Classification of C*-algebras and set theory

Ilijas Farah (joint work with Andrew Toms and Asger Törnquist)

Workshop on the Concentration Phenomenon, Transformation Groups and Ramsey Theory, October 12, 2010

H: a complex Hilbert space

H: a complex Hilbert space

 $(\mathcal{B}(H))$: the algebra of bounded linear operators on H

H: a complex Hilbert space $(\mathcal{B}(H),+,\cdot,^*,\|\cdot\|)$: the algebra of bounded linear operators on H

H: a complex Hilbert space $(\mathcal{B}(H),+,\cdot,^*,\|\cdot\|)$: the algebra of bounded linear operators on H

Definition

A (concrete) C^* -algebra is a norm-closed subalgebra of $\mathcal{B}(H)$.

H: a complex Hilbert space

 $(\mathcal{B}(H),+,\cdot,^*,\|\cdot\|)$: the algebra of bounded linear operators on H

Definition

A (concrete) C^* -algebra is a norm-closed subalgebra of $\mathcal{B}(H)$.

Theorem (Gelfand-Naimark-Segal, 1942)

A Banach algebra with involution A is isomorphic to a concrete C^* -algebra if and only if

$$||aa^*|| = ||a||^2$$

for all $a \in A$.

Example (1) $\mathcal{B}(H)$, $M_n(\mathbb{C})$.

Example

- (1) $\mathcal{B}(H)$, $M_n(\mathbb{C})$.
- (2) If X is a compact metric space, C(X).

$$C(X) \cong C(T) \Leftrightarrow X \cong Y.$$

Example

- (1) $\mathcal{B}(H)$, $M_n(\mathbb{C})$.
- (2) If X is a compact metric space, C(X).

$$C(X) \cong C(T) \Leftrightarrow X \cong Y.$$

(3) If (X, α) is a minimal dynamical system, $C(X) \rtimes_{\alpha} \mathbb{Z}$.

$$(X, \alpha) \cong (Y, \beta)$$
 \Rightarrow $C(X) \rtimes_{\alpha} \mathbb{Z} \cong C(Y) \rtimes_{\beta} \mathbb{Z}.$

UHF algebras are direct limits of full matrix algebras, $M_n(\mathbb{C})$.

UHF algebras are direct limits of full matrix algebras, $M_n(\mathbb{C})$.

Theorem (Glimm, 1960)

Unital, separable UHF algebras are classified by the invariant $\prod_{p \ prime} p^{n_p}$ in $\mathbb{N}^{\mathbb{N}}$.

UHF algebras are direct limits of full matrix algebras, $M_n(\mathbb{C})$.

Theorem (Glimm, 1960)

Unital, separable UHF algebras are classified by the invariant $\prod_{p \ prime} p^{n_p}$ in $\mathbb{N}^{\mathbb{N}}$.

AF algebras are direct limits of finite-dimensional C*-algebras.

UHF algebras are direct limits of full matrix algebras, $M_n(\mathbb{C})$.

Theorem (Glimm, 1960)

Unital, separable UHF algebras are classified by the invariant $\prod_{p \ prime} p^{n_p}$ in $\mathbb{N}^{\mathbb{N}}$.

AF algebras are direct limits of finite-dimensional C*-algebras.

Theorem (Elliott, 1975)

Separable AF algebras are classified by the ordered group $(K_0(A), K_0(A)^+, 1)$.

Theorem (Kirchberg-Phillips, 1995)

All purely infinite, nuclear, separable, simple, unital C^* -algebras with UCT are classified by their K-theoretic invariant.

Theorem (Kirchberg-Phillips, 1995)

All purely infinite, nuclear, separable, simple, unital C^* -algebras with UCT are classified by their K-theoretic invariant.

Theorem (Elliott-Evans, 1993)

Irrational rotation algebras are are classified by their K-theoretic invariant.

