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> Let K be a class of finite structures with a fixed signature L.

> If A € I, we define t(A, K) to be the least t, if it exists, such
that for any B > A in IC, k > 2, there is C € K such that
C > B and given any k-colouring of the copies of A in C,
there is a copy B’ of B in C such that any copy of A in B
assumes at most t colours. If such a t does not exist, we
define t(A,K) = 0.

» We call (A, K) the Ramsey degree of A (in K).
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> Let the signature £ consist of the 2-ary relation symbol E and
a l-ary relation symbol R.

» Let 7}, denote the class of structures with signature £ that
correspond to rooted trees of height h, i.e., E corresponds to
the edge relation, while A |= R(r) iff r is the root of the tree.

Theorem (Fouché, 1999)

If A € Ty, then t(A,Th) equals the number of possible
"orientations” of A. In particular, t(A,T,) =1 iff for all i < h,
given two vertexes in A of height h', their valence is the same.
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Fouché's Orientations

> Let ¢ : A— m=h+1 be a structural embedding.

» The orientation O corresponding to ¢ is a sequence of vectors
v; such that if v € A, the height of v is i and ¢(v) is the j-th
vertex "from the left,” then the valence of v is equal to (v;);.

» Suppose for all i < h, given two vertexes in A of height A,
their valence is the same. Then the only possible orientation
of Ais

(mo),(ml,...,ml),...,(l,...,l)

where my is the valence of elements of height A’.
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Boron Trees |

» A boron tree is a finite connected graph without cycles, whose
every vertex has valence either 1 or 3.

» Let £ be a signature with a 4-ary relation symbol R.

» To a boron tree T, we associate a structure (T) with
signature £ as follows:

» The universe of (T) consists of the leaves of T.
» (T) = R(a, b, c, d) iff we have the following picture
a b ¢ d

NN/
J
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> Let By be the class of all structures A such that A = (T) for
some boron tree T. Let us call By elements boron tree
structures.
» A boron tree structure corresponds to a unique boron tree (up
to isomorphism):
Fact
Let To, T1 be boron trees. Let Ay, A1 € By be such that
A; = (T;). If p: Ag — A1 is an isomorphism of structures, then
there is a graph isomorphism A : Ty — Ty such that X\ | Ag = .
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> Let ¢ : A— B(n) be an embedding.

» The beginning b of ©”A is the longest common initial
segment among all the elements of ©”A.

» Let b; be b with / appended at the end.

» The left side of ¢" A consists of all the elements of ¢”A that
begin with bg.

» The right side of ©” A consists of all the elements of ©”A that
begin with b;.
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Orientations Il

» If |A] = 1, then the orientation of ¢”A is .

» If O, is the orientation of the left side of ©”A, while O, is the
orientation of the right side of ¢ A, then the orientation of
P"Ais (O, 0,).

» The height of O is defined to be the largest of the heights of
O/ and Or.

» The standard orientation O(n) is defined to be
(O(n—1),0(n-1))
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Orientations Il (examples)

» Consider an embedding of B(2) in B(n).

» A’ below represents a copy of B(2) with the standard
orientation O(2), while A” is also a copy of B(2), but has
orientation
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> (ng))o refers to the set of substructures of B(k), isomorphic
to A, with orientation O (computed using the identity
embedding).

Theorem

Let n,p,r € w. There exists N = No(n, p, r) that satisfies the
following: Suppose O is an orientation of A with height p . Then,
given a colouring c : (B(AN)) o — I, there exists a copy

B"€ (5 o (PN (R))| = 1. we
represent this latter statement by

, such that

B(N) — (B(n)™?).
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Let A be a finite set.
Let V ={wvi,..., v} be a finite set such that ANV = (.

Let x signify a fixed element not in AU V.
Define [A]*() to be the set of functions f : n — AU {x} U V
that satisfy the following conditions:

1L f~Y(v;)# 0 foralli€m.

2. minf~Y(v;) <minf~1(v;) forall i < j € m.

3. If f(i) = * for some i € n, then f(j) = * for all j > i.

vy VY y
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(f-g)(i) = q * if (f-g)(j) == for some j < i

f(i) otherwise
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g() iff(i) =y
(f-g)(i) = 4 * if (f-g)(j) == for some j < i
f(i) otherwise

Theorem (Voigt, 1980)

For every finite N\ and every r,m € N, there exists

N = N*(r,m) € N such that for every colouring c : [/\]*(’(\)’) —r
there exists £ € [N]*(Y) such that |&” ([A](7))| = 1, with

t(g) = c(f - g).
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» Proceed by induction on the height of the orientation O of A.

1. There exists N = Ni(n, p, r) that satisfies the following: Given
a colouring of (BEQN))O, there exists a copy of B(n) in B(N)
with orientation O(n) such that every copy of A with
orientation O and beginning () has the same colour.

2. There exists N = Na(n, p, r, m) that satisfies the following:
Given a colouring of (B%N))o, there exists a copy

B(n)
B € (' )O(n)
and the same beginning of height j (w.r.t. B) is assigned the

same colour, for j < m.

such that every copy of A with orientation O

3. Combine step 2 and the Truncated Hales-Jewett Theorem.
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precisely O(ng), with all terms defined as above.
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Let ng be such that every orientation of A is witnessed in B(ng)
and ng > 2. Set N =ng+ 1. Let f : B(N) — B(M) be an
embedding. It suffices to establish the following:

Lemma
There is a copy B' of B(ng) in f”B(N) such that its orientation is
precisely O(ng), with all terms defined as above.

Theorem
For any A € By, t(A, By) is equal to the number of all possible
orientations of A.



Catalan Numbers

» The n-th Catalan number C, is defined by

C, — 1 <2n>.
n+1\n




Catalan Numbers

» The n-th Catalan number C, is defined by
1 2n
C, = .
" n41 < n >

» Example: C,_1 equals the number of rooted binary trees with
n leaves.




Catalan Numbers

» The n-th Catalan number C, is defined by
1 2n
C, = .
" on+1 < n >

» Example: C,_1 equals the number of rooted binary trees with
n leaves.

» (3=5= t(B(Z),Bo).




Catalan Numbers

» The n-th Catalan number C, is defined by
1 2n
C, = .
" on+1 < n >

» Example: C,_1 equals the number of rooted binary trees with
n leaves.

> G3=5=t(B(2),Bo).
> In general, t(A,By) < Cyp_1.
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Extensions |

» Extending the boron tree structures with arbitrary linear
orders does not yield a Ramsey class.

» Let £L=(R, S, <) be a signature such that R is a 4-ary
relation symbol, S is a 3-ary relation symbols, while < is a
binary relation.

» Suppose A is a boron tree structure with a boron tree
structure embedding ¢ : A — B(n), for some n € w.

> Define o(A, ¢) to be the (extending) structure B with
signature £ and universe A such that
1. RB =RA.
2. Forall a,be A, B =< (a,b) if and only if p(a) <iex ©(b).
3. Forall a,b,c € A, B = S(a, b, c) if and only if

90(3) <lex (p(b) <lex QO(C)

and
lp(a) Mp(b)] > |p(b) M p(c)l.
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