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Ramsey Degree

I Let K be a class of finite structures with a fixed signature L.

I If A ∈ K, we define t(A,K) to be the least t, if it exists, such
that for any B ≥ A in K, k ≥ 2, there is C ∈ K such that
C ≥ B and given any k-colouring of the copies of A in C,
there is a copy B′ of B in C such that any copy of A in B′

assumes at most t colours. If such a t does not exist, we
define t(A,K) =∞.

I We call t(A,K) the Ramsey degree of A (in K).
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Fouché’s Class

I Let the signature L consist of the 2-ary relation symbol E and
a 1-ary relation symbol R.

I Let Th denote the class of structures with signature L that
correspond to rooted trees of height h, i.e., E corresponds to
the edge relation, while A |= R(r) iff r is the root of the tree.

Theorem (Fouché, 1999)

If A ∈ Th, then t(A, Th) equals the number of possible
”orientations” of A. In particular, t(A, Th) = 1 iff for all h′ ≤ h,
given two vertexes in A of height h′, their valence is the same.
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Fouché’s Orientations

I Let ϕ : A→ m≤h+1 be a structural embedding.

I The orientation O corresponding to ϕ is a sequence of vectors
vi such that if v ∈ A, the height of v is i and ϕ(v) is the j-th
vertex ”from the left,” then the valence of v is equal to (vi )j .

I Suppose for all h′ ≤ h, given two vertexes in A of height h′,
their valence is the same. Then the only possible orientation
of A is

(m0), (m1, . . . ,m1), . . . , (1, . . . , 1)

where mh′ is the valence of elements of height h′.
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Boron Trees I

I A boron tree is a finite connected graph without cycles, whose
every vertex has valence either 1 or 3.

I Let L be a signature with a 4-ary relation symbol R.

I To a boron tree T , we associate a structure (T ) with
signature L as follows:

I The universe of (T) consists of the leaves of T.

I (T ) |= R(a, b, c , d) iff we have the following picture

a b c d
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Boron Trees II

I Let B0 be the class of all structures A such that A = (T ) for
some boron tree T . Let us call B0 elements boron tree
structures.

I A boron tree structure corresponds to a unique boron tree (up
to isomorphism):

Fact
Let T0,T1 be boron trees. Let A0,A1 ∈ B0 be such that
Ai = (Ti ). If ϕ : A0 → A1 is an isomorphism of structures, then
there is a graph isomorphism λ : T0 → T1 such that λ � A0 = ϕ.
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Canonical Boron Tree Structures

I Define B(n) to be the boron tree structure with the universe
2n, i.e., it corresponds to the leaf set of the boron tree
2≤n \ {∅}.

I If a, b ∈ B(n), then a u b is the longest common initial
segment:

ba

a u b {

Fact
For any A ∈ B0, there is n such that A embeds in B(n).
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Orientations I

I Let ϕ : A→ B(n) be an embedding.

I The beginning b of ϕ′′A is the longest common initial
segment among all the elements of ϕ′′A.

I Let bi be b with i appended at the end.

I The left side of ϕ′′A consists of all the elements of ϕ′′A that
begin with b0.

I The right side of ϕ′′A consists of all the elements of ϕ′′A that
begin with b1.
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Orientations II

I If |A| = 1, then the orientation of ϕ′′A is ∅.

I If Ol is the orientation of the left side of ϕ′′A, while Or is the
orientation of the right side of ϕ′′A, then the orientation of
ϕ′′A is 〈Ol ,Or 〉.

I The height of O is defined to be the largest of the heights of
Ol and Or .

I The standard orientation O(n) is defined to be
〈O(n − 1),O(n − 1)〉
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Orientations III (examples)

I Consider an embedding of B(2) in B(n).

I A′ below represents a copy of B(2) with the standard
orientation O(2), while A′′ is also a copy of B(2), but has
orientation

〈〈∅, 〈∅, ∅〉〉 , ∅〉 .

A′′

A′
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Upper Bound for the Degree I

I
(B(k)

A

)
O refers to the set of substructures of B(k), isomorphic

to A, with orientation O (computed using the identity
embedding).

