Ramsey Degrees of Boron Tree Structures

Jakub Jasiński

October 15, 2010

Ramsey Degree

- Let \mathcal{K} be a class of finite structures with a fixed signature \mathcal{L}.

Ramsey Degree

- Let \mathcal{K} be a class of finite structures with a fixed signature \mathcal{L}.
- If $\mathbf{A} \in \mathcal{K}$, we define $t(\mathbf{A}, \mathcal{K})$ to be the least t, if it exists, such that for any $\mathbf{B} \geq \mathbf{A}$ in $\mathcal{K}, k \geq 2$, there is $\mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \geq \mathbf{B}$ and given any k-colouring of the copies of \mathbf{A} in \mathbf{C}, there is a copy \mathbf{B}^{\prime} of \mathbf{B} in \mathbf{C} such that any copy of \mathbf{A} in \mathbf{B}^{\prime} assumes at most t colours. If such a t does not exist, we define $t(\mathbf{A}, \mathcal{K})=\infty$.

Ramsey Degree

- Let \mathcal{K} be a class of finite structures with a fixed signature \mathcal{L}.
- If $\mathbf{A} \in \mathcal{K}$, we define $t(\mathbf{A}, \mathcal{K})$ to be the least t, if it exists, such that for any $\mathbf{B} \geq \mathbf{A}$ in $\mathcal{K}, k \geq 2$, there is $\mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \geq \mathbf{B}$ and given any k-colouring of the copies of \mathbf{A} in \mathbf{C}, there is a copy \mathbf{B}^{\prime} of \mathbf{B} in \mathbf{C} such that any copy of \mathbf{A} in \mathbf{B}^{\prime} assumes at most t colours. If such a t does not exist, we define $t(\mathbf{A}, \mathcal{K})=\infty$.
- We call $t(\mathbf{A}, \mathcal{K})$ the Ramsey degree of \mathbf{A} (in $\mathcal{K})$.

Fouché's Class

- Let the signature \mathcal{L} consist of the 2 -ary relation symbol E and a 1-ary relation symbol R.

Fouché's Class

- Let the signature \mathcal{L} consist of the 2 -ary relation symbol E and a 1 -ary relation symbol R.
- Let \mathcal{T}_{h} denote the class of structures with signature \mathcal{L} that correspond to rooted trees of height h, i.e., E corresponds to the edge relation, while $\mathbf{A} \models R(r)$ iff r is the root of the tree.

Fouché's Class

- Let the signature \mathcal{L} consist of the 2 -ary relation symbol E and a 1 -ary relation symbol R.
- Let \mathcal{T}_{h} denote the class of structures with signature \mathcal{L} that correspond to rooted trees of height h, i.e., E corresponds to the edge relation, while $\mathbf{A} \models R(r)$ iff r is the root of the tree.

Theorem (Fouché, 1999)
If $\mathbf{A} \in \mathcal{T}_{h}$, then $t\left(\mathbf{A}, \mathcal{T}_{h}\right)$ equals the number of possible "orientations" of \mathbf{A}. In particular, $t\left(\mathbf{A}, \mathcal{T}_{h}\right)=1$ iff for all $h^{\prime} \leq h$, given two vertexes in A of height h^{\prime}, their valence is the same.

Fouché's Orientations

- Let $\varphi: A \rightarrow m^{\leq h+1}$ be a structural embedding.

Fouché's Orientations

- Let $\varphi: A \rightarrow m^{\leq h+1}$ be a structural embedding.
- The orientation O corresponding to φ is a sequence of vectors v_{i} such that if $v \in A$, the height of v is i and $\varphi(v)$ is the j-th vertex "from the left," then the valence of v is equal to $\left(v_{i}\right)_{j}$.

Fouché's Orientations

- Let $\varphi: A \rightarrow m^{\leq h+1}$ be a structural embedding.
- The orientation O corresponding to φ is a sequence of vectors v_{i} such that if $v \in A$, the height of v is i and $\varphi(v)$ is the j-th vertex "from the left," then the valence of v is equal to $\left(v_{i}\right)_{j}$.
- Suppose for all $h^{\prime} \leq h$, given two vertexes in A of height h^{\prime}, their valence is the same. Then the only possible orientation of \mathbf{A} is

$$
\left(m_{0}\right),\left(m_{1}, \ldots, m_{1}\right), \ldots,(1, \ldots, 1)
$$

where $m_{h^{\prime}}$ is the valence of elements of height h^{\prime}.