Elliott program

All nuclear, separable, simple, unital C*-algebras are classified by the Elliott invariant,

$$((K_0(A), K_0(A)^+, 1), K_1(A), T(A), \rho_A).$$

Elliott program as of 2003

All nuclear, separable, simple, unital C*-algebras are classified by the Elliott invariant,

$$((K_0(A), K_0(A)^+, 1), K_1(A), T(A), \rho_A).$$

Elliott program as of 2003

All nuclear, separable, simple, unital C*-algebras are classified by the Elliott invariant,

$$((K_0(A), K_0(A)^+, 1), K_1(A), T(A), \rho_A).$$

$$A \longrightarrow \mathsf{EII}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \longrightarrow \mathsf{EII}(B)$$

Rørdam, Toms, 2004 - counterexamples.

New directions

- Classification of nuclear, simple, unital, separable, Z-stable C*-algebras.
- 2. Cuntz semigroup as an invariant.

Descriptive set theory: Abstract classification

Assume the collection X of objects we are trying to classify forms a 'nice' space, typically a Polish space or a standard Borel space and the equivalence relation E is a Borel or analytic subset of X^2 . (Analytic set is a continuous image of a Borel set.)

The basic concept of abstract classification

Definition

If (X, E) and (Y, F) are equivalence relations, E is Borel-reducible to F, in symbols

$$E \leq_B F$$
,

if there is a Borel-measurable map $f: X \to Y$ such that

$$x E y \Leftrightarrow f(x) E f(y).$$

The basic concept of abstract classification

Definition

If (X, E) and (Y, F) are equivalence relations, E is Borel-reducible to F, in symbols

$$E \leq_B F$$
,

if there is a Borel-measurable map $f: X \to Y$ such that

$$x E y \Leftrightarrow f(x) E f(y).$$

The intuitive meaning:

- (1) Classification problem represented by E is at most as complicated as that of F.
- (2) F-classes are complete invariants for E-classes.

The basic concept of abstract classification

Definition

If (X, E) and (Y, F) are equivalence relations, E is Borel-reducible to F, in symbols

$$E \leq_B F$$
,

if there is a Borel-measurable map $f: X \to Y$ such that

$$x E y \Leftrightarrow f(x) E f(y).$$

The intuitive meaning:

- (1) Classification problem represented by E is at most as complicated as that of F.
- (2) F-classes are complete invariants for E-classes.

Example

Spectral theorems.

The big picture: Borel equivalence relations

If $E \leq_B = \mathbb{R}$ we say E is *smooth*.

OER: Orbit equivalence relation of a continuous Polish group action on a Polish space.

The big picture: Borel equivalence relations

If $E \leq_B = \mathbb{R}$ we say E is *smooth*.

OER: Orbit equivalence relation of a continuous Polish group action on a Polish space.

Modelling classification problems I

Example (The Polish space of countable groups) A countable group G is coded by $(\mathbb{N}, e_G, x_G, ^{-1}_G)$, for $e \in \mathbb{N}, \times_G \colon \mathbb{N}^2 \to \mathbb{N}, ^{-1}_G \colon \mathbb{N} \to \mathbb{N}$.

Modelling classification problems I

Example (The Polish space of countable groups) A countable group G is coded by $(\mathbb{N}, e_G, x_G, ^{-1}_G)$, for $e \in \mathbb{N}, \times_G \colon \mathbb{N}^2 \to \mathbb{N}, ^{-1}_G \colon \mathbb{N} \to \mathbb{N}$. This is a closed subspace of the compact metric space

 $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}^3) \times \mathcal{P}(\mathbb{N}^2)$.

Modelling classification problems I

Example (The Polish space of countable groups)

A countable group G is coded by

$$(\mathbb{N}, e_G, x_G, ^{-1}_G)$$
, for $e \in \mathbb{N}, \times_G \colon \mathbb{N}^2 \to \mathbb{N}, ^{-1}_G \colon \mathbb{N} \to \mathbb{N}$.

This is a closed subspace of the compact metric space $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}^3) \times \mathcal{P}(\mathbb{N}^2)$.

The isomorphism \cong^G is an S_{∞} -orbit equivalence relation.

