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In recent years there has been considerable activity in
generalizing to continuous settings methods that were originally
devised for discrete contexts.

In Ramsey theorey (Gowers)
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Usvyatsov, et al.)

Here we focus on model-theoretic frameworks.
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Some points to consider:

The traditional logic of model theory is first-order logic.
First-order logic is not adequate as a model-theoretic
language for certain structures, e.g., Banach spaces. (The
first-order theory of the class of Banach spaces is
essentially equivalent to a second order logic
[Shelah-Stern, 1978].)
Nevertheless, ideas adapted from first-order model theory
have provided powerful applications to functional analysis.
[Krivine, 1976], [Krivine-Maurey, 1981].
Currently in model theory, there is considerable activity in
trying to replicate in non first-order contexts the successful
development of Shelah’s stability and classification theory.
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Classical model theory
First-order syntax
Logical symbols Connectives (∧, ∨,→ ¬), quantifiers (∃,

∀).
Nonlogical symbols symbols for functions, relations, and

constants (these depend on the classes of
structures being considered).

Other symbols include variables (usually countably many)
and parentheses.

Semantics
If ϕ is sentence, or a set of sentences in a first-order
language L, and M is an L-structure, we write

M |= ϕ

ϕ is true when interpreted in M. We say that M satisfies ϕ
or that M is a model of ϕ.
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Let L be a first-order language and let M,N be L-structures.
We say that M and N are elementary equivalent, written

M ≡ N,

if M and N satisfy the same L-sentences.
If M is a substructure of N, we say that M is an elementary
substructure of N, written

M ≺ N,

if
(M,a | a ∈ M) ≡ (M,a | a ∈ M).



Compactness and Löwenheim-Sklolem

The Compactness Theorem
Let Σ be a set of sentences. If every finite subset of Σ is
satisfiable, then Σ is satisfiable.

The (Downward) Löwenheim-Sklolem Theorem
Let L be a first-order language and let M be an L-structure.
Then there exists a countable structure M0 such that M0 ≺ M
and |M0| ≤ |M|+ |L|.
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Lindström’s Theorem

Theorem (P. Lindström, 1969)
Let L be a logic such that

1 L extends first-order logic
2 L satisfies the Compactness and Downward

Löwenheim-Skolem properties.
Then L is equivalent to first-order logic. That is, every sentence
of L is equivalent to a first-order sentence.



Realizing types

If Σ is a set of L-formulas and x1, . . . , xn are variables, we write
Σ as

Σ(x1, . . . , xn)

to indicate that the free variables of every formula in Σ are
among x1, . . . , xn.

Let Σ(x1, . . . , xn) be a set of sentences. If there exists a
structure M and elements a1, . . . ,an ∈ M such that

M |= Σ[a1, . . . ,an]

we say that Σ is consistent, or that Σ is a type and that
(a1, . . . ,an) realizes Σ in M.

Compactness Theorem
Let Σ(x1, . . . , xn) be a set of formulas. If every finite subset of Σ
is consistent, then Σ is consistent.
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Principal Types

Let Γ(x1, . . . , xn),Σ(x1, . . . , xn) be sets of formulas. We write

Γ(x1, . . . , xn) |= Σ(x1, . . . , xn)

if
M |= Γ[a1, . . . ,an] ⇒ M |= Σ[a1, . . . ,an].

Let T be a theory and let Σ(x1, . . . , xn) be a type consistent with
T . We say that Σ is principal if there exists a formula
ϕ(x1, . . . , xn) consistent with T such that

T , ϕ(x1, . . . , xn) |= Σ(x1, . . . , xn).

In this case, we say that ϕ is a generator of Σ.
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Omitting Types

The Classical Omitting Types Theorem
Let L be countable. If Σ is not principal, then there is a model of
T that omits Σ.

Corollary
Let L be countable. Let T be a complete L-theory (i.e., if for
every L-formula ϕ, either ϕ or ¬ϕ is consistent with T ) and let Σ
be a type consistent with T . Then Σ is realized in all the models
of T if and only if Σ is principal.

Remark: The countability assumption here cannot be removed.
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Question:

Is it possible to expand first-order model theory so that:

It is adequate for wider classes of structures (e.g., metric
spaces, C∗-algebras)
The “nice” characteristics of first-order model theory (e.g,
compactness, omitting types) are preserved?
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Chang-Keisler (1960’s): Continuous model theory.
(Motivated by Łoś’ Theorem.)
Krivine (1970’s): Real-valued logics. (Motivated by
problems in Banach space geometry.)
Henson (1970’s): Positive bounded formulas. (Motivated
by nonstandard hulls.)
Iovino (1990’s): Stability for uniform type spaces.
(Motivated by Shelah’s classification theory.)
Ben Yaacov (2005) Compact abstract theories (“cats”.)
(Motivated by hyperimaginaries.)
Ben Yaacov-Usvyatsov (2007): Continuous logic.
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These frameworks are similar. In fact, for important classes of
models (namely, continuous metric structures), most of them
are equivalent.

Krivine’s real-valued logic is equivalent to the universal
part of Henson’s framework.
Ben Yaacov’s approach of cats is more general, as the
structures need not be metrizable.

