# Applications of continuous logic to the theory of Polish groups

Julien Melleray

Institut Camille Jordan (Université de Lyon) http://www.math.univ-lyon1.fr/~melleray

Workshop on Concentration Phenomenon, Transformation Groups and Ramsey Theory

Fields Institute, Toronto

A countable first-order structure  ${\cal M}$  consists of

A countable first-order structure  $\mathcal{M}$  consists of

• a countable set M.

A countable first-order structure  ${\mathcal M}$  consists of

- a countable set M.
- a family of relations  $(R_i)_{i \in I}$ , i.e  $R_i \subseteq M^{n_i}$  for some nonnegative integer  $n_i$ .

A countable first-order structure  ${\mathcal M}$  consists of

- a countable set M.
- a family of relations  $(R_i)_{i \in I}$ , i.e  $R_i \subseteq M^{n_i}$  for some nonnegative integer  $n_i$ .
- We always assume that the equality is included in our list of relations.

A countable first-order structure  ${\mathcal M}$  consists of

- a countable set M.
- a family of relations  $(R_i)_{i \in I}$ , i.e  $R_i \subseteq M^{n_i}$  for some nonnegative integer  $n_i$ .
- We always assume that the equality is included in our list of relations.

The *quantifier-free type* of an uple  $\bar{g} \in M^n$  is the list of relations satisfied by uples contained in  $\bar{g}$ .

A countable first-order structure  $\mathcal{M}$  consists of

- a countable set M.
- a family of relations  $(R_i)_{i \in I}$ , i.e  $R_i \subseteq M^{n_i}$  for some nonnegative integer  $n_i$ .
- We always assume that the equality is included in our list of relations.

The quantifier-free type of an uple  $\bar{g} \in M^n$  is the list of relations satisfied by uples contained in  $\bar{g}$ .

A separable metric structure  ${\mathcal M}$  consists of

### A countable first-order structure $\mathcal{M}$ consists of

- a countable set M.
- a family of relations  $(R_i)_{i \in I}$ , i.e  $R_i \subseteq M^{n_i}$  for some nonnegative integer  $n_i$ .
- We always assume that the equality is included in our list of relations.

The quantifier-free type of an uple  $\bar{g} \in M^n$  is the list of relations satisfied by uples contained in  $\bar{g}$ .

A separable metric structure  ${\mathcal M}$  consists of

 a separable complete metric space (M, d) of diameter at most 1.

A countable first-order structure  ${\mathcal M}$  consists of

- a countable set *M*.
- a family of relations  $(R_i)_{i \in I}$ , i.e  $R_i \subseteq M^{n_i}$  for some nonnegative integer  $n_i$ .
- We always assume that the equality is included in our list of relations.

The quantifier-free type of an uple  $\bar{g} \in M^n$  is the list of relations satisfied by uples contained in  $\bar{g}$ .

A separable metric structure  ${\mathcal M}$  consists of

- a separable complete metric space (M, d) of diameter at most 1.
- a family of relations  $(R_i)_{i \in I}$ , i.e uniformly continuous maps  $R_i \colon M^{n_i} \to [0,1]$ .

A countable first-order structure  $\mathcal{M}$  consists of

- a countable set *M*.
- a family of relations  $(R_i)_{i \in I}$ , i.e  $R_i \subseteq M^{n_i}$  for some nonnegative integer  $n_i$ .
- We always assume that the equality is included in our list of relations.

The quantifier-free type of an uple  $\bar{g} \in M^n$  is the list of relations satisfied by uples contained in  $\bar{g}$ .

A separable metric structure  ${\mathcal M}$  consists of

- a separable complete metric space (M, d) of diameter at most 1.
- a family of relations  $(R_i)_{i \in I}$ , i.e uniformly continuous maps  $R_i \colon M^{n_i} \to [0,1]$ .
- We always assume that the distance is included in our list of relations.

A countable first-order structure  $\mathcal M$  consists of

- a countable set *M*.
- a family of relations  $(R_i)_{i \in I}$ , i.e  $R_i \subseteq M^{n_i}$  for some nonnegative integer  $n_i$ .
- We always assume that the equality is included in our list of relations.