Modelling classification problems II

In general, a given concrete classification problem for category $\mathcal C$ is modelled by a standard Borel space (X,Σ) and $F:X \twoheadrightarrow \mathcal C$ such that the relation E on X,

$$x E y \Leftrightarrow F(x) \cong F(y)$$

is analytic (i.e., a continuous image of a Borel set).

An equivalence relation (X, E) is classified by countable structures if there is a countable language L and a Borel map from X into countable L-models such that

$$x E y \text{ iff } F(x) \cong F(y).$$

An equivalence relation (X, E) is classified by countable structures if there is a countable language L and a Borel map from X into countable L-models such that

$$x E y \text{ iff } F(x) \cong F(y).$$

This is equivalent to being \leq_B an S_{∞} -orbit equivalence relation.

An equivalence relation (X, E) is classified by countable structures if there is a countable language L and a Borel map from X into countable L-models such that

$$x E y \text{ iff } F(x) \cong F(y).$$

This is equivalent to being \leq_B an S_{∞} -orbit equivalence relation.

Lemma (Sasyk-Törnquist 2009, after Hjorth)

If $G \subsetneq F$ are separable Banach spaces, G is dense in F, and id: $G \to F$ is bounded, then the coset equivalence F/G cannot be classified by countable structures.

An equivalence relation (X, E) is classified by countable structures if there is a countable language L and a Borel map from X into countable L-models such that

$$x E y \text{ iff } F(x) \cong F(y).$$

This is equivalent to being \leq_B an S_{∞} -orbit equivalence relation.

Lemma (Sasyk-Törnquist 2009, after Hjorth)

If $G \subsetneq F$ are separable Banach spaces, G is dense in F, and id: $G \to F$ is bounded, then the coset equivalence F/G cannot be classified by countable structures.

Example

 c_0/ℓ_2 .

Theorem (Kechris-Sofronidis, 2001)

Unitary operators up to conjugacy are not classifiable by countable structures.

Theorem (Kechris-Sofronidis, 2001)

Unitary operators up to conjugacy are not classifiable by countable structures.

Theorem (Foreman-Weiss, 2004)

Ergodic measure-preserving transformation up to conjugacy are not classifiable by countable structures.

Examples

Theorem (Kechris-Sofronidis, 2001)

Unitary operators up to conjugacy are not classifiable by countable structures.

Theorem (Foreman-Weiss, 2004)

Ergodic measure-preserving transformation up to conjugacy are not classifiable by countable structures.

Theorem (Sasyk-Törnquist, 2009)

Type II_1 factors are not classifiable by countable structures. The same result applies to II_{∞} factors and III_{λ} factors for $0 \le \lambda \le 1$, to injective III_0 factors and to ITPFI factors.

Effros Borel space

For a Polish space X let X^* be the space of closed subsets of X. The σ -algebra Σ on X^* is generated by sets

$$\{A \in X^* : A \subseteq U\}$$

where U ranges over open subsets of X.

Effros Borel space

For a Polish space X let X^* be the space of closed subsets of X. The σ -algebra Σ on X^* is generated by sets

$$\{A \in X^* : A \subseteq U\}$$

where U ranges over open subsets of X.

Proposition

 (X^*, Σ) is a standard Borel space.

Effros Borel space

For a Polish space X let X^* be the space of closed subsets of X. The σ -algebra Σ on X^* is generated by sets

$$\{A \in X^* : A \subseteq U\}$$

where U ranges over open subsets of X.

Proposition

 (X^*, Σ) is a standard Borel space. If X is a separable C^* -algebra then

$$S(X) = \{B \in X^* : B \text{ is a subalgebra of } X\}$$

is a Borel subspace of X^* .

Examples

Theorem (Kirchberg, 1994)

 $S(\mathcal{O}_2)$ is the space of all exact separable C^* -algebras.

Examples

Theorem (Kirchberg, 1994)

 $S(\mathcal{O}_2)$ is the space of all exact separable C^* -algebras.

Theorem (Pisier-Junge, 1995)

S(A) is not the space of all separable C^* -algebras for any separable C^* -algebra A.

