Ramsey Degrees of Boron Tree Structures

Jakub Jasiński

October 15, 2010

Ramsey Degree

▶ Let K be a class of finite structures with a fixed signature L.

Ramsey Degree

- ▶ Let K be a class of finite structures with a fixed signature L.
- ▶ If $\mathbf{A} \in \mathcal{K}$, we define $t(\mathbf{A}, \mathcal{K})$ to be the least t, if it exists, such that for any $\mathbf{B} \geq \mathbf{A}$ in \mathcal{K} , $k \geq 2$, there is $\mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \geq \mathbf{B}$ and given any k-colouring of the copies of \mathbf{A} in \mathbf{C} , there is a copy \mathbf{B}' of \mathbf{B} in \mathbf{C} such that any copy of \mathbf{A} in \mathbf{B}' assumes at most t colours. If such a t does not exist, we define $t(\mathbf{A}, \mathcal{K}) = \infty$.

Ramsey Degree

- ▶ Let K be a class of finite structures with a fixed signature L.
- If $\mathbf{A} \in \mathcal{K}$, we define $t(\mathbf{A}, \mathcal{K})$ to be the least t, if it exists, such that for any $\mathbf{B} \geq \mathbf{A}$ in \mathcal{K} , $k \geq 2$, there is $\mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \geq \mathbf{B}$ and given any k-colouring of the copies of \mathbf{A} in \mathbf{C} , there is a copy \mathbf{B}' of \mathbf{B} in \mathbf{C} such that any copy of \mathbf{A} in \mathbf{B}' assumes at most t colours. If such a t does not exist, we define $t(\mathbf{A}, \mathcal{K}) = \infty$.
- ▶ We call $t(\mathbf{A}, \mathcal{K})$ the Ramsey degree of \mathbf{A} (in \mathcal{K}).

Fouché's Class

Let the signature \mathcal{L} consist of the 2-ary relation symbol E and a 1-ary relation symbol R.

Fouché's Class

- Let the signature \mathcal{L} consist of the 2-ary relation symbol E and a 1-ary relation symbol R.
- ▶ Let \mathcal{T}_h denote the class of structures with signature \mathcal{L} that correspond to rooted trees of height h, i.e., E corresponds to the edge relation, while $\mathbf{A} \models R(r)$ iff r is the root of the tree.

Fouché's Class

- Let the signature \mathcal{L} consist of the 2-ary relation symbol E and a 1-ary relation symbol R.
- ▶ Let \mathcal{T}_h denote the class of structures with signature \mathcal{L} that correspond to rooted trees of height h, i.e., E corresponds to the edge relation, while $\mathbf{A} \models R(r)$ iff r is the root of the tree.

Theorem (Fouché, 1999)

If $\mathbf{A} \in \mathcal{T}_h$, then $t(\mathbf{A}, \mathcal{T}_h)$ equals the number of possible "orientations" of \mathbf{A} . In particular, $t(\mathbf{A}, \mathcal{T}_h) = 1$ iff for all $h' \leq h$, given two vertexes in A of height h', their valence is the same.

Fouché's Orientations

▶ Let $\varphi: A \to m^{\leq h+1}$ be a structural embedding.

Fouché's Orientations

- ▶ Let $\varphi: A \to m^{\leq h+1}$ be a structural embedding.
- ▶ The orientation O corresponding to φ is a sequence of vectors v_i such that if $v \in A$, the height of v is i and $\varphi(v)$ is the j-th vertex "from the left," then the valence of v is equal to $(v_i)_j$.

Fouché's Orientations

- ▶ Let $\varphi: A \to m^{\leq h+1}$ be a structural embedding.
- ▶ The orientation O corresponding to φ is a sequence of vectors v_i such that if $v \in A$, the height of v is i and $\varphi(v)$ is the j-th vertex "from the left," then the valence of v is equal to $(v_i)_j$.
- ▶ Suppose for all $h' \le h$, given two vertexes in A of height h', their valence is the same. Then the only possible orientation of \mathbf{A} is

$$(m_0), (m_1, \ldots, m_1), \ldots, (1, \ldots, 1)$$

where $m_{h'}$ is the valence of elements of height h'.

