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Weak indivisibility

A metric space M = (M; d) is ultrahomogeneous if

every isometry of a finite subspace of M to M
has an extension to an isometry of M onto M

that is to an automorphism of M.

A ultrahomogeneous metric space M is universal if every finite
metric space F with dist(F) ⊆ dist(M) has an isometry into M.

An isometry of a finite subspace of M to a finite subspace of M
is a local isometry or local isomorphism.
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The rationals (Q; d) as metric subspace of the line

are ultrahomogeneous but not universal

because the triangle

1 1
1

does not isometrically embed into (Q; d).

On the other hand, as we will see, the rational Urysohn space

UQ is univesal, because it embeds isometrically

every finite metric space with rational distances.
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A class A of finite metric spaces is closed under amalgamation
if:
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Theorem (R. Fraïssé)
The finite induced substructures of an ultrahomogeneous

metric space are closed under amalgamation.

For every countable class A of finite metric spaces closed

under induced subspaces and amalgamation exists a unique

countable ultrahomogeneous metric space M = (M; d) so that

A is the class of finite metric spaces having an isometry into M.

The space M is the Fraïssé limit of the age A.
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It is not difficult to see that the class AQ

of finite metric spaces with rational distances is

countable, closed under subspaces and has amalgamation.

The Fraïssé limit of AQ is the

rational Urysohn space UQ

whose completion is the Urysohn space U.
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A copy of a metric space M = (M; d)

is the image of M under an isometry.

Let S ⊆ M. Then(
S
)
ε
= {p ∈ M | ∃s ∈ S (d(p, s) < ε)}.
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A metric space M = (M; d) is indivisible if for every partition of

M into finitely many parts there exists a part P of the partition

and an isometry of M into P.

copy

P

P
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A metric space M = (M; d) is approximately indivisible if

for every partition of M into finitely many parts and every ε > 0

there exists

a part P of the partition and an isometry of M into (P)ε.

ε ε
copy

P

(P)ε
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Problem
Characterize the indivisible metric spaces.

Theorem (Delhomme, Laflamme, Pouzet, Sauer)
Divisible metric spaces are bounded.
Approximately indivisible metric spaces are bounded.

Theorem (Delhomme, Laflamme, Pouzet, Sauer)
A countable metric space which is indivisible is totally Cantor
disconnected.

Problem
Characterize the approximately indivisible countable universal
metric spaces.
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Weak indivisibility

Let A be the class of finite metric spaces with distance set
{0,1,2} which do not contain a triangle.1 1

1

It is not difficult to see that A is closed under substructures and
amalgamation. Let F (A) be the Fraïssé limit of A, then

Theorem (P. Komjath, V. Rödl)
The metric space F (A) is indivisible.
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The motivation to look at approximately indivisible metric
spaces has its origin in Dvoretzki’s theorem which then was
sharpened by Milman and then restated by Milman and again
reformulated by V. Pestov to:

Theorem
Let S∞ be the unit sphere in `2. Let f : S∞ → < be a uniformly
continuous function. Then for every ε > 0 and every natural
number n there exists an n-dimensional linear subspace V
such that: osc(f |(V ∩ S∞)) < ε.

A metric space M is oscillation stable if for every bounded
1-Lipschitz function of M into the reals and every ε > 0 the
space contains an isometric copy on which the oscillation of f is
less than ε.
A complete ultrahomogeneous metric space is approximately
indivisible if and only if it is oscillation stable.

DV Sauer On the oscillation stability of universal metric spaces



Introduction
Countable universal metric spaces

Weak indivisibility

The motivation to look at approximately indivisible metric
spaces has its origin in Dvoretzki’s theorem which then was
sharpened by Milman and then restated by Milman and again
reformulated by V. Pestov to:

Theorem
Let S∞ be the unit sphere in `2. Let f : S∞ → < be a uniformly
continuous function. Then for every ε > 0 and every natural
number n there exists an n-dimensional linear subspace V
such that: osc(f |(V ∩ S∞)) < ε.

A metric space M is oscillation stable if for every bounded
1-Lipschitz function of M into the reals and every ε > 0 the
space contains an isometric copy on which the oscillation of f is
less than ε.
A complete ultrahomogeneous metric space is approximately
indivisible if and only if it is oscillation stable.

DV Sauer On the oscillation stability of universal metric spaces



Introduction
Countable universal metric spaces

Weak indivisibility

The motivation to look at approximately indivisible metric
spaces has its origin in Dvoretzki’s theorem which then was
sharpened by Milman and then restated by Milman and again
reformulated by V. Pestov to:

Theorem
Let S∞ be the unit sphere in `2. Let f : S∞ → < be a uniformly
continuous function. Then for every ε > 0 and every natural
number n there exists an n-dimensional linear subspace V
such that: osc(f |(V ∩ S∞)) < ε.

A metric space M is oscillation stable if for every bounded
1-Lipschitz function of M into the reals and every ε > 0 the
space contains an isometric copy on which the oscillation of f is
less than ε.

