Point realizations of near-actions of groups of isometries

Aleksandra Kwiatkowska joint with Sławomir Solecki

University of Illinois at Urbana-Champaign

October 14, 2010

Definitions

Definition

A Polish group is a separable, completely metrizable topological group.

Definitions

Definition

A Polish group is a separable, completely metrizable topological group.

Definition

We use (X, λ) to denote the standard Lebesgue space (we can think X = [0, 1] and $\lambda =$ Lebesgue measure).

Definitions

Definition

A Polish group is a separable, completely metrizable topological group.

Definition

We use (X, λ) to denote the standard Lebesgue space (we can think X = [0, 1] and $\lambda =$ Lebesgue measure).

Definition

Let $Aut(X, \lambda)$ denote the group of measure preserving automorphisms of (X, λ) . Equipped with the weakest topology such that evey map (for every A)

$$g \to \lambda(A \triangle gA)$$

is continuous is a Polish group.

More definitions

Definition

A near-action of a Polish group G on (X, λ) is a continuous homomorphism from G to the group $Aut(X, \lambda)$.

More definitions

Definition

A near-action of a Polish group G on (X, λ) is a continuous homomorphism from G to the group $Aut(X, \lambda)$.

Remark

A measure preserving Borel action of G on (X, λ) induces a near-action.

More definitions

Definition

A near-action of a Polish group G on (X, λ) is a continuous homomorphism from G to the group $Aut(X, \lambda)$.

Remark

A measure preserving Borel action of G on (X, λ) induces a near-action.

Question (Main Question)

Given a Polish group G. Does every near-action of G admit a spatial model (i.e. is it induced from some Borel measure preserving action of G)?

Theorem (Mackey, 1962)

Every near-action of a Polish locally compact group admits a spatial model.

Theorem (Mackey, 1962)

Every near-action of a Polish locally compact group admits a spatial model.

Definition

By S_{∞} we denote the group of all permutations of natural numbers. This is a Polish group with the pointwise topology.

Theorem

Let G be a Polish group. Then the following are equivalent:

1. *G* is a closed subgroup of S_{∞} ,

Theorem

Let G be a Polish group. Then the following are equivalent:

- 1. *G* is a closed subgroup of S_{∞} ,
- 2. G admits a countable nbhd basis at identity consisting of open subgroups,

Theorem

Let G be a Polish group. Then the following are equivalent:

- 1. *G* is a closed subgroup of S_{∞} ,
- 2. G admits a countable nbhd basis at identity consisting of open subgroups,
- 3. *G* is an automorphism group of a countable infinite structure.

Theorem

Let G be a Polish group. Then the following are equivalent:

- 1. G is a closed subgroup of S_{∞} ,
- 2. G admits a countable nbhd basis at identity consisting of open subgroups,
- 3. G is an automorphism group of a countable infinite structure.

Examples

 \mathbb{Z} , $\mathbb{Z}^{\mathbb{N}}$, $Aut(\mathbb{Q},<)$, $Homeo(2^{\mathbb{N}})$

Theorem

Let G be a Polish group. Then the following are equivalent:

- 1. *G* is a closed subgroup of S_{∞} ,
- 2. G admits a countable nbhd basis at identity consisting of open subgroups,
- 3. G is an automorphism group of a countable infinite structure.

Examples

 \mathbb{Z} , $\mathbb{Z}^{\mathbb{N}}$, $Aut(\mathbb{Q},<)$, $Homeo(2^{\mathbb{N}})$

Theorem (Glasner-Weiss, 2005)

Every near-action of every closed subgroup of S_{∞} admits a spatial model.

Definition (Glasner-Tsirelson-Weiss)

A near-action of G on (X,λ) is whirly if for any A of positive measure and any neighbourhood V of the identity in G, $\lambda(VA)=1$.

Definition (Glasner-Tsirelson-Weiss)

A near-action of G on (X,λ) is whirly if for any A of positive measure and any neighbourhood V of the identity in G, $\lambda(VA)=1$.

Example (Groups having whirly actions)

1. $Aut(X, \lambda)$

Definition (Glasner-Tsirelson-Weiss)

A near-action of G on (X,λ) is whirly if for any A of positive measure and any neighbourhood V of the identity in G, $\lambda(VA)=1$.

Example (Groups having whirly actions)

- 1. $Aut(X, \lambda)$
- 2. U(H) the unitary group

Definition (Glasner-Tsirelson-Weiss)

A near-action of G on (X,λ) is whirly if for any A of positive measure and any neighbourhood V of the identity in G, $\lambda(VA)=1$.

