(S)\big)$

$$-H_{N,\omega}(S) := \lambda \sum_{n=1}^{N} (\omega_n + h) \operatorname{sign} ((S_{n-1}, S_n))$$

Definition of the model: $\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := \frac{1}{Z_{N,\omega}} \exp\left(-H_{N,\omega}(S)\right)$

$$-H_{N,\omega}(S) := \lambda \sum_{n=1}^{N} (\omega_n + h) \operatorname{sign} ((S_{n-1}, S_n))$$

Slight modification: $H_{N,\omega}(S) \rightsquigarrow H_{N,\omega}(S) + \lambda \sum_{n=1}^{N} (\omega_n + h)$.

The law $P_{N,\omega}$ remains the same.

Definition of the model: $\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := \frac{1}{Z_{N,\omega}} \exp\left(-H_{N,\omega}(S)\right)$

The free energy

$$-H_{N,\omega}(S) := \lambda \sum_{n=1}^{N} (\omega_n + h) \operatorname{sign} ((S_{n-1}, S_n))$$

Slight modification: $H_{N,\omega}(S) \rightsquigarrow H_{N,\omega}(S) + \lambda \sum_{n=1}^{N} (\omega_n + h)$.

The law $\mathbf{P}_{N,\omega}$ remains the same. New Hamiltonian (and $Z_{N,\omega}$):

$$-H_{N,\omega}(S) := -2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$$

Definition of the model: $\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := \frac{1}{Z_{N,\omega}} \exp\left(-H_{N,\omega}(S)\right)$

$$-H_{N,\omega}(S) := \lambda \sum_{n=1}^{N} (\omega_n + h) \operatorname{sign} ((S_{n-1}, S_n))$$

Slight modification: $H_{N,\omega}(S) \rightsquigarrow H_{N,\omega}(S) + \lambda \sum_{n=1}^{N} (\omega_n + h)$.

The law $\mathbf{P}_{N,\omega}$ remains the same. New Hamiltonian (and $Z_{N,\omega}$):

$$-H_{N,\omega}(S) := -2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$$

Monomer (S_{n-1}, S_n) is rewarded: $\begin{cases} 0 & \text{if } (S_{n-1}, S_n) > 0 \end{cases}$

Definition of the model: $\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(S) := \frac{1}{Z_{N,\omega}} \, \exp\big(-H_{N,\omega}(S)\big)$

$$-H_{N,\omega}(S) := \lambda \sum_{n=1}^{N} (\omega_n + h) \operatorname{sign} ((S_{n-1}, S_n))$$

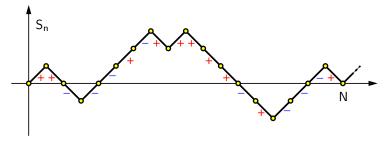
Slight modification: $H_{N,\omega}(S) \rightsquigarrow H_{N,\omega}(S) + \lambda \sum_{n=1}^{N} (\omega_n + h)$.

The law $\mathbf{P}_{N,\omega}$ remains the same. New Hamiltonian (and $Z_{N,\omega}$):

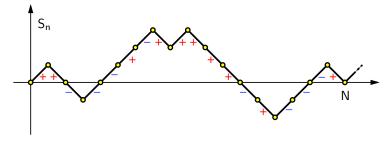
$$-H_{N,\omega}(S) := -2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$$

Monomer (S_{n-1}, S_n) is rewarded: $\begin{cases} 0 & \text{if } (S_{n-1}, S_n) > 0 \\ -2\lambda(\omega_n + h) & \text{if } (S_{n-1}, S_n) < 0 \end{cases}$

4 L P 4 D P 4 E P 4 E P 4 E P Y Y Y



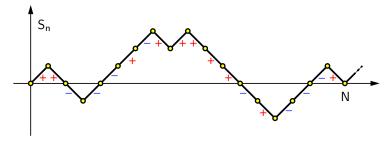
We now define a continuum model.



Generalized copolymer models

We now define a continuum model. Replace:

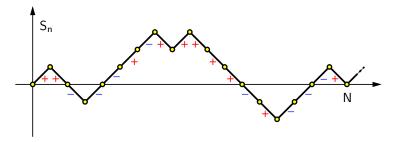
▶ the SRW $\{S_n\}_{n\in\mathbb{N}_0}$ by Brownian motion $B=\{B_t\}_{t\geq 0}$ (law $\tilde{\mathbf{P}}$)



We now define a continuum model. Replace:

- ▶ the SRW $\{S_n\}_{n\in\mathbb{N}_0}$ by Brownian motion $B=\{B_t\}_{t\geq 0}$ (law $\tilde{\mathbf{P}}$)
- ▶ the charges $\{\omega_n\}_{n\in\mathbb{N}}$ by white noise $d\beta = \{d\beta_t\}_{t\geq 0}$ (law $\tilde{\mathbb{P}}$)

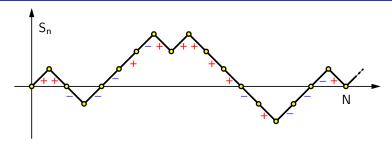
The basic copolymer model



We now define a continuum model. Replace:

- ▶ the SRW $\{S_n\}_{n\in\mathbb{N}_0}$ by Brownian motion $B=\{B_t\}_{t\geq 0}$ (law $\tilde{\mathbf{P}}$)
- ▶ the charges $\{\omega_n\}_{n\in\mathbb{N}}$ by white noise $d\beta = \{d\beta_t\}_{t\geq 0}$ (law $\tilde{\mathbb{P}}$)

$$\frac{\mathrm{d}\tilde{\mathbf{P}}_{t,\beta}}{\mathrm{d}\tilde{\mathbf{P}}}(B) := \frac{1}{\tilde{Z}_{t,\omega}} \, \exp\left(-2\lambda \int_0^t (\mathrm{d}\beta_s + h \, \mathrm{d}s) \, \mathbf{1}_{\{B_s < 0\}}\right)$$



We now define a continuum model. Replace:

- ▶ the SRW $\{S_n\}_{n\in\mathbb{N}_0}$ by Brownian motion $B=\{B_t\}_{t\geq 0}$ (law $\tilde{\mathbf{P}}$)
- ▶ the charges $\{\omega_n\}_{n\in\mathbb{N}}$ by white noise $d\beta = \{d\beta_t\}_{t\geq 0}$ (law $\tilde{\mathbb{P}}$)

$$\frac{\mathrm{d}\tilde{\mathbf{P}}_{t,\beta}}{\mathrm{d}\tilde{\mathbf{P}}}(B) := \frac{1}{\tilde{Z}_{t,\omega}} \, \exp\left(-2\lambda \int_0^t \!\! \left(\mathrm{d}\beta_{\mathbf{s}} + h \, \mathrm{d}\mathbf{s} \right) \mathbf{1}_{\{B_{\mathbf{s}} < 0\}} \right)$$

Discrete model: $-2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$

The proof

Outline

- 1. The basic copolymer mode
- 2. The free energy
- 3. Generalized copolymer models
- 4. Strategy of the proof

Is $\mathbf{P}_{N,\omega} = \mathbf{P}_{N,\omega}^{\lambda,h}$ localized or delocalized for large N (and typical ω)?

Is $\mathbf{P}_{N,\omega} = \mathbf{P}_{N,\omega}^{\lambda,h}$ localized or delocalized for large N (and typical ω)?

It depends on λ , h. Look at the free energy:

$$\mathtt{F}(\lambda,h) := \lim_{N o \infty} rac{1}{N} \, \mathbb{E} \left(\log Z_{N,\omega}
ight)$$

Is $\mathbf{P}_{N,\omega} = \mathbf{P}_{N,\omega}^{\lambda,h}$ localized or delocalized for large N (and typical ω)?