Boron Trees I

- A boron tree is a finite connected graph without cycles, whose every vertex has valence either 1 or 3 .

Boron Trees I

- A boron tree is a finite connected graph without cycles, whose every vertex has valence either 1 or 3 .
- Let \mathcal{L} be a signature with a 4-ary relation symbol R.

Boron Trees I

- A boron tree is a finite connected graph without cycles, whose every vertex has valence either 1 or 3 .
- Let \mathcal{L} be a signature with a 4 -ary relation symbol R.
- To a boron tree T, we associate a structure (T) with signature \mathcal{L} as follows:

Boron Trees I

- A boron tree is a finite connected graph without cycles, whose every vertex has valence either 1 or 3 .
- Let \mathcal{L} be a signature with a 4 -ary relation symbol R.
- To a boron tree T, we associate a structure (T) with signature \mathcal{L} as follows:
- The universe of (T) consists of the leaves of T.

Boron Trees I

- A boron tree is a finite connected graph without cycles, whose every vertex has valence either 1 or 3 .
- Let \mathcal{L} be a signature with a 4 -ary relation symbol R.
- To a boron tree T, we associate a structure (T) with signature \mathcal{L} as follows:
- The universe of (T) consists of the leaves of T.
- $(T) \models R(a, b, c, d)$ iff we have the following picture

Boron Trees II

- Let \mathcal{B}_{0} be the class of all structures \mathbf{A} such that $\mathbf{A}=(T)$ for some boron tree T. Let us call \mathcal{B}_{0} elements boron tree structures.

Boron Trees II

- Let \mathcal{B}_{0} be the class of all structures \mathbf{A} such that $\mathbf{A}=(T)$ for some boron tree T. Let us call \mathcal{B}_{0} elements boron tree structures.
- A boron tree structure corresponds to a unique boron tree (up to isomorphism):

Boron Trees II

- Let \mathcal{B}_{0} be the class of all structures \mathbf{A} such that $\mathbf{A}=(T)$ for some boron tree T. Let us call \mathcal{B}_{0} elements boron tree structures.
- A boron tree structure corresponds to a unique boron tree (up to isomorphism):

Fact
Let T_{0}, T_{1} be boron trees. Let $\mathbf{A}_{0}, \mathbf{A}_{1} \in \mathcal{B}_{0}$ be such that $\mathbf{A}_{i}=\left(T_{i}\right)$. If $\varphi: A_{0} \rightarrow A_{1}$ is an isomorphism of structures, then there is a graph isomorphism $\lambda: T_{0} \rightarrow T_{1}$ such that $\lambda \upharpoonright A_{0}=\varphi$.

Canonical Boron Tree Structures

- Define $\mathbf{B}(n)$ to be the boron tree structure with the universe 2^{n}, i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \backslash\{\emptyset\}$.

Canonical Boron Tree Structures

- Define $\mathbf{B}(n)$ to be the boron tree structure with the universe 2^{n}, i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \backslash\{\emptyset\}$.
- If $a, b \in B(n)$, then $a \sqcap b$ is the longest common initial segment:

Canonical Boron Tree Structures

- Define $\mathbf{B}(n)$ to be the boron tree structure with the universe 2^{n}, i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \backslash\{\emptyset\}$.
- If $a, b \in B(n)$, then $a \sqcap b$ is the longest common initial segment:

Canonical Boron Tree Structures

- Define $\mathbf{B}(n)$ to be the boron tree structure with the universe 2^{n}, i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \backslash\{\emptyset\}$.
- If $a, b \in B(n)$, then $a \sqcap b$ is the longest common initial segment:

Fact
For any $\mathbf{A} \in \mathcal{B}_{0}$, there is n such that \mathbf{A} embeds in $\mathbf{B}(n)$.

Canonical Boron Tree Structures

- Define $\mathbf{B}(n)$ to be the boron tree structure with the universe 2^{n}, i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \backslash\{\emptyset\}$.
- If $a, b \in B(n)$, then $a \sqcap b$ is the longest common initial segment:

Fact
For any $\mathbf{A} \in \mathcal{B}_{0}$, there is n such that \mathbf{A} embeds in $\mathbf{B}(n)$.

Orientations I

- Let $\varphi: A \rightarrow B(n)$ be an embedding.

