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A random walk with a random potential

N

I S = {Sn}n∈N0 simple symmetric random walk on Z → law P

I ω = {ωn}n∈N ∈ {+,−}N fair coin tossing → quenched law P

dPN,ω

dP
(S) :=

1
ZN,ω

exp

(

λ

N∑
n=1

sign
(
(Sn−1, Sn)

))

• λ ≥ 0 interaction strength ∼ (temperature)−1

• h ≥ 0 asymmetry

Localization or Delocalization ?
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A polymer model interpretation

+

+

+

_

_

_

_

_

_

_ _

+

_

+ +

+

+ + +

+

N

Sn

Oil

Water

Interface

Hydrophobic monomer

Hydrophilic monomer

I T. Garel, D. A. Huse, S. Leibler and H. Orland, Europhys. Lett. (1989)

I Ya.G. Sinai, Theory Probab. Appl. (1993)
I S. Albeverio and X. Y. Zhou, J. Statist. Phys. (1996)
I E. Bolthausen and F. den Hollander, Ann. Probab. (1997)
I M. Biskup, G. Giacomin, T. Bodineau, F.L. Toninelli, F.C., M. Gubinelli,

N. Pétrélis, L. Zambotti, B. de Tilière, H. Lacoin, D. Cheliotis, . . .
I Several contributions in the physics literature too.
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The basic copolymer model

Definition of the model:
dPN,ω

dP
(S) :=

1
ZN,ω

exp
(
− HN,ω(S)

)
−HN,ω(S) := λ

N∑
n=1

(ωn + h) sign
(
(Sn−1, Sn)

)

Slight modification: HN,ω(S)  HN,ω(S) + λ
∑N

n=1(ωn + h).
The law PN,ω remains the same. New Hamiltonian (and ZN,ω):

−HN,ω(S) := −2λ
N∑

n=1

(ωn + h)1{(Sn−1,Sn)<0}

Monomer (Sn−1, Sn) is rewarded:

{
0 if (Sn−1, Sn) > 0
− 2λ(ωn + h) if (Sn−1, Sn) < 0
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The continuum (Brownian) copolymer model

+ +
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+ + +

+

+

+

+
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_

_

_

_ _
N

Sn

We now define a continuum model.

Replace:
I the SRW {Sn}n∈N0 by Brownian motion B = {Bt}t≥0 (law P̃)
I the charges {ωn}n∈N by white noise dβ = {dβt}t≥0 (law P̃)

dP̃t,β

dP̃
(B) :=

1
Z̃t,ω

exp
(
−2λ

∫ t

0
(dβs + h ds) 1{Bs<0}

)

Discrete model: − 2λ
∑N

n=1 (ωn + h) 1{(Sn−1,Sn)<0}
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Localization and Delocalization

Is PN,ω = Pλ,h
N,ω localized or delocalized for large N (and typical ω)?

It depends on λ, h. Look at the free energy:

F(λ, h) := lim
N→∞

1
N

E (logZN,ω)

ZN,ω = E

[
exp

(
−2λ

N∑
n=1

(ωn + h)1{(Sn−1,Sn)<0}

)]

Restricting on paths that stay always in the upper half-plane gives

ZN,ω ≥ P [S1 > 0, . . . , SN > 0] ∼ C N−1/2

=⇒ F(λ, h) ≥ 0

The model is: Localized if F(λ, h) > 0, Delocalized if F(λ, h) = 0.

(This definition does correspond to sharply different path behaviors)
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The phase diagram: discrete model

Theorem
The regions L and D are separated by a strictly increasing,
continuous critical line hc(·):

L = {(λ, h) : h < hc(λ)} D = {(λ, h) : h ≥ hc(λ)} .

λ

h
hc(λ)

D
L

Theorem
We have hc(0) = 0 and

h(λ) ≤ hc(λ) ≤ h(λ)

with

h′(0+) =
2
3
, h

′
(0+) = 1− ε .
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The phase diagram: continuum model

The continuum free energy F̃(λ, h) is defined analogously:

F̃(λ, h) := lim
t→∞

1
t
Ẽ
(
log Z̃t,β

)

This time existence is highly non-trivial.