It depends on λ , h. Look at the free energy:

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} (\log Z_{N,\omega})$$

$$Z_{N,\omega} = \mathbf{E} \left[\exp \left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}} \right) \right]$$

Is $\mathbf{P}_{N,\omega} = \mathbf{P}_{N,\omega}^{\lambda,h}$ localized or delocalized for large N (and typical ω)?

It depends on λ , h. Look at the free energy:

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} (\log Z_{N,\omega})$$

$$Z_{N,\omega} = \mathbf{E} \left[\exp \left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}} \right) \right]$$

Is $\mathbf{P}_{N,\omega} = \mathbf{P}_{N,\omega}^{\lambda,h}$ localized or delocalized for large N (and typical ω)?

It depends on λ , h. Look at the free energy:

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} (\log Z_{N,\omega})$$

$$Z_{N,\omega} = \mathbf{E} \left[\exp \left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}} \right) \right]$$

Restricting on paths that stay always in the upper half-plane gives

$$Z_{N,\omega} \geq \mathbf{P}[S_1 > 0, \dots, S_N > 0] \sim C N^{-1/2}$$

Is $\mathbf{P}_{N,\omega} = \mathbf{P}_{N,\omega}^{\lambda,h}$ localized or delocalized for large N (and typical ω)?

It depends on λ , h. Look at the free energy:

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \left(\log Z_{N, \omega} \right)$$

$$Z_{N, \omega} = \mathbf{E} \left[\exp \left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}} \right) \right]$$

Restricting on paths that stay always in the upper half-plane gives

$$Z_{N,\omega} \geq \mathbf{P}\left[S_1 > 0, \dots, S_N > 0\right] \sim C N^{-1/2} \implies \mathbf{F}(\lambda, h) \geq 0$$

Is $\mathbf{P}_{N,\omega} = \mathbf{P}_{N,\omega}^{\lambda,h}$ localized or delocalized for large N (and typical ω)?

It depends on λ , h. Look at the free energy:

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} (\log Z_{N,\omega})$$

$$Z_{N,\omega} = \mathbf{E} \left[\exp \left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}} \right) \right]$$

Restricting on paths that stay always in the upper half-plane gives

$$Z_{N,\omega} \geq \mathbf{P}\left[S_1 > 0, \dots, S_N > 0\right] \sim C N^{-1/2} \implies \mathbf{F}(\lambda, h) \geq 0$$

The model is: Localized if $F(\lambda, h) > 0$, Delocalized if $F(\lambda, h) = 0$.

◆ロ → ◆部 → ◆ き → ● ● り へ ○

Is $\mathbf{P}_{N,\omega} = \mathbf{P}_{N,\omega}^{\lambda,h}$ localized or delocalized for large N (and typical ω)?

It depends on λ , h. Look at the free energy:

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} (\log Z_{N,\omega})$$

$$Z_{N,\omega} = \mathbf{E} \left[\exp \left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}} \right) \right]$$

Restricting on paths that stay always in the upper half-plane gives

$$Z_{N,\omega} \geq \mathbf{P}\left[S_1 > 0, \dots, S_N > 0\right] \sim C N^{-1/2} \implies \mathbf{F}(\lambda, h) \geq 0$$

The model is: Localized if $F(\lambda, h) > 0$, Delocalized if $F(\lambda, h) = 0$.

(This definition does correspond to sharply different path behaviors)

Francesco Caravenna

The phase diagram: discrete model

Theorem

The regions \mathcal{L} and \mathcal{D} are separated by a strictly increasing, continuous critical line $h_c(\cdot)$:

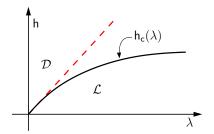
$$\mathcal{L} = \{(\lambda, h) : h < h_c(\lambda)\} \qquad \mathcal{D} = \{(\lambda, h) : h \ge h_c(\lambda)\}.$$

The phase diagram: discrete model

Theorem

The regions \mathcal{L} and \mathcal{D} are separated by a strictly increasing, continuous critical line $h_c(\cdot)$:

$$\mathcal{L} = \{(\lambda, h): h < h_c(\lambda)\}$$
 $\mathcal{D} = \{(\lambda, h): h \ge h_c(\lambda)\}.$



The phase diagram: discrete model

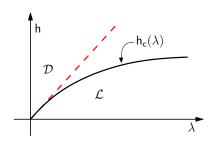
Theorem

The regions \mathcal{L} and \mathcal{D} are separated by a strictly increasing, continuous critical line $h_c(\cdot)$:

$$\mathcal{L} = \{ (\lambda, h) : h < h_c(\lambda) \}$$

$$\mathcal{L} = \{(\lambda, h) : h < h_c(\lambda)\} \qquad \mathcal{D} = \{(\lambda, h) : h \ge h_c(\lambda)\}.$$

Generalized copolymer models



Theorem

We have $h_c(0) = 0$ and

$$\underline{h}(\lambda) \leq h_c(\lambda) \leq \overline{h}(\lambda)$$

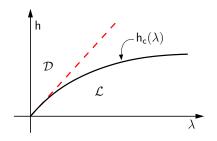
The phase diagram: discrete model

Theorem

The regions \mathcal{L} and \mathcal{D} are separated by a strictly increasing, continuous critical line $h_c(\cdot)$:

$$\mathcal{L} = \{(\lambda, h): h < h_c(\lambda)\}$$

$$\mathcal{D} = \{(\lambda, h): h \ge h_c(\lambda)\}.$$



Theorem

We have $h_c(0) = 0$ and

$$\underline{h}(\lambda) \leq h_c(\lambda) \leq \overline{h}(\lambda)$$

with

$$\underline{h}'(0+) = \frac{2}{3}, \quad \overline{h}'(0+) = 1 - \epsilon.$$

The phase diagram: continuum model

The continuum free energy $\tilde{F}(\lambda, h)$ is defined analogously:

$$ilde{\mathtt{F}}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{\mathcal{Z}}_{t,eta}
ight)$$

The continuum free energy $\tilde{F}(\lambda, h)$ is defined analogously:

$$ilde{\mathtt{F}}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}
ight)$$

The phase diagram: continuum model

The continuum free energy $\tilde{F}(\lambda, h)$ is defined analogously:

$$ilde{\mathtt{F}}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}
ight)$$

This time existence is highly non-trivial.

The phase diagram: continuum model

The continuum free energy $\tilde{F}(\lambda, h)$ is defined analogously:

$$ilde{\mathtt{F}}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}
ight)$$

Generalized copolymer models

This time existence is highly non-trivial.

Again $\tilde{F}(\lambda, h) \geq 0$. We then define $\widetilde{\mathcal{L}}$ ocalization and $\widetilde{\mathcal{D}}$ elocalization:

$$\widetilde{\mathcal{L}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) > 0\}$$
 $\widetilde{\mathcal{D}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) = 0\}$

Generalized copolymer models

The phase diagram: continuum model

The continuum free energy $\tilde{F}(\lambda, h)$ is defined analogously:

$$ilde{\mathtt{F}}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}
ight)$$

This time existence is highly non-trivial.

Again $\tilde{F}(\lambda, h) \geq 0$. We then define $\widetilde{\mathcal{L}}$ ocalization and $\widetilde{\mathcal{D}}$ elocalization:

$$\widetilde{\mathcal{L}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) > 0\}$$

$$= \{(\lambda, h) : h < \widetilde{h}_{c}(\lambda)\}$$

$$= \{(\lambda, h) : h \geq \widetilde{h}_{c}(\lambda)\}$$

$$= \{(\lambda, h) : h \geq \widetilde{h}_{c}(\lambda)\}$$

The phase diagram: continuum model

The continuum free energy $\tilde{F}(\lambda, h)$ is defined analogously:

$$ilde{\mathtt{F}}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}
ight)$$

This time existence is highly non-trivial.