Orientations I

- Let $\varphi: A \rightarrow B(n)$ be an embedding.
- The beginning b of $\varphi^{\prime \prime} A$ is the longest common initial segment among all the elements of $\varphi^{\prime \prime} A$.

Orientations I

- Let $\varphi: A \rightarrow B(n)$ be an embedding.
- The beginning b of $\varphi^{\prime \prime} A$ is the longest common initial segment among all the elements of $\varphi^{\prime \prime} A$.
- Let b_{i} be b with i appended at the end.

Orientations I

- Let $\varphi: A \rightarrow B(n)$ be an embedding.
- The beginning b of $\varphi^{\prime \prime} A$ is the longest common initial segment among all the elements of $\varphi^{\prime \prime} A$.
- Let b_{i} be b with i appended at the end.
- The left side of $\varphi^{\prime \prime} A$ consists of all the elements of $\varphi^{\prime \prime} A$ that begin with b_{0}.

Orientations I

- Let $\varphi: A \rightarrow B(n)$ be an embedding.
- The beginning b of $\varphi^{\prime \prime} A$ is the longest common initial segment among all the elements of $\varphi^{\prime \prime} A$.
- Let b_{i} be b with i appended at the end.
- The left side of $\varphi^{\prime \prime} A$ consists of all the elements of $\varphi^{\prime \prime} A$ that begin with b_{0}.
- The right side of $\varphi^{\prime \prime} A$ consists of all the elements of $\varphi^{\prime \prime} A$ that begin with b_{1}.

Orientations II

- If $|A|=1$, then the orientation of $\varphi^{\prime \prime} A$ is \emptyset.

Orientations II

- If $|A|=1$, then the orientation of $\varphi^{\prime \prime} A$ is \emptyset.
- If \mathcal{O}_{l} is the orientation of the left side of $\varphi^{\prime \prime} A$, while \mathcal{O}_{r} is the orientation of the right side of $\varphi^{\prime \prime} A$, then the orientation of $\varphi^{\prime \prime} A$ is $\left\langle\mathcal{O}_{l}, \mathcal{O}_{r}\right\rangle$.

Orientations II

- If $|A|=1$, then the orientation of $\varphi^{\prime \prime} A$ is \emptyset.
- If \mathcal{O}_{l} is the orientation of the left side of $\varphi^{\prime \prime} A$, while \mathcal{O}_{r} is the orientation of the right side of $\varphi^{\prime \prime} A$, then the orientation of $\varphi^{\prime \prime} A$ is $\left\langle\mathcal{O}_{l}, \mathcal{O}_{r}\right\rangle$.
- The height of \mathcal{O} is defined to be the largest of the heights of \mathcal{O}_{l} and \mathcal{O}_{r}.

Orientations II

- If $|A|=1$, then the orientation of $\varphi^{\prime \prime} A$ is \emptyset.
- If \mathcal{O}_{l} is the orientation of the left side of $\varphi^{\prime \prime} A$, while \mathcal{O}_{r} is the orientation of the right side of $\varphi^{\prime \prime} A$, then the orientation of $\varphi^{\prime \prime} A$ is $\left\langle\mathcal{O}_{l}, \mathcal{O}_{r}\right\rangle$.
- The height of \mathcal{O} is defined to be the largest of the heights of \mathcal{O}_{l} and \mathcal{O}_{r}.
- The standard orientation $\mathcal{O}(n)$ is defined to be $\langle\mathcal{O}(n-1), \mathcal{O}(n-1)\rangle$

Orientations III (examples)

- Consider an embedding of $\mathbf{B}(2)$ in $\mathbf{B}(n)$.

Orientations III (examples)

- Consider an embedding of $\mathbf{B}(2)$ in $\mathbf{B}(n)$.
- A^{\prime} below represents a copy of $\mathbf{B}(2)$ with the standard orientation $\mathcal{O}(2)$, while $A^{\prime \prime}$ is also a copy of $\mathbf{B}(2)$, but has orientation

$$
\langle\langle\emptyset,\langle\emptyset, \emptyset\rangle\rangle, \emptyset\rangle .
$$

Upper Bound for the Degree I

- $\binom{\mathbf{B}(k)}{\mathbf{A}}_{\mathcal{O}}$ refers to the set of substructures of $\mathbf{B}(k)$, isomorphic to \mathbf{A}, with orientation \mathcal{O} (computed using the identity embedding).