Theorem
Let n, p, r ∈ ω. There exists N = N0(n, p, r) that satisfies the
following: Suppose O is an orientation of A with height p . Then,
given a colouring c :

(B(N)
A

)
O → r , there exists a copy

B′ ∈
(B(N)

B(n)

)
O(n)

, such that
∣∣∣c ′′ ((B(N)

A

)
O ∩

(B′

A

))∣∣∣ = 1. We

represent this latter statement by

B(N)→ (B(n))
(A,O)
r .
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Truncated Hales-Jewett Theorem I

I Let Λ be a finite set.

I Let V = {v1, . . . , vm} be a finite set such that Λ ∩ V = ∅.
I Let ∗ signify a fixed element not in Λ ∪ V .
I Define [Λ]∗

(n
m

)
to be the set of functions f : n→ Λ ∪ {∗} ∪ V

that satisfy the following conditions:

1. f −1(vi ) 6= ∅ for all i ∈ m.
2. min f −1(vi ) < min f −1(vj) for all i < j ∈ m.
3. If f (i) = ∗ for some i ∈ n, then f (j) = ∗ for all j > i .
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Truncated Hales-Jewett Theorem II

(f · g)(i) =


g(j) if f (i) = vj

∗ if (f · g)(j) = ∗ for some j < i

f (i) otherwise

Theorem (Voigt, 1980)

For every finite Λ and every r ,m ∈ N, there exists
N = N∗(r ,m) ∈ N such that for every colouring c : [Λ]∗

(N
0

)
→ r

there exists f ∈ [Λ]∗
(N
m

)
such that

∣∣ĉ ′′ ([A]
(m

0

))∣∣ = 1, with
ĉ(g) = c(f · g).
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Upper Bound for the Degree II (main steps of the proof)

I Proceed by induction on the height of the orientation O of A.

1. There exists N = N1(n, p, r) that satisfies the following: Given

a colouring of
(B(N)

A

)
O, there exists a copy of B(n) in B(N)

with orientation O(n) such that every copy of A with
orientation O and beginning ∅ has the same colour.

2. There exists N = N2(n, p, r ,m) that satisfies the following:

Given a colouring of
(B(N)

A

)
O, there exists a copy

B′ ∈
(B(n)

B

)
O(n)

such that every copy of A with orientation O
and the same beginning of height j (w.r.t. B′) is assigned the
same colour, for j ≤ m.

3. Combine step 2 and the Truncated Hales-Jewett Theorem.
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Lower Bound for the Degree

Let n0 be such that every orientation of A is witnessed in B(n0)
and n0 ≥ 2. Set N = n0 + 1. Let f : B(N) ↪→ B(M) be an
embedding. It suffices to establish the following:

Lemma
There is a copy B′ of B(n0) in f ′′B(N) such that its orientation is
precisely O(n0), with all terms defined as above.

Theorem
For any A ∈ B0, t(A,B0) is equal to the number of all possible
orientations of A.
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Catalan Numbers

I The n-th Catalan number Cn is defined by

Cn =
1

n + 1

(
2n

n

)
.

I Example: Cn−1 equals the number of rooted binary trees with
n leaves.

I C3 = 5 = t(B(2),B0).

I In general, t(A,B0) ≤ Cn−1.
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Extensions I

I Extending the boron tree structures with arbitrary linear
orders does not yield a Ramsey class.

I Let L = (R,S ,≺) be a signature such that R is a 4-ary
relation symbol, S is a 3-ary relation symbols, while ≺ is a
binary relation.

I Suppose A is a boron tree structure with a boron tree
structure embedding ϕ : A→ B(n), for some n ∈ ω.

I Define o(A, ϕ) to be the (extending) structure B with
signature L and universe A such that

1. RB = RA.
2. For all a, b ∈ A, B |=≺ (a, b) if and only if ϕ(a) <lex ϕ(b).
3. For all a, b, c ∈ A, B |= S(a, b, c) if and only if

ϕ(a) <lex ϕ(b) <lex ϕ(c)

and
|ϕ(a) u ϕ(b)| > |ϕ(b) u ϕ(c)|.
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Extensions II

I Define OB0 to be the set of o(A, ϕ) for all pairs of boron tree
structures A and boron tree structure embeddings
ϕ : A→ B(n) (n ∈ ω).

Theorem
OB0 is a Ramsey class.

Corollary

Aut(Flim(OB0)) is extremely amenable.
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