Again $\tilde{F}(\lambda, h) \geq 0$. We then define $\widetilde{\mathcal{L}}$ ocalization and $\widetilde{\mathcal{D}}$ elocalization:

$$\widetilde{\mathcal{L}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) > 0\}$$

$$= \{(\lambda, h) : h < \widetilde{h}_c(\lambda)\}$$

$$= \{(\lambda, h) : h \geq \widetilde{h}_c(\lambda)\}$$

$$= \{(\lambda, h) : h \geq \widetilde{h}_c(\lambda)\}$$

By Brownian scaling $\tilde{F}(a\lambda, ah) = a^2 \tilde{F}(\lambda, h)$ for all $a, \lambda, h \ge 0$.

The phase diagram: continuum model

The continuum free energy $\tilde{F}(\lambda, h)$ is defined analogously:

$$ilde{\mathtt{F}}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}
ight)$$

This time existence is highly non-trivial.

Again $\tilde{F}(\lambda, h) \geq 0$. We then define $\widetilde{\mathcal{L}}$ ocalization and $\widetilde{\mathcal{D}}$ elocalization:

$$\widetilde{\mathcal{L}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) > 0\}$$

$$= \{(\lambda, h) : h < \widetilde{h}_c(\lambda)\}$$

$$= \{(\lambda, h) : h \geq \widetilde{h}_c(\lambda)\}$$

$$= \{(\lambda, h) : h \geq \widetilde{h}_c(\lambda)\}$$

By Brownian scaling $\tilde{F}(a\lambda, ah) = a^2 \tilde{F}(\lambda, h)$ for all $a, \lambda, h \ge 0$.

Therefore $\tilde{h}_c(\cdot)$ is a straight line: $\tilde{h}_c(\lambda) = \tilde{m} \lambda$.

Theorem ([BdH 97])

For all $\lambda, h \geq 0$

$$\lim_{a\downarrow 0}\,\frac{1}{a^2}\,\mathrm{F}(a\lambda,ah)=\tilde{\mathrm{F}}(\lambda,h)\,.$$

Theorem ([BdH 97])

For all $\lambda, h \geq 0$

$$\lim_{a\downarrow 0} \frac{1}{a^2} F(a\lambda, ah) = \tilde{F}(\lambda, h).$$

Moreover

$$\exists \lim_{\lambda\downarrow 0} rac{h_c(\lambda)}{\lambda} = ilde{m{m}} \in \left[rac{2}{3}, 1
ight).$$

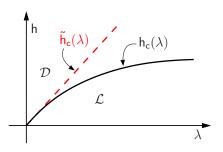
Theorem ([BdH 97])

For all $\lambda, h \geq 0$

$$\lim_{a\downarrow 0} \frac{1}{a^2} F(a\lambda, ah) = \tilde{F}(\lambda, h).$$

Moreover

$$\exists \ \lim_{\lambda \downarrow 0} \frac{h_{c}(\lambda)}{\lambda} = \tilde{\textbf{\textit{m}}} \in \left[\frac{2}{3}, 1\right).$$



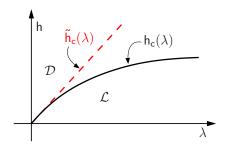
Theorem ([BdH 97])

For all $\lambda, h \geq 0$

$$\lim_{a\downarrow 0}\,\frac{1}{a^2}\,F(a\lambda,ah)=\tilde{F}(\lambda,h)\,.$$

Moreover

$$\exists \lim_{\lambda\downarrow 0}rac{h_c(\lambda)}{\lambda}= ilde{m{m}}\in\left[rac{2}{3},1
ight).$$



▶ Long, difficult, technical (but beautiful) proof.

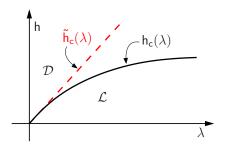
Theorem ([BdH 97])

For all
$$\lambda, h \geq 0$$

$$\lim_{a\downarrow 0}\,\frac{1}{a^2}\,F(a\lambda,ah)=\tilde{F}(\lambda,h)\,.$$

Moreover

$$\exists \lim_{\lambda\downarrow 0}rac{h_{c}(\lambda)}{\lambda}= ilde{ ilde{m}}\in\left[rac{2}{3},1
ight).$$



Long, difficult, technical (but beautiful) proof.
Not an easy consequece of invariance principles!

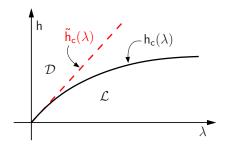
Theorem ([BdH 97])

For all
$$\lambda, h \geq 0$$

$$\lim_{a\downarrow 0} \frac{1}{a^2} F(a\lambda, ah) = \tilde{F}(\lambda, h).$$

Moreover

$$\exists \lim_{\lambda\downarrow 0} rac{h_c(\lambda)}{\lambda} = ilde{m{m}} \in \left[rac{2}{3},1
ight].$$



► Long, difficult, technical (but beautiful) proof.

Not an easy consequece of invariance principles!

The free energy

► Convergence of the slope does not follow from free energy.

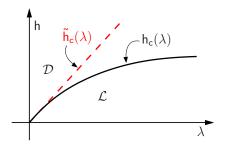
Theorem ([BdH 97])

For all
$$\lambda, h \geq 0$$

$$\lim_{a\downarrow 0}\,\frac{1}{a^2}\,F(a\lambda,ah)=\tilde{F}(\lambda,h)\,.$$

Moreover

$$\exists \lim_{\lambda\downarrow 0} rac{h_c(\lambda)}{\lambda} = ilde{m{m}} \in \left[rac{2}{3},1
ight].$$



- Long, difficult, technical (but beautiful) proof. Not an easy consequece of invariance principles!
- Convergence of the slope does not follow from free energy.
- ▶ Universality phenomenon for small coupling constants

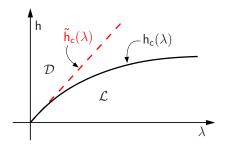
Theorem ([BdH 97])

For all
$$\lambda, h \geq 0$$

$$\lim_{a\downarrow 0} \frac{1}{a^2} F(a\lambda, ah) = \tilde{F}(\lambda, h).$$

Moreover

$$\exists \lim_{\lambda\downarrow 0} rac{h_c(\lambda)}{\lambda} = ilde{m{m}} \in \left[rac{2}{3},1
ight].$$



- Long, difficult, technical (but beautiful) proof. Not an easy consequece of invariance principles!
- Convergence of the slope does not follow from free energy.
- Universality phenomenon for small coupling constants ... unfortunately for just one discrete model. Generalization?

Francesco Caravenna

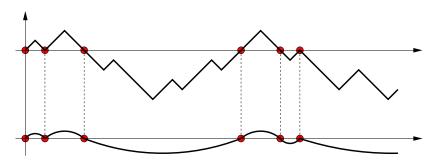
Outline

- 1. The basic copolymer mode
- 2. The free energy
- 3. Generalized copolymer models
- Strategy of the proof

Beyond the simple random walk

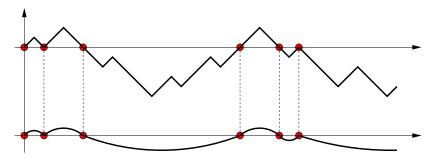
Which features of the SRW should we keep? Only the process $\Delta_n := \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$ matters

Which features of the SRW should we keep? Only the process $\Delta_n := \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$ matters



Beyond the simple random walk

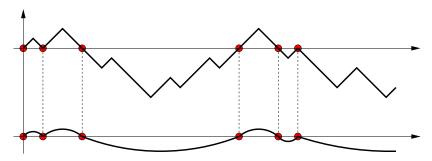
Which features of the SRW should we keep? Only the process $\Delta_n := \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$ matters



▶ Return times to zero $\{\tau_k\}_{k\geq 0}$: renewal process on $2\mathbb{N}_0$ IID inter-arrivals with polynomial tails: $\mathbf{P}(\tau_1=2n)\sim cn^{-3/2}$