Upper Bound for the Degree I

- $\binom{\mathbf{B}(k)}{\mathbf{A}}_{\mathcal{O}}$ refers to the set of substructures of $\mathbf{B}(k)$, isomorphic to \mathbf{A}, with orientation \mathcal{O} (computed using the identity embedding).

Theorem

Let $n, p, r \in \omega$. There exists $N=N_{0}(n, p, r)$ that satisfies the following: Suppose \mathcal{O} is an orientation of \mathbf{A} with height p. Then, given a colouring $c:\left(\begin{array}{c}\mathbf{B}(N)\end{array}\right)_{\mathcal{O}} \rightarrow r$, there exists a copy
$\mathbf{B}^{\prime} \in\binom{\mathbf{B}(N)}{\mathbf{B}(n)}_{\mathcal{O}(n)}$, such that $\left|c^{\prime \prime}\left(\binom{\mathbf{B}(N)}{\mathbf{A}}_{\mathcal{O}} \cap\binom{\mathbf{B}^{\prime}}{\mathbf{A}}\right)\right|=1$. We represent this latter statement by

$$
\mathbf{B}(N) \rightarrow(\mathbf{B}(n))_{r}^{(\mathbf{A}, \mathcal{O})}
$$

Truncated Hales-Jewett Theorem I

- Let Λ be a finite set.

Truncated Hales-Jewett Theorem I

- Let Λ be a finite set.
- Let $V=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite set such that $\Lambda \cap V=\emptyset$.

Truncated Hales-Jewett Theorem I

- Let Λ be a finite set.
- Let $V=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite set such that $\Lambda \cap V=\emptyset$.
- Let $*$ signify a fixed element not in $\Lambda \cup V$.

Truncated Hales-Jewett Theorem I

- Let Λ be a finite set.
- Let $V=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite set such that $\Lambda \cap V=\emptyset$.
- Let $*$ signify a fixed element not in $\Lambda \cup V$.
- Define $[\Lambda]^{*}\binom{n}{m}$ to be the set of functions $f: n \rightarrow \Lambda \cup\{*\} \cup V$ that satisfy the following conditions:

Truncated Hales-Jewett Theorem I

- Let Λ be a finite set.
- Let $V=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite set such that $\Lambda \cap V=\emptyset$.
- Let $*$ signify a fixed element not in $\Lambda \cup V$.
- Define $[\Lambda]^{*}\binom{n}{m}$ to be the set of functions $f: n \rightarrow \Lambda \cup\{*\} \cup V$ that satisfy the following conditions:

1. $f^{-1}\left(v_{i}\right) \neq \emptyset$ for all $i \in m$.
2. $\min f^{-1}\left(v_{i}\right)<\min f^{-1}\left(v_{j}\right)$ for all $i<j \in m$.
3. If $f(i)=*$ for some $i \in n$, then $f(j)=*$ for all $j>i$.

Truncated Hales-Jewett Theorem II

$$
(f \cdot g)(i)= \begin{cases}g(j) & \text { if } f(i)=v_{j} \\ * & \text { if }(f \cdot g)(j)=* \text { for some } j<i \\ f(i) & \text { otherwise }\end{cases}
$$

Truncated Hales-Jewett Theorem II

$$
(f \cdot g)(i)= \begin{cases}g(j) & \text { if } f(i)=v_{j} \\ * & \text { if }(f \cdot g)(j)=* \text { for some } j<i \\ f(i) & \text { otherwise }\end{cases}
$$

Theorem (Voigt, 1980)
For every finite Λ and every $r, m \in \mathbb{N}$, there exists $N=N^{*}(r, m) \in \mathbb{N}$ such that for every colouring $c:[\Lambda]^{*}\binom{N}{0} \rightarrow r$ there exists $f \in[\Lambda]^{*}\binom{N}{m}$ such that $\left|\hat{c}^{\prime \prime}\left([A]\binom{m}{0}\right)\right|=1$, with $\hat{c}(g)=c(f \cdot g)$.

Upper Bound for the Degree II (main steps of the proof)

- Proceed by induction on the height of the orientation \mathcal{O} of \mathbf{A}.

Upper Bound for the Degree II (main steps of the proof)

- Proceed by induction on the height of the orientation \mathcal{O} of \mathbf{A}.