Again F̃(λ, h) ≥ 0. We then define L̃ocalization and D̃elocalization:

L̃ = {(λ, h) : F̃(λ, h) > 0} D̃ = {(λ, h) : F̃(λ, h) = 0}

= {(λ, h) : h < h̃c(λ)} = {(λ, h) : h ≥ h̃c(λ)}

By Brownian scaling F̃(aλ, ah) = a2 F̃(λ, h) for all a, λ, h ≥ 0.

Therefore h̃c(·) is a straight line: h̃c(λ) = m̃ λ .
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The weak coupling limit

Theorem ([BdH 97])

For all λ, h ≥ 0

lim
a↓0

1
a2 F(aλ, ah) = F̃(λ, h) .

Moreover

∃ lim
λ↓0

hc(λ)

λ
= m̃ ∈

[
2
3
, 1
)
. λ

h
hc(λ)h̃c(λ)

D

L

I Long, difficult, technical (but beautiful) proof.
Not an easy consequece of invariance principles!

I Convergence of the slope does not follow from free energy.
I Universality phenomenon for small coupling constants

. . . unfortunately for just one discrete model. Generalization?
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Outline

1. The basic copolymer model

2. The free energy

3. Generalized copolymer models

4. Strategy of the proof
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Beyond the simple random walk

Which features of the SRW should we keep?
Only the process ∆n := 1{(Sn−1,Sn)<0} matters

I Return times to zero {τk}k≥0: renewal process on 2N0
IID inter-arrivals with polynomial tails: P(τ1 = 2n) ∼ cn−3/2

I Excursions signs: fair coin tossing (independent of {τk}k≥0)
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Generalized discrete α-copolymer models

I General renewal process τ = {τk}k≥0 on 2N0 with

P(τ1 = 2n) =
L(n)

n1+α , α ∈ (0, 1) , L(·) slowly varying (?)

I IID sequence {ξn}n≥1 of Be(1
2) random variables (ξn ∈ {0, 1})

The generalized process (∆ = {∆n}n≥0,P) repl. 1{(Sn−1,Sn)<0} is

∆n := ξk for τk−1 < n ≤ τk

One always has ∆n = 1{(Sn−1,Sn)<0} with {Sn}n Markov chain on Z

Discrete Bessel-like process (cα = 1/2− α)

P(Sn+1 = x ± 1|Sn = x) =
1
2

(
1± cα

x
+ o
(1

x

))
yields (?) asymp.
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Generalized discrete α-copolymer models

The charges are generalized to any real IID sequence {ωn}n∈N with

E
(
etω1

)
<∞ ∀t ∈ (−ε,+ε) , E(ω1) = 0 , E(ω2

1) = 1 .

Fix (∆ = {∆n = 1{(Sn−1,Sn)<0}}n≥0,P) & (ω = {ωn}n≥0,P)

The generalized discrete copolymer model is defined by

dPN,ω

dP
(∆) :=

1
ZN,ω

exp

(
−2λ

N∑
n=1

(ωn + h)∆n

)

F(λ, h) := lim
N→∞

1
N

E (logZN,ω)

L = {(λ, h) : F(λ, h) > 0} D = {(λ, h) : F(λ, h) = 0}
= {(λ, h) : h < hc(λ)} = {(λ, h) : h ≥ hc(λ)}

Note that F(·, ·) and hc(·) do depend on the choice of P and P
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The continuum α-copolymer model

For α = 1
2 we have BM {Bt}t≥0, or better ∆̃ = {∆̃t = 1{Bt<0}}t≥0

It suffice to know the zero level set τ̃ = {t ∈ [0,∞) : Bt = 0}
Attaching independent fair coins to the excursions I ⊆ τ̃ c yields ∆̃

For α ∈ (0, 1) let τ̃α be the stable regenerative set of index α, i.e.
I The zero level set of the Bessel(δ) process with δ = 2(1− α)

Bδ
0 = 0 , dBδ

t = dWt +
(δ − 1)

2Bδ
t

dt on Bδ
t > 0

I The (closure of the) image of the α-stable subordinator
(increasing Lévy process with Lévy measure x−1−αdx on R+)

I The limit in law as ε ↓ 0 of the random sets {ε τn}n≥0 in (?)