For the purposes of this talk, I will use the name “continuous
logic” to refer to any of these frameworks.
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Questions

1 Is the the equivalence among these frameworks a mere
coincidence?

2 Is there a more powerful approach, i.e., is there a logic with
more expressive power than those listed above which

expands first-order model theory to include these
structures, and yet
preserves desirable characteristics of first-order model
theory?
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All of these frameworks satisfy:

1 The Compactness Theorem
2 The classical Omitting Types Theorem [Henson, 2007].

All of them are “positive” in the sense that the logic does not
have a classical negation. (In fact, if one adds negation, the
expressive power becomes equivalent to that of first-order
logic.)
However, they have a “weak negation” which, through
approximations, serves as a replacement of the classical
negation for many purposes.
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Questions
Are these properties sufficient to characterize the expressive
power of the preceding model-theoretic frameworks?
Are these frameworks maximal with respect to the
Compactness Theorem or the Omitting Types Theorem?

Answer
No. Recently, Caicedo has exhibited examples of proper
extensions of continuous logic that satisfy the Compactness
Theorem and proper extensions of continuous logic that satisfy
the classical Omitting Types Theorem.
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Abstrac Model theory

If L and L′ are multi-sorted languages, a renaming is a bijection
r : L→ L′ that maps sort symbols onto sort symbols, relation
symbols onto relation symbols, and function symbols onto
function symbols, and respects sorts and arities. If r : L→ L′ is
a renaming and M is an L-structure, Mr denotes the structure
that results from converting M into an L′-structure through r .
We call the map M 7→Mr , too, a renaming.



Definition
A logic L consists of the following items.

1 A class of structures, called the structures of L, that is
closed under isomorphisms, renamings, expansion by
constants, and reducts.

2 For each multi-sorted language L, a set L[L] called the
L-sentences of L, such that L[L] ⊆ L[L′] when L ⊆ L′.

3 A binary relation |=, called satisfaction, between structures
and sentences of L such that:
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(a) If M is an L-structure of L and M |= ϕ, then ϕ ∈ L[L].
(b) Isomorphism Property. If M |= ϕ and M is isomorphic to N,

then N |= ϕ;
(c) Reduct Property. If L ⊆ L′, M is a L′-structure of L and

ϕ ∈ L[L], then M |= ϕ if and only if M � L |= ϕ;
(d) Renaming Property. Suppose that r : L→ L′ is a renaming.

Then for each sentence ϕ ∈ L[L] there exists a sentence
ϕr ∈ L[L] such that M |= ϕ if and only if Mr |= ϕr .
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If L is a logic,

The class of sentences of L is denoted Sent(L)

The class of structures of L is denoted Str(L).

A theory is a subclass of Sent(L). If T is a theory,

Mod(T ) = {M ∈ Str(L) | M |= T }.

The classes Mod(T ) form the closed sets for a topology on
Str(L). We will refer to this topology as the logical topology
of L.



A logic L is said to have negations if for every sentence
ϕ ∈ Sent(L) there exists a sentence ϕ ∈ Sent(L) such that

M |= ψ if and only if M 6|= ϕ.

Note that a logic has negations if and only if its logical topology
has a base consisting of clopen sets.

Recall that continuous logic does not have negations.
Furthermore, adding classical negations to it results in classical
(discrete) first-order logic, which, for continuous structures, has
too high an expressive power. [Shelah-Stern, op. cit.]

However, continuous logic does have a feature that, for
practical applications, takes the role of negation:
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Regular Logics

Definition
We will say that a logic is regular if its logical topology is regular.



Definition
A logic L is compact if it satisfies the Compactness Theorem.
A logic is locally compact if for every structure M there is a
sentence ϕ such that M |= ϕ and the Compactness Theorem
holds for types containing ϕ.

Theorem (Brucks, Caicedo, Iovino)
Every locally compact regular logic satisfies the classical
Omitting Types Theorem.

Corollary
There are proper extensions of continuous logic that satisfy
compactness and the classical Omitting Types Theorem.
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κ-principal types

Let κ be an infinite cardinal and let T be a theory. If
Σ(x1, . . . , xn) is a type consistent with T , we say that Σ is
κ-principal if there exists a set of formulas Γ(x1, . . . , xn),
consistent with T and satisfying |Γ| < κ, such that

T , Γ(x1, . . . , xn) |= Σ(x1, . . . , xn).

It would be desirable to have a version of the classical omitting
types theorem for uncountable languages, namely:

If |T |, |Σ| ≤ κ and Σ is not κ-principal, then there is a model of
T that omits Σ.
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Theorem (Brucks, Caicedo, Iovino)
Let L be a locally compact regular logic. Then, if κ is regular,
|T |, |Σ| ≤ κ, and Σ is not κ-principal, then there is a model of T
that omits Σ.

The proof of this theorem is topological. It uses an uncountable
version of the Baire category theorem.

The version of this result for logics with negation (and existential
quantifier) is not new; it is known as the Chang-Kreisel-Krivine
omitting types theorem for uncountable languages.
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Let L,L′ be locally compact regular logics and let U,U′ be
uniform structures compatible with their respective logical
topologies. We will say that L′ extends L if for every
ϕ ∈ Sent(L′) and every U ∈ U′ there exist ψ ∈ L and V ∈ U

such that
Mod(ϕ) ⊆ Mod(ψ)

and

V -thickening of Mod(ψ) ⊆ U-thickening of Mod(ϕ).

Intuitively, this means that every sentence in L′ is a uniform
limit of sentences in L.

We will say that two logics are equivalent if they extend each
other.



The Main Result

Theorem (Brucks, Caicedo, Iovino)
Let L be a regular logic such that L

extends continuous logic,
is locally compact,
satisfies the κ-Omitting Types Theorem for some regular
uncountable cardinal κ.

Then L is equivalent to continuous logic.
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