▶ A *boron tree* is a finite connected graph without cycles, whose every vertex has valence either 1 or 3.

- ▶ A *boron tree* is a finite connected graph without cycles, whose every vertex has valence either 1 or 3.
- ▶ Let \mathcal{L} be a signature with a 4-ary relation symbol R.

- ▶ A *boron tree* is a finite connected graph without cycles, whose every vertex has valence either 1 or 3.
- ▶ Let \mathcal{L} be a signature with a 4-ary relation symbol R.
- ▶ To a boron tree T, we associate a structure (T) with signature \mathcal{L} as follows:

- ▶ A *boron tree* is a finite connected graph without cycles, whose every vertex has valence either 1 or 3.
- ▶ Let \mathcal{L} be a signature with a 4-ary relation symbol R.
- ▶ To a boron tree T, we associate a structure (T) with signature \mathcal{L} as follows:
- ► The universe of (T) consists of the leaves of T.

- ▶ A *boron tree* is a finite connected graph without cycles, whose every vertex has valence either 1 or 3.
- ▶ Let \mathcal{L} be a signature with a 4-ary relation symbol R.
- ▶ To a boron tree T, we associate a structure (T) with signature \mathcal{L} as follows:
- ► The universe of (T) consists of the leaves of T.
- $ightharpoonup (T) \models R(a,b,c,d)$ iff we have the following picture

▶ Let \mathcal{B}_0 be the class of all structures **A** such that **A** = (T) for some boron tree T. Let us call \mathcal{B}_0 elements boron tree structures.

- ▶ Let \mathcal{B}_0 be the class of all structures **A** such that **A** = (T) for some boron tree T. Let us call \mathcal{B}_0 elements boron tree structures.
- ▶ A boron tree structure corresponds to a unique boron tree (up to isomorphism):

- ▶ Let \mathcal{B}_0 be the class of all structures **A** such that **A** = (T) for some boron tree T. Let us call \mathcal{B}_0 elements boron tree structures.
- ▶ A boron tree structure corresponds to a unique boron tree (up to isomorphism):

Fact

Let T_0 , T_1 be boron trees. Let \mathbf{A}_0 , $\mathbf{A}_1 \in \mathcal{B}_0$ be such that $\mathbf{A}_i = (T_i)$. If $\varphi : A_0 \to A_1$ is an isomorphism of structures, then there is a graph isomorphism $\lambda : T_0 \to T_1$ such that $\lambda \upharpoonright A_0 = \varphi$.

▶ Define **B**(*n*) to be the boron tree structure with the universe 2^n , i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \setminus \{\emptyset\}$.

- ▶ Define **B**(*n*) to be the boron tree structure with the universe 2^n , i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \setminus \{\emptyset\}$.
- ▶ If $a, b \in B(n)$, then $a \sqcap b$ is the longest common initial segment:

- ▶ Define **B**(*n*) to be the boron tree structure with the universe 2^n , i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \setminus \{\emptyset\}$.
- ▶ If $a, b \in B(n)$, then $a \sqcap b$ is the longest common initial segment:

- ▶ Define **B**(*n*) to be the boron tree structure with the universe 2^n , i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \setminus \{\emptyset\}$.
- ▶ If $a, b \in B(n)$, then $a \sqcap b$ is the longest common initial segment:

Fact

For any $\mathbf{A} \in \mathcal{B}_0$, there is n such that \mathbf{A} embeds in $\mathbf{B}(n)$.

- ▶ Define **B**(*n*) to be the boron tree structure with the universe 2^n , i.e., it corresponds to the leaf set of the boron tree $2^{\leq n} \setminus \{\emptyset\}$.
- ▶ If $a, b \in B(n)$, then $a \sqcap b$ is the longest common initial segment:

Fact

For any $\mathbf{A} \in \mathcal{B}_0$, there is n such that \mathbf{A} embeds in $\mathbf{B}(n)$.