From τ̃α we obtain (∆̃α = {∆̃α
t }t≥0, P̃) (For α = 1

2 we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011



The basic copolymer model The free energy Generalized copolymer models The proof

The continuum α-copolymer model

For α = 1
2 we have BM {Bt}t≥0, or better ∆̃ = {∆̃t = 1{Bt<0}}t≥0

It suffice to know the zero level set τ̃ = {t ∈ [0,∞) : Bt = 0}

Attaching independent fair coins to the excursions I ⊆ τ̃ c yields ∆̃

For α ∈ (0, 1) let τ̃α be the stable regenerative set of index α, i.e.
I The zero level set of the Bessel(δ) process with δ = 2(1− α)

Bδ
0 = 0 , dBδ

t = dWt +
(δ − 1)

2Bδ
t

dt on Bδ
t > 0

I The (closure of the) image of the α-stable subordinator
(increasing Lévy process with Lévy measure x−1−αdx on R+)

I The limit in law as ε ↓ 0 of the random sets {ε τn}n≥0 in (?)

From τ̃α we obtain (∆̃α = {∆̃α
t }t≥0, P̃) (For α = 1

2 we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011



The basic copolymer model The free energy Generalized copolymer models The proof

The continuum α-copolymer model

For α = 1
2 we have BM {Bt}t≥0, or better ∆̃ = {∆̃t = 1{Bt<0}}t≥0

It suffice to know the zero level set τ̃ = {t ∈ [0,∞) : Bt = 0}
Attaching independent fair coins to the excursions I ⊆ τ̃ c yields ∆̃

For α ∈ (0, 1) let τ̃α be the stable regenerative set of index α, i.e.
I The zero level set of the Bessel(δ) process with δ = 2(1− α)

Bδ
0 = 0 , dBδ

t = dWt +
(δ − 1)

2Bδ
t

dt on Bδ
t > 0

I The (closure of the) image of the α-stable subordinator
(increasing Lévy process with Lévy measure x−1−αdx on R+)

I The limit in law as ε ↓ 0 of the random sets {ε τn}n≥0 in (?)

From τ̃α we obtain (∆̃α = {∆̃α
t }t≥0, P̃) (For α = 1

2 we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011



The basic copolymer model The free energy Generalized copolymer models The proof

The continuum α-copolymer model

For α = 1
2 we have BM {Bt}t≥0, or better ∆̃ = {∆̃t = 1{Bt<0}}t≥0

It suffice to know the zero level set τ̃ = {t ∈ [0,∞) : Bt = 0}
Attaching independent fair coins to the excursions I ⊆ τ̃ c yields ∆̃

For α ∈ (0, 1) let τ̃α be the stable regenerative set of index α

, i.e.
I The zero level set of the Bessel(δ) process with δ = 2(1− α)

Bδ
0 = 0 , dBδ

t = dWt +
(δ − 1)

2Bδ
t

dt on Bδ
t > 0

I The (closure of the) image of the α-stable subordinator
(increasing Lévy process with Lévy measure x−1−αdx on R+)

I The limit in law as ε ↓ 0 of the random sets {ε τn}n≥0 in (?)

From τ̃α we obtain (∆̃α = {∆̃α
t }t≥0, P̃) (For α = 1

2 we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011



The basic copolymer model The free energy Generalized copolymer models The proof

The continuum α-copolymer model

For α = 1
2 we have BM {Bt}t≥0, or better ∆̃ = {∆̃t = 1{Bt<0}}t≥0

It suffice to know the zero level set τ̃ = {t ∈ [0,∞) : Bt = 0}
Attaching independent fair coins to the excursions I ⊆ τ̃ c yields ∆̃

For α ∈ (0, 1) let τ̃α be the stable regenerative set of index α, i.e.
I The zero level set of the Bessel(δ) process with δ = 2(1− α)

Bδ
0 = 0 , dBδ

t = dWt +
(δ − 1)

2Bδ
t

dt on Bδ
t > 0

I The (closure of the) image of the α-stable subordinator
(increasing Lévy process with Lévy measure x−1−αdx on R+)

I The limit in law as ε ↓ 0 of the random sets {ε τn}n≥0 in (?)