Borel space of separable C*-algebras

Definition (Kechris, 1996)

Let Γ be $\mathcal{B}(\ell_2)^{\mathbb{N}}$, with respect to the weak operator topology. Then

$$\Gamma \ni \gamma \mapsto C^*(\gamma)$$

maps Γ onto the space of all separable C^* -algebras represented on H, and

$$\gamma_0 E \gamma_1 \Leftrightarrow C^*(\gamma_0) \cong C^*(\gamma_1)$$

is analytic.

Borel space of separable C*-algebras

Definition (Kechris, 1996)

Let Γ be $\mathcal{B}(\ell_2)^{\mathbb{N}}$, with respect to the weak operator topology. Then

$$\Gamma \ni \gamma \mapsto C^*(\gamma)$$

maps Γ onto the space of all separable C^* -algebras represented on H, and

$$\gamma_0 E \gamma_1 \Leftrightarrow C^*(\gamma_0) \cong C^*(\gamma_1)$$

is analytic.

There is also a space Δ of abstract separable C*-algebras.

Two representations are equivalent.

Lemma (Kechris, 1996)

There are Borel maps $\Phi_j : \Gamma \to \Gamma$ (j = 1, 2, 3) such that

- 1. $\Phi_1(\gamma)$ enumerates a norm-dense subset of $C^*(\gamma)$,
- 2. $\Phi_2(\gamma)$ enumerates a norm-dense subset of $C^*(\gamma)_+$,
- 3. $\Phi_3(\gamma)$ enumerates a norm-dense subset of the projections of $C^*(\gamma)$.

Lemma (Kechris, 1996)

There are Borel maps $\Phi_i \colon \Gamma \to \Gamma$ (j = 1, 2, 3) such that

- 1. $\Phi_1(\gamma)$ enumerates a norm-dense subset of $C^*(\gamma)$,
- 2. $\Phi_2(\gamma)$ enumerates a norm-dense subset of $C^*(\gamma)_+$,
- 3. $\Phi_3(\gamma)$ enumerates a norm-dense subset of the projections of $C^*(\gamma)$.

Proposition (Effros, 1996)

The set $\{\gamma \in \Gamma : C^*(\gamma) \text{ is nuclear}\}\$ is Borel.

Lemma (Farah–Toms–Törnquist, 2009) There is a Borel map $\Psi \colon \Gamma^2 \to \Gamma$ such that $C^*(\Psi(\gamma_1, \gamma_2)) \cong C^*(\gamma_1) \otimes_{\min} C^*(\gamma_2).$

Lemma (Farah–Toms–Törnquist, 2009) There is a Borel map $\Psi: \Gamma^2 \to \Gamma$ such that

$$C^*(\Psi(\gamma_1, \gamma_2)) \cong C^*(\gamma_1) \otimes_{\mathsf{min}} C^*(\gamma_2).$$

Proposition (Farah-Toms-Törnquist, 2009) Computation of the Elliott invariant is Borel.

Lemma (Farah-Toms-Törnquist, 2009)

There is a Borel map $\Psi \colon \Gamma^2 \to \Gamma$ such that

$$C^*(\Psi(\gamma_1, \gamma_2)) \cong C^*(\gamma_1) \otimes_{\mathsf{min}} C^*(\gamma_2).$$

Proposition (Farah-Toms-Törnquist, 2009)

Computation of the Elliott invariant is Borel.

Theorem (Farah-Toms-Törnquist, 2009)

The isomorphism of separable, simple, unital, nuclear C*-algebras is not classifiable by countable structures.

Lemma (Farah-Toms-Törnquist, 2009)

There is a Borel map $\Psi \colon \Gamma^2 \to \Gamma$ such that

$$C^*(\Psi(\gamma_1, \gamma_2)) \cong C^*(\gamma_1) \otimes_{\mathsf{min}} C^*(\gamma_2).$$

Proposition (Farah-Toms-Törnquist, 2009)

Computation of the Elliott invariant is Borel.

Theorem (Farah-Toms-Törnquist, 2009)

The isomorphism of separable, simple, unital, nuclear C*-algebras is not classifiable by countable structures.

Actually we can do this for Al algebras.