1. There exists $N=N_{1}(n, p, r)$ that satisfies the following: Given a colouring of $\left(\begin{array}{c}\mathbf{B}(N)\end{array}\right)_{\mathcal{O}}$, there exists a copy of $\mathbf{B}(n)$ in $\mathbf{B}(N)$ with orientation $\mathcal{O}(n)$ such that every copy of \mathbf{A} with orientation \mathcal{O} and beginning \emptyset has the same colour.

Upper Bound for the Degree II (main steps of the proof)

- Proceed by induction on the height of the orientation \mathcal{O} of \mathbf{A}.

1. There exists $N=N_{1}(n, p, r)$ that satisfies the following: Given a colouring of $\left(\begin{array}{c}\mathbf{B}(N)\end{array}\right)_{\mathcal{O}}$, there exists a copy of $\mathbf{B}(n)$ in $\mathbf{B}(N)$ with orientation $\mathcal{O}(n)$ such that every copy of \mathbf{A} with orientation \mathcal{O} and beginning \emptyset has the same colour.
2. There exists $N=N_{2}(n, p, r, m)$ that satisfies the following: Given a colouring of $\left(\begin{array}{c}\mathbf{B}(N)\end{array}\right)_{\mathcal{O}}$, there exists a copy $\mathbf{B}^{\prime} \in\binom{\mathbf{B}(n)}{\mathbf{B}}_{\mathcal{O}(n)}$ such that every copy of \mathbf{A} with orientation \mathcal{O} and the same beginning of height j (w.r.t. \mathbf{B}^{\prime}) is assigned the same colour, for $j \leq m$.

Upper Bound for the Degree II (main steps of the proof)

- Proceed by induction on the height of the orientation \mathcal{O} of \mathbf{A}.

1. There exists $N=N_{1}(n, p, r)$ that satisfies the following: Given a colouring of $\left(\begin{array}{c}\mathbf{B}(N)\end{array}\right)_{\mathcal{O}}$, there exists a copy of $\mathbf{B}(n)$ in $\mathbf{B}(N)$ with orientation $\mathcal{O}(n)$ such that every copy of \mathbf{A} with orientation \mathcal{O} and beginning \emptyset has the same colour.
2. There exists $N=N_{2}(n, p, r, m)$ that satisfies the following: Given a colouring of $\left(\begin{array}{c}\mathbf{B}(N)\end{array}\right)_{\mathcal{O}}$, there exists a copy
$\mathbf{B}^{\prime} \in\binom{\mathbf{B}(n)}{\mathbf{B}}_{\mathcal{O}(n)}$ such that every copy of \mathbf{A} with orientation \mathcal{O} and the same beginning of height j (w.r.t. \mathbf{B}^{\prime}) is assigned the same colour, for $j \leq m$.
3. Combine step 2 and the Truncated Hales-Jewett Theorem.

Lower Bound for the Degree

Let n_{0} be such that every orientation of \mathbf{A} is witnessed in $\mathbf{B}\left(n_{0}\right)$ and $n_{0} \geq 2$. Set $N=n_{0}+1$. Let $f: B(N) \hookrightarrow B(M)$ be an embedding. It suffices to establish the following:
Lemma
There is a copy \mathbf{B}^{\prime} of $\mathbf{B}\left(n_{0}\right)$ in $f^{\prime \prime} B(N)$ such that its orientation is precisely $\mathcal{O}\left(n_{0}\right)$, with all terms defined as above.

Lower Bound for the Degree

Let n_{0} be such that every orientation of \mathbf{A} is witnessed in $\mathbf{B}\left(n_{0}\right)$ and $n_{0} \geq 2$. Set $N=n_{0}+1$. Let $f: B(N) \hookrightarrow B(M)$ be an embedding. It suffices to establish the following:
Lemma
There is a copy \mathbf{B}^{\prime} of $\mathbf{B}\left(n_{0}\right)$ in $f^{\prime \prime} B(N)$ such that its orientation is precisely $\mathcal{O}\left(n_{0}\right)$, with all terms defined as above.

Theorem
For any $\mathbf{A} \in \mathcal{B}_{0}, t\left(\mathbf{A}, \mathcal{B}_{0}\right)$ is equal to the number of all possible orientations of \mathbf{A}.

Catalan Numbers

- The n-th Catalan number C_{n} is defined by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Catalan Numbers

- The n-th Catalan number C_{n} is defined by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

- Example: C_{n-1} equals the number of rooted binary trees with n leaves.