From τ̃α we obtain (∆̃α = {∆̃α
t }t≥0, P̃) (For α = 1

2 we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011



The basic copolymer model The free energy Generalized copolymer models The proof

The continuum α-copolymer model

For α = 1
2 we have BM {Bt}t≥0, or better ∆̃ = {∆̃t = 1{Bt<0}}t≥0

It suffice to know the zero level set τ̃ = {t ∈ [0,∞) : Bt = 0}
Attaching independent fair coins to the excursions I ⊆ τ̃ c yields ∆̃

For α ∈ (0, 1) let τ̃α be the stable regenerative set of index α, i.e.
I The zero level set of the Bessel(δ) process with δ = 2(1− α)

Bδ
0 = 0 , dBδ

t = dWt +
(δ − 1)

2Bδ
t

dt on Bδ
t > 0

I The (closure of the) image of the α-stable subordinator
(increasing Lévy process with Lévy measure x−1−αdx on R+)

I The limit in law as ε ↓ 0 of the random sets {ε τn}n≥0 in (?)

From τ̃α we obtain (∆̃α = {∆̃α
t }t≥0, P̃) (For α = 1

2 we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011



The basic copolymer model The free energy Generalized copolymer models The proof

The continuum α-copolymer model

For α = 1
2 we have BM {Bt}t≥0, or better ∆̃ = {∆̃t = 1{Bt<0}}t≥0

It suffice to know the zero level set τ̃ = {t ∈ [0,∞) : Bt = 0}
Attaching independent fair coins to the excursions I ⊆ τ̃ c yields ∆̃

For α ∈ (0, 1) let τ̃α be the stable regenerative set of index α, i.e.
I The zero level set of the Bessel(δ) process with δ = 2(1− α)

Bδ
0 = 0 , dBδ

t = dWt +
(δ − 1)

2Bδ
t

dt on Bδ
t > 0

I The (closure of the) image of the α-stable subordinator
(increasing Lévy process with Lévy measure x−1−αdx on R+)

I The limit in law as ε ↓ 0 of the random sets {ε τn}n≥0 in (?)

From τ̃α we obtain (∆̃α = {∆̃α
t }t≥0, P̃) (For α = 1

2 we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011



The basic copolymer model The free energy Generalized copolymer models The proof

The continuum α-copolymer model

For α = 1
2 we have BM {Bt}t≥0, or better ∆̃ = {∆̃t = 1{Bt<0}}t≥0

It suffice to know the zero level set τ̃ = {t ∈ [0,∞) : Bt = 0}
Attaching independent fair coins to the excursions I ⊆ τ̃ c yields ∆̃

For α ∈ (0, 1) let τ̃α be the stable regenerative set of index α, i.e.
I The zero level set of the Bessel(δ) process with δ = 2(1− α)

Bδ
0 = 0 , dBδ

t = dWt +
(δ − 1)

2Bδ
t

dt on Bδ
t > 0

I The (closure of the) image of the α-stable subordinator
(increasing Lévy process with Lévy measure x−1−αdx on R+)

I The limit in law as ε ↓ 0 of the random sets {ε τn}n≥0 in (?)