The quantifier-free type of an uple  $\bar{g} \in M^n$  is the list of relations satisfied by uples contained in  $\bar{g}$ .

A separable metric structure  ${\mathcal M}$  consists of

- a separable complete metric space (M, d) of diameter at most 1.
- a family of relations  $(R_i)_{i \in I}$ , i.e uniformly continuous maps  $R_i \colon M^{n_i} \to [0,1]$ .
- We always assume that the distance is included in our list of relations.

The quantifier-free type of an uple  $\bar{g} \in M^n$  is the list of values taken by the relations on uples contained in  $\bar{g}$ .

A countable first-order structure  $\mathcal{M}$  is  $\emph{ultrahomogeneous}$  if

A countable first-order structure  $\mathcal M$  is *ultrahomogeneous* if

$$\forall \bar{m}, \bar{n} \in M^k \ (tp_{qf}(\bar{m}) = tp_{qf}(\bar{n}))$$

A countable first-order structure  $\mathcal M$  is *ultrahomogeneous* if

$$\forall ar{m}, ar{n} \in M^k \ (tp_{qf}(ar{m}) = tp_{qf}(ar{n}))$$
  $\Downarrow$ 

$$\exists g \in Aut(\mathcal{M}) \ g(\bar{m}) = \bar{n}$$

A countable first-order structure  ${\mathcal M}$  is  ${\it ultrahomogeneous}$  if

$$\forall \bar{m}, \bar{n} \in M^k \ (tp_{qf}(\bar{m}) = tp_{qf}(\bar{n}))$$

$$\exists g \in Aut(\mathcal{M}) \ g(\bar{m}) = \bar{n}$$

A separable metric structure  ${\cal M}$  is approximately ultrahomogenous if

A countable first-order structure  $\mathcal M$  is  $\mbox{\it ultrahomogeneous}$  if

$$\forall \bar{m}, \bar{n} \in M^k \ (tp_{qf}(\bar{m}) = tp_{qf}(\bar{n}))$$

$$\exists g \in Aut(\mathcal{M}) \ g(\bar{m}) = \bar{n}$$

A separable metric structure  ${\mathcal M}$  is approximately ultrahomogenous if

$$\forall ar{m}, ar{n} \in M^k \ (tp_{qf}(ar{m}) = tp_{qf}(ar{n}))$$
 $\Downarrow$ 

A countable first-order structure  $\mathcal{M}$  is *ultrahomogeneous* if

$$\forall \bar{m}, \bar{n} \in M^k \ (tp_{qf}(\bar{m}) = tp_{qf}(\bar{n}))$$
 $\Downarrow$ 

$$\exists g \in Aut(\mathcal{M}) \ g(\bar{m}) = \bar{n}$$

A separable metric structure  ${\cal M}$  is approximately ultrahomogenous if

$$\forall \bar{m}, \bar{n} \in M^k \ (tp_{qf}(\bar{m}) = tp_{qf}(\bar{n}))$$
 $\Downarrow$ 

$$\forall \varepsilon > 0 \,\exists g \in Aut(\mathcal{M}) \, d(g(\bar{m}), \bar{n}) < \varepsilon$$

•  $(\mathbb{N}, =)$ , whose automorphism group we'll denote  $S_{\infty}$ .

- $(\mathbb{N}, =)$ , whose automorphism group we'll denote  $S_{\infty}$ .
- The random graph R, i.e the unique countable graph which is both universal and ultrahomogeneous.

- $(\mathbb{N}, =)$ , whose automorphism group we'll denote  $S_{\infty}$ .
- The random graph R, i.e the unique countable graph which is both universal and ultrahomogeneous.
- the countable atomless Boolean algebra  $B_{\infty}$ .

- $(\mathbb{N}, =)$ , whose automorphism group we'll denote  $S_{\infty}$ .
- The random graph R, i.e the unique countable graph which is both universal and ultrahomogeneous.
- the countable atomless Boolean algebra  $B_{\infty}$ .

• The Urysohn space of diameter 1 ( $\mathbb{U}_1, d$ ), i.e the unique Polish metric space of diameter 1 which is both universal and approximately ultrahomogeneous.