Classifiable C*-algebras are not classifiable. . . by countable structures

Theorem (Elliott, 1993)

Al algebras are classified by the Elliott invariant.

Classifiable C*-algebras are not classifiable. . . by countable structures

Theorem (Elliott, 1993)

Al algebras are classified by the Elliott invariant.

Theorem (Farah-Toms-Törnquist, 2009)

If L is a countable language, then the isomorphism of countable L-models is \leq_B to the isomorphism of AI algebras.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

Isomorphism of separable Banach spaces is the \leq_B -maximal analytic equivalence relation.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

Isomorphism of separable Banach spaces is the \leq_B -maximal analytic equivalence relation.

In particular, separable Banach spaces cannot be classified by orbits of a polish group action.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

Isomorphism of separable Banach spaces is the \leq_B -maximal analytic equivalence relation.

In particular, separable Banach spaces cannot be classified by orbits of a polish group action.

Theorem (Kechris-Solecki, 200?)

Homeomorphism of compact metric spaces is \leq_B a Polish group action.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

Isomorphism of separable Banach spaces is the \leq_B -maximal analytic equivalence relation.

In particular, separable Banach spaces cannot be classified by orbits of a polish group action.

Theorem (Kechris-Solecki, 200?)

Homeomorphism of compact metric spaces is \leq_B a Polish group action.

Proposition (Farah-Toms-Törnquist, 2010)

The isomorphism of simple separable nuclear C^* -algebras is \leq_B to an orbit equivalence relation of a Polish group action.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

Isomorphism of separable Banach spaces is the \leq_B -maximal analytic equivalence relation.

In particular, separable Banach spaces cannot be classified by orbits of a polish group action.

Theorem (Kechris-Solecki, 200?)

Homeomorphism of compact metric spaces is \leq_B a Polish group action.

Proposition (Farah-Toms-Törnquist, 2010)

The isomorphism of simple separable nuclear C^* -algebras is \leq_B to an orbit equivalence relation of a Polish group action.

The Cuntz semigroup, W(A)

Theorem (Perera-Toms, 2007)

Upon restriction to \mathcal{Z} -stable (simple, separable, nuclear, unital) C^* -algebras, $EII(A) \cong EII(B)$ if and only if $(W(A), K_1(A)) \cong (W(B), K_1(B))$.

The Cuntz semigroup, W(A)

Theorem (Perera-Toms, 2007)

Upon restriction to \mathbb{Z} -stable (simple, separable, nuclear, unital) C^* -algebras, $Ell(A) \cong Ell(B)$ if and only if $(W(A), K_1(A)) \cong (W(B), K_1(B))$.

On positive elements of a C*-algebra A define the relation \lesssim by

$$a \lesssim b \Leftrightarrow (\forall \varepsilon > 0)(\exists x \in A) ||a - xbx^*|| < \varepsilon$$

and let $a \sim b$ iff $a \lesssim b$ and $b \lesssim a$.

The Cuntz semigroup, W(A)

Theorem (Perera-Toms, 2007)

Upon restriction to \mathcal{Z} -stable (simple, separable, nuclear, unital) C^* -algebras, $Ell(A) \cong Ell(B)$ if and only if $(W(A), K_1(A)) \cong (W(B), K_1(B))$.

On positive elements of a C*-algebra A define the relation \lesssim by

$$a \lesssim b \Leftrightarrow (\forall \varepsilon > 0)(\exists x \in A) ||a - xbx^*|| < \varepsilon$$

and let $a \sim b$ iff $a \lesssim b$ and $b \lesssim a$. Cuntz semigroup, W(A), is the quotient structure of $(A \oplus \mathcal{K}, \lesssim, +, \ll)$ with respect to \sim , where

$$a+b:=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

and \ll is a subrelation of \lesssim called *compact containment*.

Borel space of Cuntz semigroups

(The following space has the space of Cuntz semigroups of separable C*-algebras as its proper subspace, but there is no precise range of invariant result anyway.)

Borel space of Cuntz semigroups

(The following space has the space of Cuntz semigroups of separable C*-algebras as its proper subspace, but there is no precise range of invariant result anyway.)