▶ Let $\varphi: A \to B(n)$ be an embedding.

- ▶ Let $\varphi: A \to B(n)$ be an embedding.
- ▶ The *beginning* b of $\varphi''A$ is the longest common initial segment among all the elements of $\varphi''A$.

- ▶ Let $\varphi: A \to B(n)$ be an embedding.
- ▶ The *beginning* b of $\varphi''A$ is the longest common initial segment among all the elements of $\varphi''A$.
- ▶ Let b_i be b with i appended at the end.

- ▶ Let $\varphi: A \to B(n)$ be an embedding.
- ▶ The *beginning* b of $\varphi''A$ is the longest common initial segment among all the elements of $\varphi''A$.
- ▶ Let *b_i* be *b* with *i* appended at the end.
- ▶ The *left side* of $\varphi''A$ consists of all the elements of $\varphi''A$ that begin with b_0 .

- ▶ Let $\varphi: A \to B(n)$ be an embedding.
- ▶ The *beginning* b of $\varphi''A$ is the longest common initial segment among all the elements of $\varphi''A$.
- Let b_i be b with i appended at the end.
- ▶ The *left side* of $\varphi''A$ consists of all the elements of $\varphi''A$ that begin with b_0 .
- ▶ The *right side* of $\varphi''A$ consists of all the elements of $\varphi''A$ that begin with b_1 .

▶ If |A| = 1, then the orientation of $\varphi''A$ is \emptyset .

- ▶ If |A| = 1, then the orientation of $\varphi''A$ is \emptyset .
- ▶ If \mathcal{O}_I is the orientation of the left side of $\varphi''A$, while \mathcal{O}_r is the orientation of the right side of $\varphi''A$, then the orientation of $\varphi''A$ is $\langle \mathcal{O}_I, \mathcal{O}_r \rangle$.

- ▶ If |A| = 1, then the orientation of $\varphi''A$ is \emptyset .
- ▶ If \mathcal{O}_I is the orientation of the left side of $\varphi''A$, while \mathcal{O}_r is the orientation of the right side of $\varphi''A$, then the orientation of $\varphi''A$ is $\langle \mathcal{O}_I, \mathcal{O}_r \rangle$.
- ▶ The *height* of \mathcal{O} is defined to be the largest of the heights of \mathcal{O}_l and \mathcal{O}_r .

- ▶ If |A| = 1, then the orientation of $\varphi''A$ is \emptyset .
- ▶ If \mathcal{O}_I is the orientation of the left side of $\varphi''A$, while \mathcal{O}_r is the orientation of the right side of $\varphi''A$, then the orientation of $\varphi''A$ is $\langle \mathcal{O}_I, \mathcal{O}_r \rangle$.
- ▶ The *height* of \mathcal{O} is defined to be the largest of the heights of \mathcal{O}_I and \mathcal{O}_r .
- ▶ The *standard* orientation $\mathcal{O}(n)$ is defined to be $\langle \mathcal{O}(n-1), \mathcal{O}(n-1) \rangle$

Orientations III (examples)

▶ Consider an embedding of B(2) in B(n).

Orientations III (examples)

- ▶ Consider an embedding of B(2) in B(n).
- ▶ A' below represents a copy of $\mathbf{B}(2)$ with the standard orientation $\mathcal{O}(2)$, while A'' is also a copy of $\mathbf{B}(2)$, but has orientation

Upper Bound for the Degree I

▶ $\binom{\mathbf{B}(k)}{\mathbf{A}}_{\mathcal{O}}$ refers to the set of substructures of $\mathbf{B}(k)$, isomorphic to \mathbf{A} , with orientation \mathcal{O} (computed using the identity embedding).