- $(\mathbb{N}, =)$ , whose automorphism group we'll denote  $S_{\infty}$ .
- The random graph R, i.e the unique countable graph which is both universal and ultrahomogeneous.
- the countable atomless Boolean algebra  $B_{\infty}$ .

- The Urysohn space of diameter 1 ( $\mathbb{U}_1, d$ ), i.e the unique Polish metric space of diameter 1 which is both universal and approximately ultrahomogeneous.
- The group of measure-preserving automorphisms of [0,1], seen as  $Aut(MALG_{\mu},d,d(.,\emptyset))$ , with

$$d(A, B) = \mu(A\Delta B)$$
.

If  $G = Aut(\mathcal{M})$  for some countable structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

If  $G = Aut(\mathcal{M})$  for some countable structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

$$\{g \in G : \forall i \in I \ g(m_i) = n_i\}$$

where I is finite and  $m_i, n_i \in M$ .

If  $G = Aut(\mathcal{M})$  for some countable structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

$$\{g \in G \colon \forall i \in I \ g(m_i) = n_i\}$$

where I is finite and  $m_i, n_i \in M$ .

This is the pointwise convergence topology for the discrete metric on M; it turns G into a Polish group.

If  $G = Aut(\mathcal{M})$  for some countable structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

If  $G = Aut(\mathcal{M})$  for some separable metric structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

$$\{g \in G : \forall i \in I \ g(m_i) = n_i\}$$

where I is finite and  $m_i, n_i \in M$ .

This is the pointwise convergence topology for the discrete metric on M; it turns G into a Polish group.

If  $G = Aut(\mathcal{M})$  for some countable structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

$$\{g \in G : \forall i \in I \ g(m_i) = n_i\}$$

where I is finite and  $m_i, n_i \in M$ .

This is the pointwise convergence topology for the discrete metric on M; it turns G into a Polish group.

If  $G = Aut(\mathcal{M})$  for some separable metric structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

$$\{g \in G : \forall i \in I \ d(g(m_i), n_i) < \varepsilon\}$$

where I is finite,  $m_i, n_i \in M$  and  $\varepsilon > 0$ .

If  $G = Aut(\mathcal{M})$  for some countable structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

$$\{g \in G : \forall i \in I \ g(m_i) = n_i\}$$

where I is finite and  $m_i, n_i \in M$ .

This is the pointwise convergence topology for the discrete metric on M; it turns G into a Polish group.

If  $G = Aut(\mathcal{M})$  for some separable metric structure  $\mathcal{M}$ , endow G with the topology with a basis of open sets of the form

$$\{g \in G : \forall i \in I \ d(g(m_i), n_i) < \varepsilon\}$$

where I is finite,  $m_i, n_i \in M$  and  $\varepsilon > 0$ .

This is the pointwise convergence topology on (M, d); it turns G into a Polish group.

#### Theorem

The automorphism group of a countable structure is (isomorphic to) a closed subgroup of  $S_{\infty}$ .

#### **Theorem**

The automorphism group of a countable structure is (isomorphic to) a closed subgroup of  $S_{\infty}$ .

Conversely, a closed subgroup of  $S_{\infty}$  is (isomorphic to) the automorphism group of an ultrahomogeneous countable structure

#### Theorem

The automorphism group of a countable structure is (isomorphic to) a closed subgroup of  $S_{\infty}$ .

Conversely, a closed subgroup of  $S_{\infty}$  is (isomorphic to) the automorphism group of an ultrahomogeneous countable structure.

#### **Theorem**

The automorphism group of a separable metric sructure is a Polish group.

#### **Theorem**

The automorphism group of a countable structure is (isomorphic to) a closed subgroup of  $S_{\infty}$ . Conversely, a closed subgroup of  $S_{\infty}$  is

(isomorphic to) the automorphism group of an ultrahomogeneous countable structure.

#### **Theorem**

The automorphism group of a separable metric sructure is a Polish group. Conversely, any Polish group is (isomorphic to) the automorphism group of some approximately ultrahomogeneous separable metric structure.

