Embeddings and Hypergraph of Copies of Countable Homogeneous Structures

C. Laflamme, M. Pouzet and N. Sauer

University of Calgary, Université Claude-Bernard Lyon1

Thematic Program on Asymptotic Geometric Analysis – October 2010

General setting

Let $\mathcal{R} = (E, ...)$ be a structure and consider:

- $Aut(\mathcal{R}) = \text{automorphisms of } \mathcal{R}$
- ▶ $Emb(\mathcal{R}) = \text{embeddings of } \mathcal{R}$
- ▶ $\mathcal{I}so(\mathcal{R}) = \{range(f) : f \in Emb(\mathcal{R})\} = \text{set of copies of } \mathcal{R}$

Basic facts

- $ightharpoonup |Emb(\mathcal{R})| = |\mathcal{I}so(\mathcal{R})||Aut(\mathcal{R})|$
- $ightharpoonup \overline{Aut(\mathcal{R})} \subseteq Emb(\mathcal{R})$
- ▶ If E countable, then $Aut(\mathcal{R})$ is a G_{δ} subset of $Emb(\mathcal{R})$
- ▶ If E countable, then $\mathcal{I}so(\mathcal{R})$ is an analytic subset of 2^E

Example

One can have two countable structures $\mathcal R$ and $\mathcal R'$, each embeddable in the other, but

$$\begin{aligned} |\textit{Aut}(\mathcal{R})| &= 1 & |\mathcal{I}\textit{so}(\mathcal{R})| = \aleph_0 & |\textit{Emb}(\mathcal{R})| = \aleph_0 \\ |\textit{Aut}(\mathcal{R}')| &= 2^{\aleph_0} & |\mathcal{I}\textit{so}(\mathcal{R}')| = 2^{\aleph_0} & |\textit{Emb}(\mathcal{R}')| = 2^{\aleph_0} \end{aligned}$$

Hypergraph of copies

What can be said about:

- \triangleright $\mathcal{H}_{\mathcal{R}}$, the hypergraph of copies of \mathcal{R} ?
- ▶ $Aut(\mathcal{H}_{\mathcal{R}})$, its automorphism group?

In particular

▶ How are $Aut(\mathcal{R})$ and $Aut(\mathcal{H}_{\mathcal{R}})$ related if at all?

Homogeneous structures

A structure is *(ultra)homogeneous* if every isomorphism between finite substructures extends to an automorphism of the entire structure.

Notice that in this case if $\overline{Aut(\mathcal{R})} = Emb(\mathcal{R})$

Examples:

Fraïssé classes

Finite linear orders

Finite graphs

Finite graphs omitting K_n

Finite metric spaces with rational dist.

And many more....

Fraïssé limits

Rationals

Rado graph

 K_n -free graph

Rational Urysohn space

Rationals

Observation

If $f: \mathbb{Q} \to \mathbb{Q}$ is a bijection preserving copies (and conversely), then f is order preserving or reverse order preserving.

So $Aut(\mathcal{H}_{\mathbb{Q}})$ "is" $Aut(\mathbb{Q},<)$

Rationals

Proof.

Else fix x such that f sends $L = (-\infty, x)$ both above and below f(x).

Now L is copy of \mathbb{Q} , but $L \cup \{x\} = (\infty, x]$ is not, so the same holds for their image.

Thus f(x) either there is a largest element a in f(L) below f(x), or a least element in f(L) above f(x).

Let $a' = f^{-1}(a)$. But now $L \cup \{x\} \setminus \{a'\}$ is not copy, while its image is.

K_n -Free

Theorem

If $\Gamma = (V, E)$ is the K_n -free graph, then $Aut(\mathcal{H}_{\Gamma})$ is $Aut(\Gamma)$

That is no bijection, other than graph isomorphisms of Γ , which preserves copies of Γ (and conversely).

Proof.

(Triangle-Free) Let $f: V \to V$ preserve copies, and suppose some edge (a,b) is mapped to a non edge.

For simplicity define a new graph $\Gamma' = (V, E')$ by $(x, y) \in E' \leftrightarrow (f(x), f(y)) \in E$. So $X \subseteq V$ is a copy in Γ iff it is a copy in Γ' .

In Γ':

- 1. $A \cup B \cup R \cup \{a, b\}$ is NOT a copy.
- 2. $A \cup B \cup R \cup \{a\}$ IS a copy.
- 3. $A \cup B \cup R \cup \{b\}$ IS a copy.

So the same is true in Γ . But in Γ , $2\&3 \implies 1$. Contradiction.

Rado Graph

Definition

For $\mathcal{R} = (E, ...)$ a relational structures, then $X \subseteq E$ is called **thin** is does not contain a copy of \mathcal{R} .

Theorem

Let $\Gamma = (V, E)$ be the Rado graph, and X, X' two thin sets.

Then any bijection $f: X \to X'$ extends to an automorphism of \mathcal{H}_{Γ} .

Proof.

Let $f: X \to X'$ be a bijection between thin sets.

Write $V = \bigcup_n C_n$, and list $V \setminus X = \langle x_n : n \in \omega \rangle$.

Extend f as $\hat{f} = \bigcup_n f_n$ such that for each n:

- 1. $dom(f_n) = C_n$
- 2. There is k(n) so that for all $k \ge k(n)$ the type of x_k over C_n is the same as $\hat{f}(x_k)$ over $\hat{f}(C_n)$.

Proof.

(Cont'd) To show that it works, let Γ_1 be a copy of Γ , we show that $\hat{f}(\Gamma_1)$ is also a copy.

We need to realize every type in $\hat{f}(\Gamma_1)$.

Question

- ▶ What about the Urysohn space, or other homogeneous structures?
- ▶ If f is a bijection preserving copies, does the inverse also preserve copies?
- ▶ What about automorphisms of the poset $(\mathcal{I}so(G), \subseteq)$? Are they induced by automorphisms of the hypergraph?