A complete ultrahomogeneous metric space is approximately
indivisible if and only if it is oscillation stable.

DV Sauer On the oscillation stability of universal metric spaces



Introduction
Countable universal metric spaces

Weak indivisibility

The motivation to look at approximately indivisible metric
spaces has its origin in Dvoretzki’s theorem which then was
sharpened by Milman and then restated by Milman and again
reformulated by V. Pestov to:

Theorem
Let S∞ be the unit sphere in `2. Let f : S∞ → < be a uniformly
continuous function. Then for every ε > 0 and every natural
number n there exists an n-dimensional linear subspace V
such that: osc(f |(V ∩ S∞)) < ε.

A metric space M is oscillation stable if for every bounded
1-Lipschitz function of M into the reals and every ε > 0 the
space contains an isometric copy on which the oscillation of f is
less than ε.
A complete ultrahomogeneous metric space is approximately
indivisible if and only if it is oscillation stable.

DV Sauer On the oscillation stability of universal metric spaces



Introduction
Countable universal metric spaces

Weak indivisibility

A set N of reals is universal if there exists

a universal metric space M = (M; d) with dist(M) = N.

Problem
Characterize the bounded sets N of reals for which

the corresponding universal metric space is

approximately indivisible

N = [0,1) ∪ {2,3}
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Given a countable set N of positive reals and

the complete graph on four vertices with edges labeled

{a,b, c,d ,e} ⊆ N so that the

two labeled triangles

are metric.

a

b

c

d

a

b c

d

e

FACT: If there is always a number

x

x in N so that the resulting

labeled graph is metric, then N is universal. Conversely, if M

is a universal metric space and N = dist(M), there always is

such a number x .
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In the Abad, Nguyen paper:

Theorem
Every complete separable ultrahomogeneous metric space Y
includes a countable ultrahomogeneous dense metric
subspace.

Theorem (J. Lopez-Abad and L. Nguyen Van Thé)
The following are equivalent:

1. S is oscillation stable (equiv., approximately indivisible).
2. For every strictly positive m ∈ ω, Um is indivisible.

Theorem (L. Nguyen Van Thé and N. Sauer)
For every strictly positive m ∈ ω, Um is indivisible.

Theorem (N. Sauer)
Every countable universal metric space with a finite set of
distances is indivisible.
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Let N, a subset of the non negative reals be given.

A subset S of reals has property e if

for every ε > 0 and every s ∈ S

N ∩ (s − ε, s] 6= ∅.

For two reals a and b let:

a⊕ b = sup{z ∈ N | z < a + b},
a � b = sup{z ∈ N | z ≤ a + b}.
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Given ε > 0.

1. The set S = { i
n | 0 ≤ i ≤ n} for sufficiently large n has the

property that for all x ∈ [0,1] ∩Q exists s ∈ S so that x ≤ s
and s − x is “small".

2. S has property e with respect to the set [0,1] ∩Q.
3. There exists a finite set T ⊇ S of numbers having property

e which is closed under ⊕ and �, namely T = S.
4. There exists a finite set R ⊆ [0,1] so that for all t ∈ T there

is a r ∈ R for which |r − t | is “small", take R = T = S,
having property e and which is universal.

5. The universal structure U with dist(U) = R = S is
indivisible according to the Nguyen, Sauer theorem.

6. The universal structure U has an isometric copy U∗ in SQ
so that (U∗)ε = SQ.

7. The copy U∗ can be chosen in such a way that the
indivisibility of U implies the approximate indivisibility of
SQ, the difficult part of the Lopez-Abad, Nguyen theorem.
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Weak indivisibility

Given ε > 0 and a bounded non negative universal set N of
reals with the property that for every δ > 0 the set N ∩ (0, δ) 6= ∅.
Let M be the corresponding universal metric space.

1. There exists a finite set S of numbers so that for all x ∈ N
exists s ∈ S so that x ≤ s and s − x is “small".

2. S has property e with respect to the set N.
3. There exists a finite set T ⊇ S of numbers having property

e which is closed under ⊕ and �.
4. There exists a finite set R ⊆ N so that for all t ∈ T there is

an r ∈ R for which |r − t | is “small" and which is universal.
5. The universal structure U with dist(U) = R is indivisible

according to the Sauer theorem.

6. Theorem (N. Sauer)
Every countable universal metric space M has for every ε > 0 a
universal subspace U with a finite set of distances and with(
U
)
ε
= M.
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Countable universal metric spaces

Weak indivisibility

Let N ⊆ <≥0 with an accumulation point at 0 be universal.

Then N \ (0, δ] := N ′ for some sufficiently small δ is again
universal. Let δ ∈ N.

Let U be the universal metric space with dist(U) = N.

Let V be the universal metric space with dist(V) = N ′

There exists a copy V∗ of V in U with
(
V∗

)
δ
= U.

It follows that V is δ+ ε-approximately indivisible for every ε > 0.