Upper Bound for the Degree I

▶ $\binom{\mathbf{B}(k)}{\mathbf{A}}_{\mathcal{O}}$ refers to the set of substructures of $\mathbf{B}(k)$, isomorphic to \mathbf{A} , with orientation \mathcal{O} (computed using the identity embedding).

Theorem

Let $n,p,r\in\omega$. There exists $N=N_0(n,p,r)$ that satisfies the following: Suppose $\mathcal O$ is an orientation of $\mathbf A$ with height p. Then, given a colouring $c:\binom{\mathsf B(N)}{\mathbf A}_{\mathcal O}\to r$, there exists a copy $\mathbf B'\in\binom{\mathsf B(N)}{\mathbf B(n)}_{\mathcal O(n)'}$, such that $\left|c''\left(\binom{\mathsf B(N)}{\mathbf A}_{\mathcal O}\cap\binom{\mathsf B'}{\mathbf A}\right)\right|=1$. We represent this latter statement by

$$\mathbf{B}(N) \to (\mathbf{B}(n))_r^{(\mathbf{A},\mathcal{O})}.$$

Let Λ be a finite set.

- Let Λ be a finite set.
- ▶ Let $V = \{v_1, ..., v_m\}$ be a finite set such that $\Lambda \cap V = \emptyset$.

- Let Λ be a finite set.
- ▶ Let $V = \{v_1, \dots, v_m\}$ be a finite set such that $\Lambda \cap V = \emptyset$.
- ▶ Let * signify a fixed element not in $\Lambda \cup V$.

- Let Λ be a finite set.
- ▶ Let $V = \{v_1, \dots, v_m\}$ be a finite set such that $\Lambda \cap V = \emptyset$.
- ▶ Let * signify a fixed element not in $\Lambda \cup V$.
- ▶ Define $[\Lambda]^*\binom{n}{m}$ to be the set of functions $f: n \to \Lambda \cup \{*\} \cup V$ that satisfy the following conditions:

- Let Λ be a finite set.
- ▶ Let $V = \{v_1, \dots, v_m\}$ be a finite set such that $\Lambda \cap V = \emptyset$.
- ▶ Let * signify a fixed element not in $\Lambda \cup V$.
- ▶ Define $[\Lambda]^*\binom{n}{m}$ to be the set of functions $f: n \to \Lambda \cup \{*\} \cup V$ that satisfy the following conditions:
 - 1. $f^{-1}(v_i) \neq \emptyset$ for all $i \in m$.
 - 2. $\min f^{-1}(v_i) < \min f^{-1}(v_j)$ for all $i < j \in m$.
 - 3. If f(i) = * for some $i \in n$, then f(j) = * for all j > i.

$$(f \cdot g)(i) = \begin{cases} g(j) & \text{if } f(i) = v_j \\ * & \text{if } (f \cdot g)(j) = * \text{ for some } j < i \\ f(i) & \text{otherwise} \end{cases}$$

$$(f \cdot g)(i) = \begin{cases} g(j) & \text{if } f(i) = v_j \\ * & \text{if } (f \cdot g)(j) = * \text{ for some } j < i \\ f(i) & \text{otherwise} \end{cases}$$

Theorem (Voigt, 1980)

For every finite Λ and every $r, m \in \mathbb{N}$, there exists $N = N^*(r, m) \in \mathbb{N}$ such that for every colouring $c : [\Lambda]^*\binom{N}{0} \to r$ there exists $f \in [\Lambda]^*\binom{N}{m}$ such that $\left|\hat{c}''\left([A]\binom{m}{0}\right)\right| = 1$, with $\hat{c}(g) = c(f \cdot g)$.

Proceed by induction on the height of the orientation $\mathcal O$ of **A**.