Beyond the simple random walk

Which features of the SRW should we keep? Only the process $\Delta_n := \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ matters



- ▶ Return times to zero $\{\tau_k\}_{k\geq 0}$: renewal process on $2\mathbb{N}_0$ IID inter-arrivals with polynomial tails: $\mathbf{P}(\tau_1=2n)\sim cn^{-3/2}$
- **Excursions** signs: fair coin tossing (independent of $\{\tau_k\}_{k\geq 0}$)

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Francesco Caravenna

▶ General renewal process $\tau = \{\tau_k\}_{k \geq 0}$ on $2\mathbb{N}_0$ with

$$\mathbf{P}(\tau_1 = 2n) = \frac{L(n)}{n^{1+\alpha}}, \quad \alpha \in (0,1), \ L(\cdot) \text{ slowly varying } (\star)$$

▶ General renewal process $\tau = \{\tau_k\}_{k \geq 0}$ on $2\mathbb{N}_0$ with

$$\mathbf{P}(au_1=2n)=rac{L(n)}{n^{1+lpha}}\,, \qquad lpha\in(0,1)\,, \ \ L(\cdot) \ ext{slowly varying} \quad (\star)$$

▶ IID sequence $\{\xi_n\}_{n\geq 1}$ of Be $(\frac{1}{2})$ random variables $(\xi_n \in \{0,1\})$

▶ General renewal process $\tau = {\{\tau_k\}_{k>0}}$ on $2\mathbb{N}_0$ with

$$\mathbf{P}(au_1=2n)=rac{L(n)}{n^{1+lpha}}\,, \qquad lpha\in(0,1)\,, \ \ L(\cdot) \ ext{slowly varying} \quad (\star)$$

▶ IID sequence $\{\xi_n\}_{n\geq 1}$ of Be $(\frac{1}{2})$ random variables $(\xi_n \in \{0,1\})$

The generalized process
$$(\Delta = \{\Delta_n\}_{n\geq 0}, \mathbf{P})$$
 repl. $\mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$ is $\Delta_n := \mathcal{E}_{k}$ for $\tau_{k-1} < n \leq \tau_k$

▶ General renewal process $\tau = \{\tau_k\}_{k \geq 0}$ on $2\mathbb{N}_0$ with

$$\mathbf{P}(au_1=2n)=rac{L(n)}{n^{1+lpha}}\,, \qquad lpha\in(0,1)\,, \ \ L(\cdot) ext{ slowly varying } (\star)$$

▶ IID sequence $\{\xi_n\}_{n\geq 1}$ of Be $(\frac{1}{2})$ random variables $(\xi_n \in \{0,1\})$

The generalized process
$$(\Delta = {\Delta_n}_{n\geq 0}, \mathbf{P})$$
 repl. $\mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$ is

$$\Delta_n := \xi_k \qquad \text{for } \tau_{k-1} < n \le \tau_k$$

One always has $\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ with $\{S_n\}_n$ Markov chain on \mathbb{Z}

▶ General renewal process $\tau = \{\tau_k\}_{k>0}$ on $2\mathbb{N}_0$ with

$$\mathbf{P}(au_1=2n)=rac{L(n)}{n^{1+lpha}}\,, \qquad lpha\in(0,1)\,, \ \ L(\cdot) \ ext{slowly varying} \quad (\star)$$

▶ IID sequence $\{\xi_n\}_{n\geq 1}$ of Be $(\frac{1}{2})$ random variables $(\xi_n \in \{0,1\})$

The generalized process
$$(\Delta = {\Delta_n}_{n\geq 0}, \mathbf{P})$$
 repl. $\mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}$ is

$$\Delta_n := \xi_k \qquad \text{for } \tau_{k-1} < n \le \tau_k$$

One always has $\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ with $\{S_n\}_n$ Markov chain on \mathbb{Z}

Discrete Bessel-like process $(c_{\alpha} = 1/2 - \alpha)$

$$\mathbf{P}(S_{n+1} = x \pm 1 | S_n = x) = \frac{1}{2} \left(1 \pm \frac{c_{\alpha}}{x} + o\left(\frac{1}{x}\right) \right) \text{ yields (*) asymp.}$$

◆□ ト ◆□ ト ◆ 直 ト ◆ 直 ・ り へ ○

Francesco Caravenna

The charges are generalized to any real IID sequence $\{\omega_n\}_{n\in\mathbb{N}}$ with

$$\mathbb{E}\left(e^{t\omega_1}\right)<\infty\quad\forall t\in\left(-\epsilon,+\epsilon\right),\qquad\mathbb{E}(\omega_1)=0\,,\quad\mathbb{E}(\omega_1^2)=1\,.$$

The charges are generalized to any real IID sequence $\{\omega_n\}_{n\in\mathbb{N}}$ with

$$\mathbb{E}\left(e^{t\omega_1}\right)<\infty\quad\forall t\in\left(-\epsilon,+\epsilon\right),\qquad\mathbb{E}(\omega_1)=0\,,\quad\mathbb{E}(\omega_1^2)=1\,.$$

Fix
$$(\Delta = {\Delta_n = \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}}_{n \ge 0}, \mathbf{P}) \& (\omega = {\omega_n}_{n \ge 0}, \mathbb{P})$$

The charges are generalized to any real IID sequence $\{\omega_n\}_{n\in\mathbb{N}}$ with

$$\mathbb{E}\left(e^{t\omega_1}\right)<\infty\quad\forall t\in\left(-\epsilon,+\epsilon\right),\qquad\mathbb{E}(\omega_1)=0\,,\quad\mathbb{E}(\omega_1^2)=1\,.$$

Fix
$$(\Delta = {\Delta_n = \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}}_{n \ge 0}, \mathbf{P}) \& (\omega = {\omega_n}_{n \ge 0}, \mathbb{P})$$

The generalized discrete copolymer model is defined by

$$\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(\Delta) := \frac{1}{Z_{N,\omega}} \exp\left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \Delta_n\right)$$

The charges are generalized to any real IID sequence $\{\omega_n\}_{n\in\mathbb{N}}$ with

$$\mathbb{E}\left(e^{t\omega_1}\right)<\infty\quad\forall t\in\left(-\epsilon,+\epsilon\right),\qquad\mathbb{E}(\omega_1)=0\,,\quad\mathbb{E}(\omega_1^2)=1\,.$$

Fix
$$(\Delta = {\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}}_{n\geq 0}, \mathbf{P})$$
 & $(\omega = {\omega_n}_{n\geq 0}, \mathbb{P})$

The generalized discrete copolymer model is defined by

$$\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(\Delta) := \frac{1}{Z_{N,\omega}} \exp\left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \Delta_n\right)$$

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E}(\log Z_{N,\omega})$$

The charges are generalized to any real IID sequence $\{\omega_n\}_{n\in\mathbb{N}}$ with

$$\mathbb{E}\left(e^{t\omega_1}\right)<\infty\quad\forall t\in\left(-\epsilon,+\epsilon\right),\qquad\mathbb{E}(\omega_1)=0\,,\quad\mathbb{E}(\omega_1^2)=1\,.$$

Fix
$$(\Delta = {\Delta_n = \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}}_{n \ge 0}, \mathbf{P}) \& (\omega = {\omega_n}_{n \ge 0}, \mathbb{P})$$

The generalized discrete copolymer model is defined by

$$\frac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(\Delta) := \frac{1}{Z_{N,\omega}} \exp\left(-2\lambda \sum_{n=1}^{N} (\omega_n + h) \Delta_n\right)$$

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} (\log Z_{N,\omega})$$

$$\mathcal{L} = \{ (\lambda, h) : F(\lambda, h) > 0 \} \qquad \mathcal{D} = \{ (\lambda, h) : F(\lambda, h) = 0 \}$$

$$= \{ (\lambda, h) : h < h_c(\lambda) \} \qquad = \{ (\lambda, h) : h \ge h_c(\lambda) \}$$