Let \mathbf{Cu} be the space of all countable ordered semigroups with 0 and distinguished subset of elements compactly contained in themselves. This is a compact subspace of $\mathcal{P}(\mathbb{N})^6$.

Borel space of Cuntz semigroups

(The following space has the space of Cuntz semigroups of separable C*-algebras as its proper subspace, but there is no precise range of invariant result anyway.)

Let \mathbf{Cu} be the space of all countable ordered semigroups with 0 and distinguished subset of elements compactly contained in themselves. This is a compact subspace of $\mathcal{P}(\mathbb{N})^6$.

Proposition (Farah-Toms-Tørnquist, 2010)

There is a Borel map $\Phi \colon \Gamma \to \mathbf{C}\mathbf{u}$ such that the equivalence relation E on $\mathbf{C}\mathbf{u}$

$$\Phi(\gamma) \operatorname{E} \Phi(\gamma')$$
 if and only if $\operatorname{Cu}(C^*(\gamma)) \cong \operatorname{Cu}(C^*(\gamma'))$

is analytic.

Sketch of the proof: $\gamma \mapsto Cu(C^*(\gamma))$ is Borel

Replace $\gamma \in \Gamma$ with γ' such that

$$C^*(\gamma') \cong C^*(\gamma) \otimes \mathcal{K}.$$

Sketch of the proof: $\gamma \mapsto Cu(C^*(\gamma))$ is Borel

Replace $\gamma \in \Gamma$ with γ' such that

$$C^*(\gamma') \cong C^*(\gamma) \otimes \mathcal{K}$$
.

By Kechris, we have effective enumerations:

 (x_n) of a dense subset of $C^*(\gamma) \otimes \mathcal{K}$ and

 (a_n) of a dense sequence of positive elements of $C^*(\gamma) \otimes \mathcal{K}$.

Sketch of the proof: $\gamma \mapsto Cu(C^*(\gamma))$ is Borel, II

Define \lesssim_{γ} on $\mathbb N$ by

$$m \lesssim_{\gamma} n \qquad \Leftrightarrow \qquad (\forall i)(\exists j) \|x_j a_n x_j^* - a_m\| < 1/i$$

The map $\Gamma \ni \gamma \mapsto \preceq_{\gamma} \in \mathcal{P}(\mathbb{N})^2$ is Borel.

Sketch of the proof: $\gamma \mapsto Cu(C^*(\gamma))$ is Borel, II

Define \lesssim_{γ} on $\mathbb N$ by

$$m \lesssim_{\gamma} n \qquad \Leftrightarrow \qquad (\forall i)(\exists j) \|x_j a_n x_j^* - a_m\| < 1/i$$

The map $\Gamma \ni \gamma \mapsto \preceq_{\gamma} \in \mathcal{P}(\mathbb{N})^2$ is Borel.

Map Γ ∋ $\gamma \mapsto +_{\gamma} \in \mathcal{P}(\mathbb{N})^3$ is similarly Borel. . .

Sketch of the proof: $\gamma \mapsto Cu(C^*(\gamma))$ is Borel, II

Define \lesssim_{γ} on $\mathbb N$ by

$$m \lesssim_{\gamma} n \quad \Leftrightarrow \quad (\forall i)(\exists j) \|x_j a_n x_j^* - a_m\| < 1/i$$

The map $\Gamma \ni \gamma \mapsto \preceq_{\gamma} \in \mathcal{P}(\mathbb{N})^2$ is Borel.

Map $\Gamma \ni \gamma \mapsto +_{\gamma} \in \mathcal{P}(\mathbb{N})^3$ is similarly Borel. and so is $\Gamma \ni \gamma \mapsto \ll_{\gamma} \in \mathcal{P}(\mathbb{N})^2$ (here \ll is the compact containment relation).

The quotient structure on \mathbb{N} , wrt \approx_{γ} , $+_{\gamma}$ and \lesssim_{γ} , belongs to **Cu**.

Given $D = (\mathbb{N}, \preceq, +, C) \in \mathbf{Cu}$, define \tilde{D} and D^{\nearrow} as follows.