- **Proceed** by induction on the height of the orientation $\mathcal O$ of **A**.
- 1. There exists $N = N_1(n, p, r)$ that satisfies the following: Given a colouring of $\binom{\mathsf{B}(N)}{\mathsf{A}}_{\mathcal{O}}$, there exists a copy of $\mathsf{B}(n)$ in $\mathsf{B}(N)$ with orientation $\mathcal{O}(n)$ such that every copy of A with orientation \mathcal{O} and beginning \emptyset has the same colour.

- ▶ Proceed by induction on the height of the orientation \mathcal{O} of **A**.
- 1. There exists $N = N_1(n, p, r)$ that satisfies the following: Given a colouring of $\binom{\mathbf{B}(N)}{\mathbf{A}}_{\mathcal{O}}$, there exists a copy of $\mathbf{B}(n)$ in $\mathbf{B}(N)$ with orientation $\mathcal{O}(n)$ such that every copy of \mathbf{A} with orientation \mathcal{O} and beginning \emptyset has the same colour.
- 2. There exists $N = N_2(n, p, r, m)$ that satisfies the following: Given a colouring of $\binom{\mathbf{B}(N)}{\mathbf{A}}_{\mathcal{O}}$, there exists a copy $\mathbf{B}' \in \binom{\mathbf{B}(n)}{\mathbf{B}}_{\mathcal{O}(n)}$ such that every copy of \mathbf{A} with orientation \mathcal{O} and the same beginning of height j (w.r.t. \mathbf{B}') is assigned the same colour, for $j \leq m$.

- **Proceed** by induction on the height of the orientation \mathcal{O} of **A**.
- 1. There exists $N = N_1(n, p, r)$ that satisfies the following: Given a colouring of $\binom{\mathbf{B}(N)}{\mathbf{A}}_{\mathcal{O}}$, there exists a copy of $\mathbf{B}(n)$ in $\mathbf{B}(N)$ with orientation $\mathcal{O}(n)$ such that every copy of \mathbf{A} with orientation \mathcal{O} and beginning \emptyset has the same colour.
- 2. There exists $N = N_2(n, p, r, m)$ that satisfies the following: Given a colouring of $\binom{\mathbf{B}(N)}{\mathbf{A}}_{\mathcal{O}}$, there exists a copy $\mathbf{B}' \in \binom{\mathbf{B}(n)}{\mathbf{B}}_{\mathcal{O}(n)}$ such that every copy of \mathbf{A} with orientation \mathcal{O} and the same beginning of height j (w.r.t. \mathbf{B}') is assigned the same colour, for $j \leq m$.
- 3. Combine step 2 and the Truncated Hales-Jewett Theorem.

Lower Bound for the Degree

Let n_0 be such that every orientation of **A** is witnessed in $\mathbf{B}(n_0)$ and $n_0 \ge 2$. Set $N = n_0 + 1$. Let $f : B(N) \hookrightarrow B(M)$ be an embedding. It suffices to establish the following:

Lemma

There is a copy \mathbf{B}' of $\mathbf{B}(n_0)$ in f''B(N) such that its orientation is precisely $\mathcal{O}(n_0)$, with all terms defined as above.

Lower Bound for the Degree

Let n_0 be such that every orientation of **A** is witnessed in $\mathbf{B}(n_0)$ and $n_0 \ge 2$. Set $N = n_0 + 1$. Let $f : B(N) \hookrightarrow B(M)$ be an embedding. It suffices to establish the following:

Lemma

There is a copy \mathbf{B}' of $\mathbf{B}(n_0)$ in f''B(N) such that its orientation is precisely $\mathcal{O}(n_0)$, with all terms defined as above.

Theorem

For any $\mathbf{A} \in \mathcal{B}_0$, $t(\mathbf{A}, \mathcal{B}_0)$ is equal to the number of all possible orientations of \mathbf{A} .

▶ The *n*-th Catalan number C_n is defined by

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

▶ The n-th Catalan number C_n is defined by

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Example: C_{n-1} equals the number of rooted binary trees with n leaves.