The natural Polish topology on the automorphism group of a separable metric structure  $\mathcal{M}$  is given by the pointwise convergence topology on (M,d). But it is also natural to consider the uniform metric  $d_u$  on  $Aut(\mathcal{M})$ , given by

The natural Polish topology on the automorphism group of a separable metric structure  $\mathcal{M}$  is given by the pointwise convergence topology on (M,d). But it is also natural to consider the uniform metric  $d_u$  on  $Aut(\mathcal{M})$ , given by

$$d_u(g,h) = \sup\{d(g(m),h(m)) \colon m \in M\} .$$

The natural Polish topology on the automorphism group of a separable metric structure  $\mathcal{M}$  is given by the pointwise convergence topology on (M,d). But it is also natural to consider the uniform metric  $d_u$  on  $Aut(\mathcal{M})$ , given by

$$d_u(g,h)=\sup\{d(g(m),h(m))\colon m\in M\}\ .$$

The topology of a Polish group G is always given by a left-invariant metric  $d_L$ ; the uniform metric associated to it is

The natural Polish topology on the automorphism group of a separable metric structure  $\mathcal{M}$  is given by the pointwise convergence topology on (M,d). But it is also natural to consider the uniform metric  $d_u$  on  $Aut(\mathcal{M})$ , given by

$$d_u(g,h)=\sup\{d(g(m),h(m))\colon m\in M\}\ .$$

The topology of a Polish group G is always given by a left-invariant metric  $d_L$ ; the uniform metric associated to it is

$$d_u(g,h) = \sup\{d_L(gk,hk) \colon k \in G\}$$

#### Uniform metric

The natural Polish topology on the automorphism group of a separable metric structure  $\mathcal{M}$  is given by the pointwise convergence topology on (M,d). But it is also natural to consider the uniform metric  $d_u$  on  $Aut(\mathcal{M})$ , given by

$$d_u(g,h)=\sup\{d(g(m),h(m))\colon m\in M\}\ .$$

The topology of a Polish group G is always given by a left-invariant metric  $d_L$ ; the uniform metric associated to it is

$$d_u(g,h) = \sup\{d_L(gk,hk) \colon k \in G\}$$

 $d_u$  is always complete and usually nonseparable. For instance, the uniform metric on  $\mathcal{U}(\ell_2)$  is given by the operator norm.

Definition (Ben Yaacov, Berenstein, M.) A *Polish topometric group* is a triple  $(G, \tau, \partial)$  such that

Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group is a triple  $(G, \tau, \partial)$  such that

•  $(G, \tau)$  is a Polish group

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group is a triple  $(G, \tau, \partial)$  such that

- $(G, \tau)$  is a Polish group
- $\partial$  is a bi-invariant, complete metric, and refines  $\tau$ .

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group is a triple  $(G, \tau, \partial)$  such that

- $(G, \tau)$  is a Polish group
- $\partial$  is a bi-invariant, complete metric, and refines  $\tau$ .
- $\partial$  is  $\tau$ -lower semicontinuous, i.e each set  $\{(g,h): \partial(g,h) \leq r\}$  is closed.

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group is a triple  $(G, \tau, \partial)$  such that

- $(G, \tau)$  is a Polish group
- $\partial$  is a bi-invariant, complete metric, and refines  $\tau$ .
- $\partial$  is  $\tau$ -lower semicontinuous, i.e each set  $\{(g,h): \partial(g,h) \leq r\}$  is closed.

The important example is  $(Aut(\mathcal{M}), \tau, d_u)$ , where  $\tau$  is the topology of pointwise convergence, and  $d_u$  is the uniform metric.

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group is a triple  $(G, \tau, \partial)$  such that

- $(G, \tau)$  is a Polish group
- $\partial$  is a bi-invariant, complete metric, and refines  $\tau$ .
- $\partial$  is  $\tau$ -lower semicontinuous, i.e each set  $\{(g,h): \partial(g,h) \leq r\}$  is closed.

The important example is  $(Aut(\mathcal{M}), \tau, d_u)$ , where  $\tau$  is the topology of pointwise convergence, and  $d_u$  is the uniform metric.

If  $(G, \tau, \partial)$  is a Polish topometric group and  $A \subseteq G$ , we let, for any  $\varepsilon > 0$ ,

$$(A)_{\varepsilon} = \{ g \in G : \exists a \in A, d(a, g) < \varepsilon \}$$

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

ullet  $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

- ullet  $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)
- Aut(R) (Hrushovski)

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

- ullet  $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)
- Aut(R) (Hrushovski)
- $Aut(B_{\infty})$  (Kechris-Rosendal)

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

- ullet  $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)
- Aut(R) (Hrushovski)
- $Aut(B_{\infty})$  (Kechris-Rosendal)

All Polish groups known to have ample generics are subgroups of  $S_{\infty}$ .

