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Countable first-order structures and separable metric
structures

A countable first-order structure M
consists of

• a countable set M.

• a family of relations (Ri )i∈I , i.e
Ri ⊆ Mni for some nonnegative
integer ni .

• We always assume that the equality
is included in our list of relations.

The quantifier-free type of an uple
ḡ ∈ Mn is the list of relations satisfied
by uples contained in ḡ .

A separable metric structure M consists
of

• a separable complete metric space
(M, d) of diameter at most 1.

• a family of relations (Ri )i∈I , i.e
uniformly continuous maps
Ri : Mni → [0, 1].

• We always assume that the distance
is included in our list of relations.

The quantifier-free type of an uple
ḡ ∈ Mn is the list of values taken by the
relations on uples contained in ḡ .
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ḡ ∈ Mn is the list of values taken by the
relations on uples contained in ḡ .
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Ultrahomogeneity

A countable first-order structure M is
ultrahomogeneous if

∀m̄, n̄ ∈ Mk (tpqf (m̄) = tpqf (n̄))

⇓

∃g ∈ Aut(M) g(m̄) = n̄

A separable metric structure M is
approximately ultrahomogenous if

∀m̄, n̄ ∈ Mk (tpqf (m̄) = tpqf (n̄))

⇓

∀ε > 0 ∃g ∈ Aut(M) d(g(m̄), n̄) < ε
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Examples

• (N,=), whose automorphism group
we’ll denote S∞.

• The random graph R, i.e the
unique countable graph which is
both universal and
ultrahomogeneous.

• the countable atomless Boolean
algebra B∞.

• The Urysohn space of diameter 1
(U1, d), i.e the unique Polish metric
space of diameter 1 which is both
universal and approximately
ultrahomogeneous.

• The group of measure-preserving
automorphisms of [0, 1], seen as
Aut(MALGµ, d , d(., ∅)), with

d(A,B) = µ(A∆B) .
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Topologies on automorphism groups (I)

If G = Aut(M) for some countable
structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I g(mi ) = ni}

where I is finite and mi , ni ∈ M.

This is the pointwise convergence
topology for the discrete metric on M; it
turns G into a Polish group.

If G = Aut(M) for some separable
metric structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I d(g(mi ), ni ) < ε}

where I is finite, mi , ni ∈ M and ε > 0.

This is the pointwise convergence
topology on (M, d); it turns G into a
Polish group.



Countable first-order structures vs separable metric structures Ample generics and applications Finite oscillation stability

Topologies on automorphism groups (I)

If G = Aut(M) for some countable
structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I g(mi ) = ni}

where I is finite and mi , ni ∈ M.

This is the pointwise convergence
topology for the discrete metric on M; it
turns G into a Polish group.

If G = Aut(M) for some separable
metric structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I d(g(mi ), ni ) < ε}

where I is finite, mi , ni ∈ M and ε > 0.

This is the pointwise convergence
topology on (M, d); it turns G into a
Polish group.



Countable first-order structures vs separable metric structures Ample generics and applications Finite oscillation stability

Topologies on automorphism groups (I)

If G = Aut(M) for some countable
structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I g(mi ) = ni}

where I is finite and mi , ni ∈ M.

This is the pointwise convergence
topology for the discrete metric on M; it
turns G into a Polish group.

If G = Aut(M) for some separable
metric structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I d(g(mi ), ni ) < ε}

where I is finite, mi , ni ∈ M and ε > 0.

This is the pointwise convergence
topology on (M, d); it turns G into a
Polish group.



Countable first-order structures vs separable metric structures Ample generics and applications Finite oscillation stability

Topologies on automorphism groups (I)

If G = Aut(M) for some countable
structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I g(mi ) = ni}

where I is finite and mi , ni ∈ M.

This is the pointwise convergence
topology for the discrete metric on M; it
turns G into a Polish group.

If G = Aut(M) for some separable
metric structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I d(g(mi ), ni ) < ε}

where I is finite, mi , ni ∈ M and ε > 0.

This is the pointwise convergence
topology on (M, d); it turns G into a
Polish group.



Countable first-order structures vs separable metric structures Ample generics and applications Finite oscillation stability

Topologies on automorphism groups (I)

If G = Aut(M) for some countable
structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I g(mi ) = ni}

where I is finite and mi , ni ∈ M.

This is the pointwise convergence
topology for the discrete metric on M; it
turns G into a Polish group.

If G = Aut(M) for some separable
metric structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I d(g(mi ), ni ) < ε}

where I is finite, mi , ni ∈ M and ε > 0.

This is the pointwise convergence
topology on (M, d); it turns G into a
Polish group.



Countable first-order structures vs separable metric structures Ample generics and applications Finite oscillation stability

Topologies on automorphism groups (I)

If G = Aut(M) for some countable
structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I g(mi ) = ni}

where I is finite and mi , ni ∈ M.

This is the pointwise convergence
topology for the discrete metric on M; it
turns G into a Polish group.

If G = Aut(M) for some separable
metric structure M, endow G with the
topology with a basis of open sets of the
form

{g ∈ G : ∀i ∈ I d(g(mi ), ni ) < ε}

where I is finite, mi , ni ∈ M and ε > 0.

This is the pointwise convergence
topology on (M, d); it turns G into a
Polish group.



Countable first-order structures vs separable metric structures Ample generics and applications Finite oscillation stability

Topologies on automorphism groups (II)

Theorem
The automorphism group of a countable
structure is (isomorphic to) a closed
subgroup of S∞.