The charges are generalized to any real IID sequence $\{\omega_n\}_{n\in\mathbb{N}}$ with

$$\mathbb{E}\left(e^{t\omega_1}\right)<\infty\quad\forall t\in\left(-\epsilon,+\epsilon\right),\qquad\mathbb{E}(\omega_1)=0\,,\quad\mathbb{E}(\omega_1^2)=1\,.$$

Fix
$$(\Delta = {\Delta_n = \mathbf{1}_{\{(S_{n-1}, S_n) < 0\}}}_{n \ge 0}, \mathbf{P}) \& (\omega = {\omega_n}_{n \ge 0}, \mathbb{P})$$

The generalized discrete copolymer model is defined by

$$rac{\mathrm{d}\mathbf{P}_{N,\omega}}{\mathrm{d}\mathbf{P}}(\Delta) := rac{1}{Z_{N,\omega}} \, \exp\left(-2\lambda \sum_{n=1}^N (\omega_n + h) \Delta_n
ight)$$

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} (\log Z_{N,\omega})$$

$$\mathcal{L} = \{ (\lambda, h) : F(\lambda, h) > 0 \} \qquad \mathcal{D} = \{ (\lambda, h) : F(\lambda, h) = 0 \}$$

$$= \{ (\lambda, h) : h < h_c(\lambda) \} \qquad = \{ (\lambda, h) : h \ge h_c(\lambda) \}$$

Note that $F(\cdot, \cdot)$ and $h_c(\cdot)$ do depend on the choice of P and \mathbb{P}

The continuum α -copolymer model

For $\alpha = \frac{1}{2}$ we have BM $\{B_t\}_{t>0}$, or better $\tilde{\Delta} = \{\tilde{\Delta}_t = \mathbf{1}_{\{B_t<0\}}\}_{t>0}$

The continuum α -copolymer model

For
$$\alpha = \frac{1}{2}$$
 we have BM $\{B_t\}_{t\geq 0}$, or better $\tilde{\Delta} = \{\tilde{\Delta}_t = \mathbf{1}_{\{B_t<0\}}\}_{t\geq 0}$

It suffice to know the zero level set $\tilde{\tau} = \{t \in [0, \infty): B_t = 0\}$

The continuum α -copolymer model

For
$$\alpha = \frac{1}{2}$$
 we have BM $\{B_t\}_{t\geq 0}$, or better $\tilde{\Delta} = \{\tilde{\Delta}_t = \mathbf{1}_{\{B_t<0\}}\}_{t\geq 0}$

It suffice to know the zero level set $\tilde{\tau} = \{t \in [0, \infty) : B_t = 0\}$ Attaching independent fair coins to the excursions $I \subseteq \tilde{\tau}^c$ yields $\tilde{\Delta}$

The continuum lpha-copolymer model

For
$$\alpha=\frac{1}{2}$$
 we have BM $\{B_t\}_{t\geq 0}$, or better $\tilde{\Delta}=\{\tilde{\Delta}_t=\mathbf{1}_{\{B_t<0\}}\}_{t\geq 0}$

It suffice to know the zero level set $\tilde{\tau}=\{t\in[0,\infty):\ B_t=0\}$ Attaching independent fair coins to the excursions $I\subseteq\tilde{\tau}^c$ yields $\tilde{\Delta}$

For $\alpha \in (0,1)$ let $\tilde{\tau}^{\alpha}$ be the stable regenerative set of index α

For $\alpha = \frac{1}{2}$ we have BM $\{B_t\}_{t>0}$, or better $\tilde{\Delta} = \{\tilde{\Delta}_t = \mathbf{1}_{\{B_t<0\}}\}_{t>0}$

It suffice to know the zero level set $\tilde{\tau} = \{t \in [0, \infty) : B_t = 0\}$ Attaching independent fair coins to the excursions $I \subseteq \tilde{\tau}^c$ yields $\tilde{\Delta}$

For $\alpha \in (0,1)$ let $\tilde{\tau}^{\alpha}$ be the stable regenerative set of index α , i.e.

▶ The zero level set of the Bessel(δ) process with $\delta = 2(1 - \alpha)$

$$B_0^{\delta} = 0$$
, $\mathrm{d}B_t^{\delta} = \mathrm{d}W_t + \frac{(\delta - 1)}{2B_t^{\delta}}\,\mathrm{d}t$ on $B_t^{\delta} > 0$

For
$$\alpha=\frac{1}{2}$$
 we have BM $\{B_t\}_{t\geq 0}$, or better $\tilde{\Delta}=\{\tilde{\Delta}_t=\mathbf{1}_{\{B_t<0\}}\}_{t\geq 0}$

It suffice to know the zero level set $\tilde{\tau}=\{t\in[0,\infty):\ B_t=0\}$ Attaching independent fair coins to the excursions $I\subseteq\tilde{\tau}^c$ yields $\tilde{\Delta}$

For $\alpha \in (0,1)$ let $\tilde{\tau}^{\alpha}$ be the stable regenerative set of index α , i.e.

▶ The zero level set of the Bessel(δ) process with $\delta = 2(1 - \alpha)$

$$B_0^\delta = 0$$
, $\mathrm{d} B_t^\delta = \mathrm{d} W_t + \frac{(\delta - 1)}{2B_t^\delta} \, \mathrm{d} t$ on $B_t^\delta > 0$

► The (closure of the) image of the α -stable subordinator (increasing Lévy process with Lévy measure $x^{-1-\alpha}dx$ on \mathbb{R}^+)

For $\alpha = \frac{1}{2}$ we have BM $\{B_t\}_{t>0}$, or better $\tilde{\Delta} = \{\tilde{\Delta}_t = \mathbf{1}_{\{B_t<0\}}\}_{t>0}$

It suffice to know the zero level set $\tilde{\tau} = \{t \in [0, \infty): B_t = 0\}$ Attaching independent fair coins to the excursions $I \subseteq \tilde{\tau}^c$ yields $\tilde{\Delta}$

For $\alpha \in (0,1)$ let $\tilde{\tau}^{\alpha}$ be the stable regenerative set of index α , i.e.

▶ The zero level set of the Bessel(δ) process with $\delta = 2(1 - \alpha)$

$$B_0^{\delta} = 0$$
, $\mathrm{d}B_t^{\delta} = \mathrm{d}W_t + \frac{(\delta - 1)}{2B_t^{\delta}}\,\mathrm{d}t$ on $B_t^{\delta} > 0$

- ▶ The (closure of the) image of the α -stable subordinator (increasing Lévy process with Lévy measure $x^{-1-\alpha}dx$ on \mathbb{R}^+)
- ▶ The limit in law as $\epsilon \downarrow 0$ of the random sets $\{\epsilon \tau_n\}_{n>0}$ in (\star)

For
$$\alpha = \frac{1}{2}$$
 we have BM $\{B_t\}_{t \geq 0}$, or better $\tilde{\Delta} = \{\tilde{\Delta}_t = \mathbf{1}_{\{B_t < 0\}}\}_{t \geq 0}$

It suffice to know the zero level set $\tilde{\tau} = \{t \in [0, \infty) : B_t = 0\}$ Attaching independent fair coins to the excursions $I \subseteq \tilde{\tau}^c$ yields $\tilde{\Delta}$

For $\alpha \in (0,1)$ let $\tilde{\tau}^{\alpha}$ be the stable regenerative set of index α , i.e.