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

- ullet  $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)
- Aut(R) (Hrushovski)
- $Aut(B_{\infty})$  (Kechris-Rosendal)

All Polish groups known to have ample generics are subgroups of  $S_{\infty}$ .

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\left(\left\{\left(hg_1h^{-1},\ldots,hg_nh^{-1}\right)\colon h\in G\right\}\right)_{\varepsilon}$$

is comeagre in  $G^n$  for all  $\varepsilon > 0$ .

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

- $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)
- Aut(R) (Hrushovski)
- $Aut(B_{\infty})$  (Kechris-Rosendal)

All Polish groups known to have ample generics are subgroups of  $S_{\infty}$ .

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\left(\left\{\left(hg_1h^{-1},\ldots,hg_nh^{-1}\right)\colon h\in G\right\}\right)_{\varepsilon}$$

is comeagre in  $G^n$  for all  $\varepsilon > 0$ . Some examples (of the form  $(G, d_L, d_{\mu})$ ):

•  $Aut(\mathbb{U}_1)$ .

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

- $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)
- Aut(R) (Hrushovski)
- $Aut(B_{\infty})$  (Kechris-Rosendal)

All Polish groups known to have ample generics are subgroups of  $S_{\infty}$ .

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\left(\left\{\left(hg_1h^{-1},\ldots,hg_nh^{-1}\right)\colon h\in G\right\}\right)_{\varepsilon}$$

is comeagre in  $G^n$  for all  $\varepsilon > 0$ . Some examples (of the form  $(G, d_L, d_{\mu})$ ):

- Aut(U₁).
- $\mathcal{U}(\ell_2)$ .

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

- ullet  $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)
- Aut(R) (Hrushovski)
- $Aut(B_{\infty})$  (Kechris-Rosendal)

All Polish groups known to have ample generics are subgroups of  $S_{\infty}$ .

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\left(\left\{\left(hg_1h^{-1},\ldots,hg_nh^{-1}\right)\colon h\in G\right\}\right)_{\varepsilon}$$

is comeagre in  $G^n$  for all  $\varepsilon > 0$ . Some examples (of the form  $(G, d_L, d_{\mu})$ ):

- $Aut(\mathbb{U}_1)$ .
- $\mathcal{U}(\ell_2)$ .
- $Aut([0,1], \lambda)$ .

#### Definition (Hodges, Hodkinson, Lascar, Shelah)

A Polish group G has ample generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\{(hg_1h^{-1},\ldots,hg_nh^{-1}): h \in G\}$$

is comeagre in  $G^n$ .

Some examples:

- $S_{\infty}$  (Hodges-Hodkinson-Lascar-Shelah)
- Aut(R) (Hrushovski)
- $Aut(B_{\infty})$  (Kechris-Rosendal)

All Polish groups known to have ample generics are subgroups of  $S_{\infty}$ .

### Definition (Ben Yaacov, Berenstein, M.)

A Polish topometric group has *ample* generics if for all n there is some  $(g_1, \ldots, g_n) \in G^n$  such that

$$\left(\left\{\left(hg_1h^{-1},\ldots,hg_nh^{-1}\right)\colon h\in G\right\}\right)_{\varepsilon}$$

is comeagre in  $G^n$  for all  $\varepsilon > 0$ .

Some examples (of the form  $(G, d_L, d_u)$ ):

- $Aut(\mathbb{U}_1)$ .
- $\mathcal{U}(\ell_2)$ .
- $Aut([0,1], \lambda)$ .

The three groups above have meagre conjugacy classes.

### Theorem (Kechris-Rosendal)

Assume G is a Polish group with ample generics, H is a topological group with uniform Suslin number  $< 2^{\aleph_0}$  and  $\varphi \colon G \to H$  is a homomorphism. Then  $\varphi$  is continuous.