Conversely, a closed subgroup of S∞ is
(isomorphic to) the automorphism group
of an ultrahomogeneous countable
structure.

Theorem
The automorphism group of a separable
metric sructure is a Polish group.
Conversely, any Polish group is
(isomorphic to) the automorphism group
of some approximately
ultrahomogeneous separable metric
structure.
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Uniform metric

The natural Polish topology on the automorphism group of a separable
metric structure M is given by the pointwise convergence topology on
(M, d). But it is also natural to consider the uniform metric du on
Aut(M), given by

du(g , h) = sup{d(g(m), h(m)) : m ∈ M} .

The topology of a Polish group G is always given by a left-invariant
metric dL; the uniform metric associated to it is

du(g , h) = sup{dL(gk, hk) : k ∈ G}

du is always complete and usually nonseparable. For instance, the
uniform metric on U(`2) is given by the operator norm.
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Polish topometric groups

Definition (Ben Yaacov, Berenstein, M.)
A Polish topometric group is a triple (G , τ, ∂) such that

• (G , τ) is a Polish group

• ∂ is a bi-invariant, complete metric, and refines τ .

• ∂ is τ -lower semicontinuous, i.e each set {(g , h) : ∂(g , h) ≤ r} is
closed.

The important example is (Aut(M), τ, du), where τ is the topology of
pointwise convergence, and du is the uniform metric.

If (G , τ, ∂) is a Polish topometric group and A ⊆ G , we let, for any ε > 0,

(A)ε = {g ∈ G : ∃a ∈ A, d(a, g) < ε}
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pointwise convergence, and du is the uniform metric.

If (G , τ, ∂) is a Polish topometric group and A ⊆ G , we let, for any ε > 0,

(A)ε = {g ∈ G : ∃a ∈ A, d(a, g) < ε}
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Ample generics

Definition (Hodges,Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if
for all n there is some (g1, . . . , gn) ∈ G n

such that

{(hg1h−1, . . . , hgnh−1) : h ∈ G}

is comeagre in G n.

Some examples:

• S∞ (Hodges-Hodkinson-Lascar-Shelah)

• Aut(R) (Hrushovski)

• Aut(B∞) (Kechris-Rosendal)

All Polish groups known to have ample
generics are subgroups of S∞.

Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group has ample
generics if for all n there is some
(g1, . . . , gn) ∈ G n such that(
{(hg1h−1, . . . , hgnh−1) : h ∈ G}

)
ε

is comeagre in G n for all ε > 0.

Some examples (of the form (G , dL, du)):

• Aut(U1).

• U(`2).

• Aut([0, 1], λ).

The three groups above have meagre
conjugacy classes.
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Applications of ample generics

Theorem (Kechris-Rosendal)
Assume G is a Polish group with ample
generics, H is a topological group with
uniform Suslin number < 2ℵ0 and
ϕ : G → H is a homomorphism. Then ϕ
is continuous.

Corollary
Assume G is a Polish group with ample
generics. Then G has the small index
property, i.e any subgroup H of G such
that [G : H] < 2ℵ0 is open.

Theorem (Ben Yaacov, Berenstein, M.)

Assume (G , τ, ∂) is a Polish topometric
group with ample generics, H is a
topological group with uniform Suslin
number < 2ℵ0 and ϕ : G → H is a
homomorphism such that
ϕ : (G , ∂)→ H is continuous. Then ϕ is
continuous from (G , τ) to H.

Theorem (Ben Yaacov, M.)
Assume (G , τ, ∂) is a Polish topometric
group with ample generics. Then G has
the small density property, i.e:
For any seminorm l on G which is
∂-lower semicontinuous and has a
density character < 2ℵ0 , l is
τ -continuous.
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A dictionary

Usual notions:

• A (countable) set M.

• Relations on M, i.e subsets of Mk

for some k.

• (open) subgroups of the
automorphism group of M.

• Colorings of M, i.e maps
c : M → {0, . . . , k}.

Continuous counterparts:

• a (separable) complete bounded
metric space (M, d).

• Relations on (M, d), i.e uniformly
continuous maps from Mk to [0, 1].

• (continuous) seminorms on the
automorphism group of M.

• Uniformly continous maps
c : M → [0, 1]k .
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Extreme amenability and finite oscillation stability (I)

Definition (Granirer-Mitchell)
A topological group G is extremely amenable if any continous action of
G on a compact Hausdorff space X admits a (global) fixed point.

Definition (Milman)
Let a group G act on a set X , and consider a function f : X → [0, 1]. f is
finitely oscillation stable if for any finite F ⊆ X and any ε > 0 there is
g ∈ G such that the oscillation of f on gF is < ε.
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Extreme amenability and finite oscillation stability (II)

Proposition (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of S∞.
Then the following are equivalent:

• G is extremely amenable.

• For any open subgroup V of G ,
every coloring c : G/V → {0, 1}
and every finite A ⊆ G/V , there is
g ∈ G and i ∈ {0, 1} such that
c(g .a) = i for all a ∈ A.

Proposition (Pestov)
Let G be a Polish group. Then the
following are equivalent:

• G is extremely amenable.

• There is a directed collection of
bounded left-invariant continuous
pseudometrics {di}, determining
the topology of G and such that
each metric space G/di is finitely
oscillation stable.
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Does the analogy go further?

Theorem (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of S∞.
Then the following are equivalent:

• G is extremely amenable.

• G = Aut(A), where A is the Fräıssé
limit of a Fräıssé order class with
the Ramsey property.

?
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