If δ2 ∈ N then there exists a copy V∗ of V in U with
(
V∗

)
δ
2
= U.

It follows that V is δ
2 + ε-approximately indivisible for every ε > 0

and hence indivisible.

(Actually any number in [ δ2 , δ) would do to give this result.)
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Weak indivisibility

Let N ⊆ <≥0 be universal and 0 is not an accumulation point.

W
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Weak indivisibility

Let N be a finite universal set of numbers.

Let M = (M; d) the corresponding countable

universal metric space with dist(M) = N.

For r a positive real let r 〈−〉 = max
(
[0, r) ∩ N

)
.

For r < max N let r 〈+〉 = min
(
(r ,max N] ∩ N

)
. a

For r = max N let r 〈+〉 = r .

The number r ∈ N is a jump number if r 〈+〉 > 2 · r .
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Weak indivisibility

The set B ⊆ N is a block of N if there exists an enumeration

(bi : i ∈ n + 1) of B so that:

1. bi < bi+1 for all i ∈ n.

2. b0 > b〈−〉0 + b〈−〉0 .

3. bi+1 = b〈+〉i for all i ∈ n.
4. bi + b0 ≥ bi+1 for all i ∈ n.
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Weak indivisibility

Theorem (N. Sauer)
The distance set N of a universal metric space is the union of

disjoint blocks Bi so that:

1. x < y for all x ∈ Bi and y ∈ Bi+1.

2. 2 ·maxBi < minBi+1.

3. x + min(Bi) ≥ x 〈+〉 for all x ∈ Bi .
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Weak indivisibility

Let M = (M; d) be a metric space.

The set A ⊆ M is age complete if every finite subset

F ⊆ M has an isometry into A.

(Negation, age incomplete.)

WB

Sauer On the oscillation stability of universal metric spaces



Introduction
Countable universal metric spaces

Weak indivisibility

The metric space M = (M; d) is weakly indivisible if

A ∪ B = M and A age incomplete implies that there is an

isometric embedding of M into B.

The metric space M is age indivisible if A ∪ B = M and

A age incomplete implies that B is age complete.

So far there are only two and to some extent unsatisfactory

examples of age indivisible but not weakly indivisible

ultrahomogenous structures known.

There are no age indivisible but not weakly indivisible

universal metric spaces known.
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Weak indivisibility

Let U be the Urysohn space and UQ the universal metric space
with the non negative rationals as distances and UN the
universal metric space with the non negative integers as
distance set.

Using the Hales-Jewett theorem it is easy to see that universal
metric spaces are age indivisible. Hence UN and UQ are age
indivisible.

Because UQ is not totally Cantor disconnected it is not
indivisible and because UN is not bounded it is not indivisible
according to the Delhomme, Laflamme, Pouzet, Sauer
theorems.
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Weak indivisibility

Theorem (L. Nguyen Van Thé and N. Sauer)
The space UN is weakly indivisible.

Theorem (L. Nguyen Van Thé and N. Sauer)
Let UQ = A ∪ B and ε > 0. If A is age incomplete then UQ
embeds into (B)ε.

Theorem (L. Nguyen Van Thé and N. Sauer)
Let UQ = A ∪ B and ε > 0. If a compact metric subspace K
of U does not embed into (A)ε then U embeds into (B)ε.
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Weak indivisibility

Let S be the set of rationals in [0,2] and ES the class of all finite
metric spaces X with distances in S which embed isometrically
into the unit sphere S∞ of `2 with the property that {0`2} ∪ X is
affinely independent.

Theorem (L. Nguyen Van Thé)
There is a unique countable ultrahomogeneous metric space
S∞S whose class of finite metric subspaces is exactly ES.
Moreover, the metric completion of S∞S is S∞.

Theorem (L. Nguyen Van Thé and N. Sauer)
The space S∞S is age indivisible but not weakly indivisible.

MR

Sauer On the oscillation stability of universal metric spaces



Introduction
Countable universal metric spaces

Weak indivisibility

Theorem (C. Laflamme, L. Nguyen Van Thé, M. Pouzet, N.
Sauer)
Let V be a vector space of countable dimension over Q and MV
be the midpoint structure associated with the vector space V .
Then:

1. MV is age indivisible.
2. MV is not weakly indivisible.
3. MV is universal fir its age: Every countable structure with

the same age as MV is embeddable into MV .
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Weak indivisibility

Theorem
Let ε > 0 and k a positive integer. There exists N = N(k , ε) so
that: Every normed n ≥ N dimensional space X contains a
k-dimensional subspace Ek with d(Ek , `

k
2) ≤ 1 + ε.

V. Milman k ≥ cε2 log n.

DVB
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Weak indivisibility

Theorem (J. Matoušek, V. Rödl)
Let X be an affinely independent finite metric subspace of S∞
with circumradius r , and let α > 0. Then there exists a finite
metric subspace Z of S∞ with circumradius r + α such that for
every partition Z = B ∪ R, the space X embeds in B or R.

MRB
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