### Theorem (Kechris-Rosendal)

Assume G is a Polish group with ample generics, H is a topological group with uniform Suslin number  $< 2^{\aleph_0}$  and  $\varphi \colon G \to H$  is a homomorphism. Then  $\varphi$  is continuous.

#### Corollary

Assume G is a Polish group with ample generics. Then G has the *small index* property, i.e any subgroup H of G such that  $[G:H] < 2^{\aleph_0}$  is open.

### Theorem (Kechris-Rosendal)

Assume G is a Polish group with ample generics, H is a topological group with uniform Suslin number  $< 2^{\aleph_0}$  and  $\varphi \colon G \to H$  is a homomorphism. Then  $\varphi$  is continuous.

#### Theorem (Ben Yaacov, Berenstein, M.)

Assume  $(G, \tau, \partial)$  is a Polish topometric group with ample generics, H is a topological group with uniform Suslin number  $< 2^{\aleph_0}$  and  $\varphi \colon G \to H$  is a homomorphism such that  $\varphi \colon (G, \partial) \to H$  is continuous. Then  $\varphi$  is continuous from  $(G, \tau)$  to H.

#### Corollary

Assume G is a Polish group with ample generics. Then G has the *small index* property, i.e any subgroup H of G such that  $[G:H] < 2^{\aleph_0}$  is open.

### Theorem (Kechris-Rosendal)

Assume G is a Polish group with ample generics, H is a topological group with uniform Suslin number  $< 2^{\aleph_0}$  and  $\varphi \colon G \to H$  is a homomorphism. Then  $\varphi$  is continuous.

### Corollary

Assume G is a Polish group with ample generics. Then G has the *small index* property, i.e any subgroup H of G such that  $[G:H] < 2^{\aleph_0}$  is open.

#### Theorem (Ben Yaacov, Berenstein, M.)

Assume  $(G, \tau, \partial)$  is a Polish topometric group with ample generics, H is a topological group with uniform Suslin number  $< 2^{\aleph_0}$  and  $\varphi \colon G \to H$  is a homomorphism such that  $\varphi \colon (G, \partial) \to H$  is continuous. Then  $\varphi$  is continuous from  $(G, \tau)$  to H.

### Theorem (Ben Yaacov, M.)

Assume  $(G, \tau, \partial)$  is a Polish topometric group with ample generics. Then G has the *small density property*, i.e: For any seminorm I on G which is  $\partial$ -lower semicontinuous and has a density character  $< 2^{\aleph_0}$ , I is  $\tau$ -continuous

#### Usual notions:

• A (countable) set M.

#### Usual notions:

- A (countable) set M.
- Relations on M, i.e subsets of M<sup>k</sup> for some k.

#### Usual notions:

- A (countable) set M.
- Relations on M, i.e subsets of M<sup>k</sup> for some k.
- (open) subgroups of the automorphism group of  $\mathcal{M}$ .

#### Usual notions:

- A (countable) set M.
- Relations on M, i.e subsets of M<sup>k</sup> for some k.
- (open) subgroups of the automorphism group of M.
- Colorings of M, i.e maps  $c: M \rightarrow \{0, \dots, k\}$ .

#### Usual notions:

- A (countable) set M.
- Relations on M, i.e subsets of M<sup>k</sup> for some k.
- (open) subgroups of the automorphism group of M.
- Colorings of M, i.e maps  $c: M \rightarrow \{0, \dots, k\}$ .

#### Usual notions:

- A (countable) set M.
- Relations on M, i.e subsets of M<sup>k</sup> for some k.
- (open) subgroups of the automorphism group of M.
- Colorings of M, i.e maps  $c: M \rightarrow \{0, \dots, k\}$ .

#### Continuous counterparts:

 a (separable) complete bounded metric space (M, d).

#### Usual notions:

- A (countable) set M.
- Relations on M, i.e subsets of M<sup>k</sup> for some k.
- (open) subgroups of the automorphism group of M.
- Colorings of M, i.e maps  $c: M \rightarrow \{0, \dots, k\}$ .

- a (separable) complete bounded metric space (M, d).
- Relations on (M, d), i.e uniformly continuous maps from M<sup>k</sup> to [0, 1].