From τ̃α we obtain (∆̃α = {∆̃α
t }t≥0, P̃) (For α = 1

2 we recover BM)

Francesco Caravenna Disordered copolymer models February 15, 2011



The basic copolymer model The free energy Generalized copolymer models The proof

The continuum α-copolymer model: free energy

The continuum charges ({dβs}s≥0, P̃) are always white noise

For the α-continuum free energy, replace 1{Bs<0} by ∆̃α
s :

F̃α(λ, h) := lim
t→∞

1
t
Ẽ
(
log Z̃α

t,β

)
Z̃α

t,ω = Ẽ
[
exp
(
−2λ

∫ t

0
(dβs + h ds) ∆̃α

s

)]
Theorem [CG]

F̃α(λ, h) exists and is self-averaging

I Non-trivial, highly technical proof (also for α = 1
2)

I Kingman’s super-additive ergodic theorem for a modified Z̃α
t,ω

I Continuity theory of Gaussian processes plays essential role
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The continuum α-copolymer model: scaling limit

Scaling properties of βs and ∆̃α
s −→ F̃α(aλ, ah) = a2F̃α(λ, h).

Therefore L̃ = {(λ, h) : F̃(λ, h) > 0} D̃ = {(λ, h) : F̃(λ, h) = 0}
= {(λ, h) : h < m̃αλ} = {(λ, h) : h ≥ m̃αλ}

Theorem [CG] (For any discrete α-copolymer model)

lim
a↓0

F (aλ, ah)

a2 = F̃α(λ, h) lim
λ↓0

hc(λ)

λ
= m̃α ∈

[ 1
1+α , 1

)
Theorem
For all λ, h > 0 and ε ∈ (0, 1) there exists a0 > 0 s.t. for all a < a0

F̃α
(

λ

1 + ε
,

h
1− ε

)
≤ F (aλ, ah)

a2 ≤ F̃α ((1 + ε)λ, (1− ε)h)
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Strategy of the proof

Goal: ∀ λ, h > 0, ε ∈ (0, 1) one has for a� 1

1
a2 F (aλ, ah) ≤ 1

a2 F̃ ((1 + ε)aλ, (1− ε)ah)

(and viceversa, with F↔ F̃).

Recall that

F(λ, h) := lim
N→∞

1
N
E logE [exp (−HN(λ, h))]

It suffices to show that HN � H̃N : ∀C > 0, for a� 1

lim sup
N→∞

1
N

logEE
[
exp

(
−C
(
HN(aλ, ah)− H̃N(aλ, (1− ε)ah)

))]
≤ 0

and viceversa, with HN ↔ H̃N .

Proof in four steps: HN =: H0
N � H1

N � H2
N � H3

N � H4
N := H̃N
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Heuristics

Recall that ∆n = 1{(Sn−1,Sn)<0} and

−H0
N(aλ, ah) = −2aλ

N∑
n=1

(ωn + ah)∆n

≈ −2λ
∫ t

0
(dβs + h ds) ∆̃s = −H4

t (λ, h)

Since a� 1, for HN(aλ, ah) ≈ 1 we need N ≈ t/a2 steps, therefore

F(aλ, ah) ≈ a2

F̃(λ, h)

We need to show that ≈ can be made �.
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The proof

Step 1: Coarse-graining of the renewal process.
Recall that ∆n = 1{(Sn−1,Sn)<0} and

−H0
t/a2(aλ, ah) = −2aλ

t/a2∑
n=1

(ωn + ah)∆n

−H1
t/a2(aλ, ah) = −2aλ

t/a2∑
n=1

(ωn + ah)∆η,δ
n

where in ∆η,δ
n we replace the microscopic return times τn by

coarse-grained return times on blocks of size η/a2, skipping
δ/η � 1 blocks between consecutive coarse-grained returns.
Showing that H0

N � H1
N is delicate and very technical.
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The proof

Step 2: From discrete charges to the white noise.
H2

N is obtained from H1
N by replacing the charges ωn by i.i.d.

N(0, 1) (discrete white noise).

This step is quite easy (coupling).

Step 3: From the renewal process to the regenerative set.
H3

N is obtained from H2
N by replacing ∆η,δ

n by an analogous
coarse-grained version ∆̃η,δ

t of the continuous-time process ∆̃t .
Showing that H2

N � H3
N requires careful renewal-type estimates.

Step 4: Inverse coarse-graining of the regenerative set.
H4

N = H̃N is obtained from H4
N by replacing ∆̃η,δ

t by the original
(non coarse-grained) continuous-time process ∆̃t .
This step is analogous to step 1.
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Thank you.
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