Catalan Numbers

- The n-th Catalan number C_{n} is defined by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

- Example: C_{n-1} equals the number of rooted binary trees with n leaves.
- $C_{3}=5=t\left(\mathbf{B}(2), \mathcal{B}_{0}\right)$.

Catalan Numbers

- The n-th Catalan number C_{n} is defined by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

- Example: C_{n-1} equals the number of rooted binary trees with n leaves.
- $C_{3}=5=t\left(\mathbf{B}(2), \mathcal{B}_{0}\right)$.
- In general, $t\left(\mathbf{A}, \mathcal{B}_{0}\right) \leq C_{n-1}$.

Extensions I

- Extending the boron tree structures with arbitrary linear orders does not yield a Ramsey class.

Extensions I

- Extending the boron tree structures with arbitrary linear orders does not yield a Ramsey class.
- Let $\mathcal{L}=(R, S, \prec)$ be a signature such that R is a 4-ary relation symbol, S is a 3-ary relation symbols, while \prec is a binary relation.

Extensions I

- Extending the boron tree structures with arbitrary linear orders does not yield a Ramsey class.
- Let $\mathcal{L}=(R, S, \prec)$ be a signature such that R is a 4-ary relation symbol, S is a 3-ary relation symbols, while \prec is a binary relation.
- Suppose \mathbf{A} is a boron tree structure with a boron tree structure embedding $\varphi: A \rightarrow B(n)$, for some $n \in \omega$.

Extensions I

- Extending the boron tree structures with arbitrary linear orders does not yield a Ramsey class.
- Let $\mathcal{L}=(R, S, \prec)$ be a signature such that R is a 4-ary relation symbol, S is a 3-ary relation symbols, while \prec is a binary relation.
- Suppose \mathbf{A} is a boron tree structure with a boron tree structure embedding $\varphi: A \rightarrow B(n)$, for some $n \in \omega$.
- Define $o(\mathbf{A}, \varphi)$ to be the (extending) structure \mathbf{B} with signature \mathcal{L} and universe A such that

1. $R^{\mathbf{B}}=R^{\mathbf{A}}$.
2. For all $a, b \in A, \mathbf{B} \models \prec(a, b)$ if and only if $\varphi(a) \ll_{\operatorname{lex}} \varphi(b)$.
3. For all $a, b, c \in A, \mathbf{B} \models S(a, b, c)$ if and only if

$$
\varphi(a)<_{\operatorname{lex}} \varphi(b)<_{\operatorname{lex}} \varphi(c)
$$

and

$$
|\varphi(a) \sqcap \varphi(b)|>|\varphi(b) \sqcap \varphi(c)|
$$

Extensions II

- Define $\mathcal{O} \mathcal{B}_{0}$ to be the set of $o(\mathbf{A}, \varphi)$ for all pairs of boron tree structures \mathbf{A} and boron tree structure embeddings $\varphi: A \rightarrow B(n)(n \in \omega)$.

Extensions II

- Define $\mathcal{O} \mathcal{B}_{0}$ to be the set of $o(\mathbf{A}, \varphi)$ for all pairs of boron tree structures \mathbf{A} and boron tree structure embeddings $\varphi: A \rightarrow B(n)(n \in \omega)$.

Theorem
$\mathcal{O} \mathcal{B}_{0}$ is a Ramsey class.

Extensions II

- Define $\mathcal{O} \mathcal{B}_{0}$ to be the set of $o(\mathbf{A}, \varphi)$ for all pairs of boron tree structures \mathbf{A} and boron tree structure embeddings $\varphi: A \rightarrow B(n)(n \in \omega)$.

Theorem
$\mathcal{O} \mathcal{B}_{0}$ is a Ramsey class.
Corollary
$\operatorname{Aut}\left(\operatorname{Flim}\left(\mathcal{O B}_{0}\right)\right)$ is extremely amenable.

Extensions II

- Define $\mathcal{O} \mathcal{B}_{0}$ to be the set of $o(\mathbf{A}, \varphi)$ for all pairs of boron tree structures \mathbf{A} and boron tree structure embeddings $\varphi: A \rightarrow B(n)(n \in \omega)$.

Theorem
$\mathcal{O} \mathcal{B}_{0}$ is a Ramsey class.
Corollary
$\operatorname{Aut}\left(\operatorname{Flim}\left(\mathcal{O B}_{0}\right)\right)$ is extremely amenable.