#### Usual notions:

- A (countable) set M.
- Relations on M, i.e subsets of M<sup>k</sup> for some k.
- (open) subgroups of the automorphism group of M.
- Colorings of M, i.e maps  $c: M \rightarrow \{0, \dots, k\}$ .

- a (separable) complete bounded metric space (M, d).
- Relations on (M, d), i.e uniformly continuous maps from M<sup>k</sup> to [0, 1].
- (continuous) seminorms on the automorphism group of  $\mathcal{M}$ .

#### Usual notions:

- A (countable) set M.
- Relations on M, i.e subsets of M<sup>k</sup> for some k.
- (open) subgroups of the automorphism group of M.
- Colorings of M, i.e maps  $c: M \rightarrow \{0, \dots, k\}$ .

- a (separable) complete bounded metric space (M, d).
- Relations on (M, d), i.e uniformly continuous maps from M<sup>k</sup> to [0, 1].
- (continuous) seminorms on the automorphism group of  $\mathcal{M}$ .
- Uniformly continous maps
   c: M → [0, 1]<sup>k</sup>.

### Definition (Granirer-Mitchell)

A topological group G is *extremely amenable* if any continous action of G on a compact Hausdorff space X admits a (global) fixed point.

### Definition (Granirer-Mitchell)

A topological group G is extremely amenable if any continous action of G on a compact Hausdorff space X admits a (global) fixed point.

#### Definition (Milman)

Let a group G act on a set X, and consider a function  $f\colon X\to [0,1]$ . f is finitely oscillation stable if for any finite  $F\subseteq X$  and any  $\varepsilon>0$  there is  $g\in G$  such that the oscillation of f on gF is  $<\varepsilon$ .

Proposition (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ .

Then the following are equivalent:

#### Proposition (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ .

Then the following are equivalent:

• *G* is extremely amenable.

#### Proposition (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ . Then the following are equivalent:

- *G* is extremely amenable.
- For any open subgroup V of G, every coloring  $c \colon G/V \to \{0,1\}$  and every finite  $A \subseteq G/V$ , there is  $g \in G$  and  $i \in \{0,1\}$  such that c(g.a) = i for all  $a \in A$ .

#### Proposition (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ . Then the following are equivalent:

- *G* is extremely amenable.
- For any open subgroup V of G, every coloring  $c \colon G/V \to \{0,1\}$  and every finite  $A \subseteq G/V$ , there is  $g \in G$  and  $i \in \{0,1\}$  such that c(g.a) = i for all  $a \in A$ .

### Proposition (Pestov)

Let G be a Polish group. Then the following are equivalent:

#### Proposition (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ . Then the following are equivalent:

- *G* is extremely amenable.
- For any open subgroup V of G, every coloring  $c \colon G/V \to \{0,1\}$  and every finite  $A \subseteq G/V$ , there is  $g \in G$  and  $i \in \{0,1\}$  such that c(g.a) = i for all  $a \in A$ .

### Proposition (Pestov)

Let G be a Polish group. Then the following are equivalent:

• *G* is extremely amenable.

#### Proposition (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ . Then the following are equivalent:

- *G* is extremely amenable.
- For any open subgroup V of G, every coloring  $c \colon G/V \to \{0,1\}$  and every finite  $A \subseteq G/V$ , there is  $g \in G$  and  $i \in \{0,1\}$  such that c(g.a) = i for all  $a \in A$ .

#### Proposition (Pestov)

Let G be a Polish group. Then the following are equivalent:

- *G* is extremely amenable.
- There is a directed collection of bounded left-invariant continuous pseudometrics  $\{d_i\}$ , determining the topology of G and such that each metric space  $G/d_i$  is finitely oscillation stable.

Theorem (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ .

Then the following are equivalent:

Theorem (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ . Then the following are equivalent:

• G is extremely amenable.

#### Theorem (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ . Then the following are equivalent:

- *G* is extremely amenable.
- G = Aut(A), where A is the Fraïssé limit of a Fraïssé order class with the Ramsey property.

#### Theorem (Kechris-Pestov-Todorcevic)

Let G be a closed subgroup of  $S_{\infty}$ . Then the following are equivalent:

- *G* is extremely amenable.
- G = Aut(A), where A is the Fraïssé limit of a Fraïssé order class with the Ramsey property.

?