Example (Groups having whirly actions)

- 1. $Aut(X, \lambda)$
- 2. U(H) the unitary group
- 3. $L^0(X,\lambda,S^1)$ measurable functions with the metric of convergence in measure

Definition (Glasner-Tsirelson-Weiss)

A near-action of G on (X,λ) is whirly if for any A of positive measure and any neighbourhood V of the identity in G, $\lambda(VA)=1$.

Example (Groups having whirly actions)

- 1. $Aut(X, \lambda)$
- 2. U(H) the unitary group
- 3. $L^0(X, \lambda, S^1)$ measurable functions with the metric of convergence in measure

Proposition (Glasner-Tsirelson-Weiss)

No whirly action can admit a spatial model.

Examples of Polish groups of isometries of separable locally compact metric spaces:

1. locally compact Polish groups,

Examples of Polish groups of isometries of separable locally compact metric spaces:

- 1. locally compact Polish groups,
- 2. closed subgroups of S_{∞} ,

Examples of Polish groups of isometries of separable locally compact metric spaces:

- 1. locally compact Polish groups,
- 2. closed subgroups of S_{∞} ,
- closed subgroups of countable products of locally compact Polish groups.

Examples of Polish groups of isometries of separable locally compact metric spaces:

- 1. locally compact Polish groups,
- 2. closed subgroups of S_{∞} ,
- closed subgroups of countable products of locally compact Polish groups.

Theorem (Gao-Kechris)

Polish groups of isometries of separable locally compact metric spaces are precisely closed subgroups of

$$\prod_{n\in\mathbb{N}}S_{\infty}\ltimes H_n^{\mathbb{N}},$$

where H_n are locally compact Polish.

Main Theorem

Theorem (K.-Solecki)

Every near-action of a Polish group of isometries of a separable locally compact metric space admits a spatial model.

Characterization of the group of isometries

Theorem (K.-Solecki)

Let G be Polish. Then, the following are equivalent.

- 1. *G* is a group of isometries of a separable locally compact metric space.
- 2. Each neighbourhood V of I in G contains a closed subgroup H such that N(H) (the normalizer of H) is open and N(H)/H is a locally compact group.

Characterization of the group of isometries

Theorem (K.-Solecki)

Let G be Polish. Then, the following are equivalent.

- 1. *G* is a group of isometries of a separable locally compact metric space.
- 2. Each neighbourhood V of I in G contains a closed subgroup H such that N(H) (the normalizer of H) is open and N(H)/H is a locally compact group.

```
"N(H)/H is a locally compact group" can be replaced by "N(H)/H is a Lie group".
```

Projective Lie groups

Definition

A locally compact Polish group is called Lie projective if for every open $1 \in U \subseteq G$ there is a compact normal subgroup K of G such that $K \subseteq U$ and that G/K is a Lie group.

Projective Lie groups

Definition

A locally compact Polish group is called Lie projective if for every open $1 \in U \subseteq G$ there is a compact normal subgroup K of G such that $K \subseteq U$ and that G/K is a Lie group.

Theorem (Montgomery-Zippin)

Suppose that G is a locally compact separable group. Then there is an open subgroup G' < G that is Lie projective.

Closure properties of a group of isometries

Groups of isometries are closed under taking:

- 1. countable products,
- 2. closed subgroups,

Closure properties of a group of isometries

Groups of isometries are closed under taking:

- 1. countable products,
- closed subgroups,
- 3. images of continuous homomorphisms onto Polish groups.

Let G be Polish. Suppose that each neighbourhood V of 1 in G contains a closed normal subgroup H such that G/H is locally compact. Then, G is a group of isometries of a separable locally compact metric space.

Let G be Polish. Suppose that each neighbourhood V of 1 in G contains a closed normal subgroup H such that G/H is locally compact. Then, G is a group of isometries of a separable locally compact metric space.

1. Take $V_1 \supseteq V_2 \supseteq V_3 \supseteq \dots$ with diameters going to 0.

Let G be Polish. Suppose that each neighbourhood V of 1 in G contains a closed normal subgroup H such that G/H is locally compact. Then, G is a group of isometries of a separable locally compact metric space.

- 1. Take $V_1 \supseteq V_2 \supseteq V_3 \supseteq \dots$ with diameters going to 0.
- 2. Take $H_i < G$ with $H_i \subseteq V_i$.

Let G be Polish. Suppose that each neighbourhood V of 1 in G contains a closed normal subgroup H such that G/H is locally compact. Then, G is a group of isometries of a separable locally compact metric space.

- 1. Take $V_1 \supseteq V_2 \supseteq V_3 \supseteq \dots$ with diameters going to 0.
- 2. Take $H_i < G$ with $H_i \subseteq V_i$.
- 3. Let $f: G \to \text{Iso}(\bigoplus_i (G/H_i))$ be given by

$$f(g)(xH_i)=(gx)H_i.$$