▶ The n-th Catalan number C_n is defined by

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

- ▶ Example: C_{n-1} equals the number of rooted binary trees with n leaves.
- ► $C_3 = 5 = t(\mathbf{B}(2), \mathcal{B}_0).$

▶ The n-th Catalan number C_n is defined by

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

- ▶ Example: C_{n-1} equals the number of rooted binary trees with n leaves.
- ► $C_3 = 5 = t(\mathbf{B}(2), \mathcal{B}_0).$
- ▶ In general, $t(\mathbf{A}, \mathcal{B}_0) \leq C_{n-1}$.

► Extending the boron tree structures with arbitrary linear orders does not yield a Ramsey class.

- Extending the boron tree structures with arbitrary linear orders does not yield a Ramsey class.
- ▶ Let $\mathcal{L} = (R, S, \prec)$ be a signature such that R is a 4-ary relation symbol, S is a 3-ary relation symbols, while \prec is a binary relation.

- Extending the boron tree structures with arbitrary linear orders does not yield a Ramsey class.
- ▶ Let $\mathcal{L} = (R, S, \prec)$ be a signature such that R is a 4-ary relation symbol, S is a 3-ary relation symbols, while \prec is a binary relation.
- ▶ Suppose **A** is a boron tree structure with a boron tree structure embedding $\varphi : A \to B(n)$, for some $n \in \omega$.

- Extending the boron tree structures with arbitrary linear orders does not yield a Ramsey class.
- ▶ Let $\mathcal{L} = (R, S, \prec)$ be a signature such that R is a 4-ary relation symbol, S is a 3-ary relation symbols, while \prec is a binary relation.
- ▶ Suppose **A** is a boron tree structure with a boron tree structure embedding $\varphi : A \to B(n)$, for some $n \in \omega$.
- ▶ Define $o(\mathbf{A}, \varphi)$ to be the (extending) structure \mathbf{B} with signature \mathcal{L} and universe A such that
 - 1. $R^{\mathbf{B}} = R^{\mathbf{A}}$.
 - 2. For all $a, b \in A$, $\mathbf{B} \models \prec (a, b)$ if and only if $\varphi(a) <_{\text{lex}} \varphi(b)$.
 - 3. For all $a, b, c \in A$, $\mathbf{B} \models S(a, b, c)$ if and only if

$$\varphi(a) <_{\text{lex}} \varphi(b) <_{\text{lex}} \varphi(c)$$

and

$$|\varphi(a)\sqcap\varphi(b)|>|\varphi(b)\sqcap\varphi(c)|.$$

▶ Define \mathcal{OB}_0 to be the set of $o(\mathbf{A}, \varphi)$ for all pairs of boron tree structures \mathbf{A} and boron tree structure embeddings $\varphi : A \to B(n) \ (n \in \omega)$.

▶ Define \mathcal{OB}_0 to be the set of $o(\mathbf{A}, \varphi)$ for all pairs of boron tree structures \mathbf{A} and boron tree structure embeddings $\varphi: A \to \mathcal{B}(n) \ (n \in \omega)$.

Theorem

 \mathcal{OB}_0 is a Ramsey class.

▶ Define \mathcal{OB}_0 to be the set of $o(\mathbf{A}, \varphi)$ for all pairs of boron tree structures \mathbf{A} and boron tree structure embeddings $\varphi: A \to B(n) \ (n \in \omega)$.

Theorem

 \mathcal{OB}_0 is a Ramsey class.

Corollary

 $\operatorname{Aut}(\operatorname{Flim}(\mathcal{OB}_0))$ is extremely amenable.

▶ Define \mathcal{OB}_0 to be the set of $o(\mathbf{A}, \varphi)$ for all pairs of boron tree structures \mathbf{A} and boron tree structure embeddings $\varphi: A \to B(n) \ (n \in \omega)$.

Theorem

 \mathcal{OB}_0 is a Ramsey class.

Corollary

 $\operatorname{Aut}(\operatorname{Flim}(\mathcal{OB}_0))$ is extremely amenable.