▶ The zero level set of the Bessel(δ) process with $\delta = 2(1 - \alpha)$

$$B_0^{\delta} = 0$$
, $\mathrm{d}B_t^{\delta} = \mathrm{d}W_t + \frac{(\delta - 1)}{2B_t^{\delta}}\,\mathrm{d}t$ on $B_t^{\delta} > 0$

- ▶ The (closure of the) image of the α -stable subordinator (increasing Lévy process with Lévy measure $x^{-1-\alpha}dx$ on \mathbb{R}^+)
- ▶ The limit in law as $\epsilon \downarrow 0$ of the random sets $\{\epsilon \tau_n\}_{n>0}$ in (\star)

From $\tilde{ au}^{\alpha}$ we obtain $(\tilde{\Delta}^{\alpha}=\{\tilde{\Delta}^{\alpha}_t\}_{t\geq 0},\tilde{\mathbf{P}})$ (For $\alpha=\frac{1}{2}$ we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011

The continuum charges $(\{\mathrm{d}\beta_s\}_{s\geq 0},\tilde{\mathbb{P}})$ are always white noise

The continuum charges $(\{d\beta_s\}_{s\geq 0}, \tilde{\mathbb{P}})$ are always white noise

For the α -continuum free energy, replace $\mathbf{1}_{\{B_s<0\}}$ by $\tilde{\Delta}_s^{\alpha}$:

$$ilde{\mathbf{F}}^{lpha}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}^{lpha}
ight) \ ilde{Z}_{t,\omega}^{lpha} = ilde{\mathbf{E}} \left[\exp \left(-2\lambda \int_0^t (\mathrm{d}eta_s + h \, \mathrm{d}s) \, ilde{\Delta}_s^{lpha}
ight)
ight]$$

Generalized copolymer models

The continuum α -copolymer model: free energy

The continuum charges $(\{d\beta_s\}_{s\geq 0}, \tilde{\mathbb{P}})$ are always white noise

For the lpha-continuum free energy, replace $\mathbf{1}_{\{B_{\mathbf{s}}<0\}}$ by $\tilde{\Delta}_{\mathbf{s}}^{lpha}$:

$$\begin{split} \tilde{\mathbf{F}}^{lpha}(\lambda,h) &:= \lim_{t o \infty} rac{1}{t} \, \tilde{\mathbb{E}} \left(\log \tilde{Z}_{t,eta}^{lpha}
ight) \ \tilde{Z}_{t,\omega}^{lpha} &= \tilde{\mathbf{E}} \left[\exp \left(-2\lambda \int_0^t (\mathrm{d}eta_s + h \, \mathrm{d}s) \, \tilde{\Delta}_s^{lpha}
ight)
ight] \end{split}$$

Theorem [CG]

 $\tilde{\mathtt{F}}^{lpha}(\lambda,h)$ exists and is self-averaging

The continuum charges $(\{d\beta_s\}_{s>0}, \tilde{\mathbb{P}})$ are always white noise

For the α -continuum free energy, replace $\mathbf{1}_{\{B_s<0\}}$ by $\tilde{\Delta}_s^{\alpha}$:

$$ilde{\mathbf{F}}^{lpha}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}^{lpha}
ight) \ ilde{Z}_{t,\omega}^{lpha} = ilde{\mathbf{E}} \left[\exp \left(-2\lambda \int_0^t (\mathrm{d}eta_s + h \, \mathrm{d}s) \, ilde{\Delta}_s^{lpha}
ight)
ight]$$

Theorem [CG]

 $\tilde{F}^{\alpha}(\lambda, h)$ exists and is self-averaging

Non-trivial, highly technical proof (also for $\alpha = \frac{1}{2}$)

The continuum charges $(\{d\beta_s\}_{s>0}, \tilde{\mathbb{P}})$ are always white noise

For the α -continuum free energy, replace $\mathbf{1}_{\{B_s<0\}}$ by $\tilde{\Delta}_s^{\alpha}$:

$$\begin{split} & \tilde{\mathbf{F}}^{lpha}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, \tilde{\mathbb{E}} \left(\log \tilde{Z}_{t,eta}^{lpha}
ight) \ & \tilde{Z}_{t,\omega}^{lpha} = \tilde{\mathbf{E}} \left[\exp \left(-2\lambda \int_0^t (\mathrm{d}eta_s + h \, \mathrm{d}s) \, \tilde{\Delta}_s^{lpha}
ight)
ight] \end{split}$$

Theorem [CG]

 $\tilde{F}^{\alpha}(\lambda, h)$ exists and is self-averaging

- Non-trivial, highly technical proof (also for $\alpha = \frac{1}{2}$)
- Kingman's super-additive ergodic theorem for a modified $\tilde{Z}^{\alpha}_{t,\omega}$

The continuum charges $(\{d\beta_s\}_{s\geq 0}, \tilde{\mathbb{P}})$ are always white noise

For the lpha-continuum free energy, replace $\mathbf{1}_{\{B_{\mathbf{s}}<0\}}$ by $\tilde{\Delta}_{\mathbf{s}}^{lpha}$:

$$ilde{\mathbf{F}}^{lpha}(\lambda,h) := \lim_{t o \infty} rac{1}{t} \, ilde{\mathbb{E}} \left(\log ilde{Z}_{t,eta}^{lpha}
ight) \ ilde{Z}_{t,\omega}^{lpha} = ilde{\mathbf{E}} \left[\exp \left(-2\lambda \int_0^t (\mathrm{d}eta_s + h \, \mathrm{d}s) \, ilde{\Delta}_s^{lpha}
ight)
ight]$$

Theorem [CG]

 $\tilde{F}^{\alpha}(\lambda, h)$ exists and is self-averaging

- ▶ Non-trivial, highly technical proof (also for $\alpha = \frac{1}{2}$)
- lacktriangle Kingman's super-additive ergodic theorem for a modified $ilde{\mathcal{Z}}^{lpha}_{t,\omega}$
- ► Continuity theory of Gaussian processes plays essential role

The continuum α -copolymer model: scaling limit

Scaling properties of β_s and $\tilde{\Delta}_s^{\alpha} \longrightarrow \tilde{F}^{\alpha}(a\lambda, ah) = a^2 \tilde{F}^{\alpha}(\lambda, h)$.

The continuum lpha-copolymer model: scaling limit

Scaling properties of β_s and $\tilde{\Delta}_s^{\alpha} \longrightarrow \tilde{F}^{\alpha}(a\lambda, ah) = a^2 \tilde{F}^{\alpha}(\lambda, h)$.

Therefore
$$\widetilde{\mathcal{L}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) > 0\}$$
 $\widetilde{\mathcal{D}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) = 0\}$

$$= \{(\lambda, h) : h < \widetilde{m}^{\alpha} \lambda\}$$

$$= \{(\lambda, h) : h \ge \widetilde{m}^{\alpha} \lambda\}$$

The continuum α -copolymer model: scaling limit

Scaling properties of β_s and $\tilde{\Delta}_s^{\alpha} \longrightarrow \tilde{F}^{\alpha}(a\lambda, ah) = a^2 \tilde{F}^{\alpha}(\lambda, h)$.

Generalized copolymer models

Therefore
$$\widetilde{\mathcal{L}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) > 0\}$$
 $\widetilde{\mathcal{D}} = \{(\lambda, h) : \widetilde{F}(\lambda, h) = 0\}$

$$= \{(\lambda, h) : h < \widetilde{m}^{\alpha} \lambda\}$$

$$= \{(\lambda, h) : h \ge \widetilde{m}^{\alpha} \lambda\}$$

Theorem [CG] (For any discrete α -copolymer model)

$$\lim_{a\downarrow 0} \frac{F(a\lambda, ah)}{a^2} = \tilde{F}^{\alpha}(\lambda, h) \qquad \lim_{\lambda\downarrow 0} \frac{h_c(\lambda)}{\lambda} = \tilde{m}^{\alpha}$$

Generalized copolymer models

The continuum α -copolymer model: scaling limit

Scaling properties of β_s and $\tilde{\Delta}_s^{\alpha} \longrightarrow \tilde{F}^{\alpha}(a\lambda, ah) = a^2 \tilde{F}^{\alpha}(\lambda, h)$.