Given $D = (\mathbb{N}, \lesssim, +, C) \in \mathbf{Cu}$, define \tilde{D} and D^{\nearrow} as follows. Let D^{\nearrow} be the set of \ll -increasing sequences in D, and let

$$(x_n) \le (y_n) \Leftrightarrow (\forall m)(\exists n)x_m \ll y_n \text{ and } y_m \ll x_n$$

Given $D=(\mathbb{N}, \lesssim, +, C) \in \mathbf{Cu}$, define \tilde{D} and D^{\nearrow} as follows. Let D^{\nearrow} be the set of \ll -increasing sequences in D, and let

$$(x_n) \le (y_n) \Leftrightarrow (\forall m)(\exists n)x_m \ll y_n \text{ and } y_m \ll x_n$$

Let
$$(x_n) \sim (y_n)$$
 iff $(x_n) \leq (y_n)$ and $(y_n) \leq (x_n)$.
Then $\tilde{D} = D^{\nearrow}/\sim$ is the Cuntz semigroup of $C^*(\gamma)$.

Given $D=(\mathbb{N}, \lesssim, +, C) \in \mathbf{Cu}$, define \tilde{D} and D^{\nearrow} as follows. Let D^{\nearrow} be the set of \ll -increasing sequences in D, and let

$$(x_n) \le (y_n) \Leftrightarrow (\forall m)(\exists n)x_m \ll y_n \text{ and } y_m \ll x_n$$

Let
$$(x_n) \sim (y_n)$$
 iff $(x_n) \leq (y_n)$ and $(y_n) \leq (x_n)$.
Then $\tilde{D} = D^{\nearrow}/\sim$ is the Cuntz semigroup of $C^*(\gamma)$.

Sketch of the proof: $\gamma \mapsto \mathsf{Cu}(C^*(\gamma))$ is Borel, III The isomorphism relation is analytic

Lemma

The relation on \mathbf{Cu} defined by $D_1 \to D_2$ iff $\tilde{D}_1 \cong \tilde{D}_2$ is analytic.

Sketch of the proof: $\gamma \mapsto Cu(C^*(\gamma))$ is Borel, III The isomorphism relation is analytic

Lemma

The relation on \mathbf{Cu} defined by $D_1 \to D_2$ iff $\tilde{D}_1 \cong \tilde{D}_2$ is analytic.

Proof.

 $\tilde{\it D}_1\cong \tilde{\it D}_2$ iff:

$$(\exists \Phi_1) \colon D_1 \to D_2$$
, homomorphism $(\exists \Phi_2) \colon D_2 \to D_1$, homomorphism $\Phi_1 \circ \Phi_2 = \operatorname{id}_{D_2}/\sim \Phi_2 \circ \Phi_1 = \operatorname{id}_{D_1}/\sim$

Corollary

The set $\{\gamma \in \Gamma : C^*(\gamma) \text{ is simple } \}$ is Borel.

Proof.

A is simple if and only if $Cu(A \otimes \mathcal{O}_2)$ has only one positive element.

Relative complexity of some isomorphism relations

Question

Is the isomorphism of all separable, unital C^* -algebras \leq_B orbit equivalence relation?

Question

Is the isomorphism of all separable, unital C^* -algebras \leq_B orbit equivalence relation?

What about the not necessarily simple nuclear C^* -algebras? Exact C^* -algebras? Arbitrary C^* -algebras?

Question

Is the isomorphism of all separable, unital C^* -algebras \leq_B orbit equivalence relation?

What about the not necessarily simple nuclear C^* -algebras? Exact C^* -algebras? Arbitrary C^* -algebras?

Problem

Develop set-theoretic framework for Elliott's functorial classification.

Question

Is the isomorphism of all separable, unital C^* -algebras \leq_B orbit equivalence relation?

What about the not necessarily simple nuclear C^* -algebras? Exact C^* -algebras? Arbitrary C^* -algebras?

Problem

Develop set-theoretic framework for Elliott's functorial classification.

Problem

Is the isomorphism of countably determined Cuntz semigroups \leq_B orbit equivalence relation?