Therefore
$$\widetilde{\mathcal{L}} = \{(\lambda, h) : \widetilde{\mathbf{F}}(\lambda, h) > 0\}$$
 $\widetilde{\mathcal{D}} = \{(\lambda, h) : \widetilde{\mathbf{F}}(\lambda, h) = 0\}$ $= \{(\lambda, h) : h < \widetilde{\mathbf{m}}^{\alpha} \lambda\}$ $= \{(\lambda, h) : h \ge \widetilde{\mathbf{m}}^{\alpha} \lambda\}$

Theorem [CG] (For any discrete α -copolymer model)

$$\lim_{a\downarrow 0}\frac{\mathrm{F}\left(a\lambda,ah\right)}{a^{2}}=\tilde{\mathrm{F}}^{\alpha}(\lambda,h)\qquad \quad \lim_{\lambda\downarrow 0}\frac{h_{c}(\lambda)}{\lambda}=\tilde{\textbf{\textit{m}}}^{\alpha}\in\left[\frac{1}{1+\alpha},1\right)$$

The continuum α -copolymer model: scaling limit

Scaling properties of β_s and $\tilde{\Delta}^{\alpha}_s \longrightarrow \tilde{F}^{\alpha}(a\lambda,ah) = a^2 \tilde{F}^{\alpha}(\lambda,h)$.

Therefore
$$\widetilde{\mathcal{L}} = \{(\lambda, h) : \widetilde{\mathbf{F}}(\lambda, h) > 0\}$$
 $\widetilde{\mathcal{D}} = \{(\lambda, h) : \widetilde{\mathbf{F}}(\lambda, h) = 0\}$ $= \{(\lambda, h) : h < \widetilde{\mathbf{m}}^{\alpha} \lambda\}$ $= \{(\lambda, h) : h \ge \widetilde{\mathbf{m}}^{\alpha} \lambda\}$

Theorem [CG] (For any discrete α -copolymer model)

$$\lim_{a\downarrow 0}\frac{\mathrm{F}\left(a\lambda,ah\right)}{a^{2}}=\tilde{\mathrm{F}}^{\alpha}(\lambda,h)\qquad \qquad \lim_{\lambda\downarrow 0}\frac{h_{c}(\lambda)}{\lambda}=\tilde{\textbf{\textit{m}}}^{\alpha}\in\left[\frac{1}{1+\alpha},1\right)$$

Theorem

For all $\lambda, h > 0$ and $\epsilon \in (0,1)$ there exists $a_0 > 0$ s.t. for all $a < a_0$

$$\tilde{\mathrm{F}}^{lpha}\left(rac{\lambda}{1+\epsilon},rac{h}{1-\epsilon}
ight) \leq rac{\mathrm{F}\left(a\lambda,ah
ight)}{a^2} \, \leq \, \tilde{\mathrm{F}}^{lpha}\left((1+\epsilon)\lambda,(1-\epsilon)h
ight)$$

Outline

- 1. The basic copolymer mode
- 2. The free energy
- 3. Generalized copolymer models
- 4. Strategy of the proof

Goal: $\forall \lambda, h > 0$, $\epsilon \in (0,1)$ one has for $a \ll 1$

$$\frac{1}{a^2}\mathrm{F}\left(a\lambda,ah\right)\leq \frac{1}{a^2}\tilde{\mathrm{F}}\left((1+\epsilon)a\lambda,(1-\epsilon)ah\right)$$

(and viceversa, with $F \leftrightarrow \tilde{F}$).

Goal: $\forall \lambda, h > 0$, $\epsilon \in (0,1)$ one has for $a \ll 1$

$$rac{1}{a^2}\mathrm{F}\left(a\lambda,ah
ight)\leqrac{1}{a^2}\widetilde{\mathrm{F}}\left((1+\epsilon)a\lambda,(1-\epsilon)ah
ight)$$

(and viceversa, with $F \leftrightarrow \tilde{F}$). Recall that

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \log \mathbf{E} \left[\exp \left(-H_N(\lambda, h) \right) \right]$$

Goal: $\forall \lambda, h > 0, \epsilon \in (0,1)$ one has for $a \ll 1$

$$\frac{1}{\mathit{a}^2} \mathtt{F} \left(\mathit{a} \lambda, \mathit{a} h \right) \leq \frac{1}{\mathit{a}^2} \widetilde{\mathtt{F}} \left((1+\epsilon) \mathit{a} \lambda, (1-\epsilon) \mathit{a} h \right)$$

(and viceversa, with $F \leftrightarrow \tilde{F}$). Recall that

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \log \mathbf{E} \left[\exp \left(-H_N(\lambda, h) \right) \right]$$

It suffices to show that $H_N \simeq \tilde{H}_N$: $\forall C > 0$, for $a \ll 1$

$$\limsup_{N \to \infty} \frac{1}{N} \log \mathbb{E} \mathbf{E} \left[\exp \left(- C \big(H_N \big(a \lambda, a h \big) - \tilde{H}_N \big(a \lambda, (1 - \epsilon) a h \big) \, \big) \right) \right] \leq 0$$

and viceversa, with $H_N \leftrightarrow \tilde{H}_N$.

Goal: $\forall \lambda, h > 0, \epsilon \in (0,1)$ one has for $a \ll 1$

$$\frac{1}{\mathsf{a}^2} \mathtt{F} \left(\mathsf{a} \lambda, \mathsf{a} \mathsf{h} \right) \leq \frac{1}{\mathsf{a}^2} \widetilde{\mathtt{F}} \left((1+\epsilon) \mathsf{a} \lambda, (1-\epsilon) \mathsf{a} \mathsf{h} \right)$$

(and viceversa, with $F \leftrightarrow \tilde{F}$). Recall that

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \log \mathbf{E} \left[\exp \left(-H_N(\lambda, h) \right) \right]$$

It suffices to show that $H_N \simeq \tilde{H}_N$: $\forall C > 0$, for $a \ll 1$

$$\limsup_{N \to \infty} \frac{1}{N} \log \mathbb{E} \mathbf{E} \left[\exp \left(- C \left(H_N(a\lambda, ah) - \tilde{H}_N(a\lambda, (1 - \epsilon) ah) \right) \right) \right] \leq 0$$

and viceversa, with $H_N \leftrightarrow \tilde{H}_N$.

Proof in four steps: $H_N =: H_N^0 \times H_N^1 \times H_N^2 \times H_N^3 \times H_N^4 := \tilde{H}_N$

4 L P 4 CP P 4 E P 4 E P 5 E *) U(*)

The basic copolymer model

Goal: $\forall \lambda, h > 0, \epsilon \in (0,1)$ one has for $a \ll 1$

$$\frac{1}{\mathit{a}^2} \mathtt{F} \left(\mathit{a} \lambda, \mathit{a} h \right) \leq \frac{1}{\mathit{a}^2} \widetilde{\mathtt{F}} \left((1+\epsilon) \mathit{a} \lambda, (1-\epsilon) \mathit{a} h \right)$$

Generalized copolymer models

(and viceversa, with $F \leftrightarrow \tilde{F}$). Recall that

$$F(\lambda, h) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \log \mathbf{E} \left[\exp \left(-H_N(\lambda, h) \right) \right]$$

It suffices to show that $H_N \simeq \tilde{H}_N$: $\forall C > 0$, for $a \ll \eta \ll \delta \ll 1$

$$\limsup_{N \to \infty} \frac{1}{N} \log \mathbb{E} \mathbf{E} \left[\exp \left(-C \left(H_N(a\lambda, ah) - \tilde{H}_N(a\lambda, (1 - \epsilon)ah) \right) \right) \right] \leq 0$$

and viceversa, with $H_N \leftrightarrow \tilde{H}_N$.

Proof in four steps: $H_N =: H_N^0 \times H_N^1 \times H_N^2 \times H_N^3 \times H_N^4 := \tilde{H}_N$

Francesco Caravenna Disordered copolymer models February 15, 2011

Heuristics

Recall that $\Delta_n = \mathbf{1}_{\{(\mathcal{S}_{n-1},\mathcal{S}_n) < 0\}}$ and

$$-H_N^0(a\lambda,ah)=-2a\lambda\sum_{n=1}^N(\omega_n+ah)\Delta_n$$

Recall that $\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ and

$$-H_{t/a^2}^0(a\lambda,ah) = -2a\lambda \sum_{n=1}^{t/a^2} (\omega_n + ah)\Delta_n$$

Since $a\ll 1$, for $H_N(a\lambda,ah)\approx 1$ we need $N\approx t/a^2$ steps, therefore ${\rm F}(a\lambda,ah)\approx a^2$

Heuristics

Recall that $\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ and

$$-H_{t/a^{2}}^{0}(a\lambda, ah) = -2a\lambda \sum_{n=1}^{t/a^{2}} (\omega_{n} + ah)\Delta_{n}$$

$$\approx -2\lambda \int_{0}^{t} (d\beta_{s} + h ds) \tilde{\Delta}_{s} = -H_{t}^{4}(\lambda, h)$$

Since $a\ll 1$, for $H_N(a\lambda,ah)\approx 1$ we need $N\approx t/a^2$ steps, therefore

$$F(a\lambda, ah) \approx a^2 \tilde{F}(\lambda, h)$$

Heuristics

Recall that $\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ and

$$-H_{t/a^{2}}^{0}(a\lambda, ah) = -2a\lambda \sum_{n=1}^{t/a^{2}} (\omega_{n} + ah) \Delta_{n}$$

$$\approx -2\lambda \int_{0}^{t} (d\beta_{s} + h ds) \tilde{\Delta}_{s} = -H_{t}^{4}(\lambda, h)$$

Since $a \ll 1$, for $H_N(a\lambda, ah) \approx 1$ we need $N \approx t/a^2$ steps, therefore

$$F(a\lambda, ah) \approx a^2 \tilde{F}(\lambda, h)$$

We need to show that \approx can be made \approx .

Step 1: Coarse-graining of the renewal process.

Recall that $\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ and

$$-H^0_{t/a^2}(a\lambda,ah)=-2a\lambda\sum_{n=1}^{t/a^2}(\omega_n+ah)\Delta_n$$

Step 1: Coarse-graining of the renewal process.

Recall that $\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ and

$$-H^0_{t/a^2}(a\lambda,ah) = -2a\lambda \sum_{n=1}^{t/a^2} (\omega_n + ah)\Delta_n$$
 $-H^1_{t/a^2}(a\lambda,ah) = -2a\lambda \sum_{n=1}^{t/a^2} (\omega_n + ah)\Delta_n^{\eta,\delta}$

where in $\Delta_n^{\eta,\delta}$ we replace the microscopic return times τ_n by coarse-grained return times on blocks of size η/a^2 , skipping $\delta/\eta \gg 1$ blocks between consecutive coarse-grained returns.

Generalized copolymer models

The proof

The basic copolymer model

Step 1: Coarse-graining of the renewal process.

Recall that $\Delta_n = \mathbf{1}_{\{(S_{n-1},S_n)<0\}}$ and

$$-H^0_{t/a^2}(a\lambda,ah) = -2a\lambda\sum_{n=1}^{t/a^2}(\omega_n+ah)\Delta_n \ -H^1_{t/a^2}(a\lambda,ah) = -2a\lambda\sum_{n=1}^{t/a^2}(\omega_n+ah)\Delta_n^{\eta,\delta}$$

where in $\Delta_n^{\eta,\delta}$ we replace the microscopic return times τ_n by coarse-grained return times on blocks of size η/a^2 , skipping $\delta/\eta \gg 1$ blocks between consecutive coarse-grained returns.

Showing that $H_N^0 \simeq H_N^1$ is delicate and very technical.

Step 2: From discrete charges to the white noise.

 H_N^2 is obtained from H_N^1 by replacing the charges ω_n by i.i.d. N(0,1) (discrete white noise).

Step 2: From discrete charges to the white noise.

 H_N^2 is obtained from H_N^1 by replacing the charges ω_n by i.i.d. N(0,1) (discrete white noise).

This step is quite easy (coupling).

Step 2: From discrete charges to the white noise.

 H_N^2 is obtained from H_N^1 by replacing the charges ω_n by i.i.d. N(0,1) (discrete white noise).

This step is quite easy (coupling).

Step 3: From the renewal process to the regenerative set.

 H_N^3 is obtained from H_N^2 by replacing $\Delta_n^{\eta,\delta}$ by an analogous coarse-grained version $\tilde{\Delta}_t^{\eta,\delta}$ of the continuous-time process $\tilde{\Delta}_t$.

Step 2: From discrete charges to the white noise.

 H_N^2 is obtained from H_N^1 by replacing the charges ω_n by i.i.d. N(0,1) (discrete white noise).

This step is quite easy (coupling).

Step 3: From the renewal process to the regenerative set.

 H_N^3 is obtained from H_N^2 by replacing $\Delta_n^{\eta,\delta}$ by an analogous coarse-grained version $\tilde{\Delta}_t^{\eta,\delta}$ of the continuous-time process $\tilde{\Delta}_t$. Showing that $H_N^2 \simeq H_N^3$ requires careful renewal-type estimates.

Step 2: From discrete charges to the white noise.

 H_N^2 is obtained from H_N^1 by replacing the charges ω_n by i.i.d. N(0,1) (discrete white noise).

This step is quite easy (coupling).

Step 3: From the renewal process to the regenerative set.

 H_N^3 is obtained from H_N^2 by replacing $\Delta_n^{\eta,\delta}$ by an analogous coarse-grained version $\tilde{\Delta}_t^{\eta,\delta}$ of the continuous-time process $\tilde{\Delta}_t$. Showing that $H_N^2 \simeq H_N^3$ requires careful renewal-type estimates.

Step 4: Inverse coarse-graining of the regenerative set.

Step 2: From discrete charges to the white noise.

 H_N^2 is obtained from H_N^1 by replacing the charges ω_n by i.i.d. N(0,1) (discrete white noise).

This step is quite easy (coupling).

Step 3: From the renewal process to the regenerative set.

 H_N^3 is obtained from H_N^2 by replacing $\Delta_n^{\eta,\delta}$ by an analogous coarse-grained version $\tilde{\Delta}_t^{\eta,\delta}$ of the continuous-time process $\tilde{\Delta}_t$. Showing that $H_N^2 \simeq H_N^3$ requires careful renewal-type estimates.

Step 4: Inverse coarse-graining of the regenerative set.

 $H_N^4 = \tilde{H}_N$ is obtained from H_N^4 by replacing $\tilde{\Delta}_t^{\eta,\delta}$ by the original (non coarse-grained) continuous-time process $\hat{\Delta}_t$.

Step 2: From discrete charges to the white noise.

 H_N^2 is obtained from H_N^1 by replacing the charges ω_n by i.i.d. N(0,1) (discrete white noise).

This step is quite easy (coupling).

Step 3: From the renewal process to the regenerative set.

 H_N^3 is obtained from H_N^2 by replacing $\Delta_n^{\eta,\delta}$ by an analogous coarse-grained version $\tilde{\Delta}_{t}^{\eta,\delta}$ of the continuous-time process $\tilde{\Delta}_{t}$. Showing that $H_N^2 \simeq H_N^3$ requires careful renewal-type estimates.

Step 4: Inverse coarse-graining of the regenerative set.

 $H_N^4 = \tilde{H}_N$ is obtained from H_N^4 by replacing $\tilde{\Delta}_t^{\eta,\delta}$ by the original (non coarse-grained) continuous-time process $\tilde{\Delta}_t$.

This step is analogous to step 1.

