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C*-algebras

H: a complex Hilbert space

(B(H)

,+, ·,∗ , ‖ · ‖

): the algebra of bounded linear operators on H

Definition
A (concrete) C*-algebra is a norm-closed subalgebra of B(H).

Theorem (Gelfand–Naimark–Segal, 1942)

A Banach algebra with involution A is isomorphic to a concrete
C*-algebra if and only if

‖aa∗‖ = ‖a‖2

for all a ∈ A.
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Examples

Example

(1) B(H), Mn(C).

(2) If X is a compact metric space, C (X ).

C (X ) ∼= C (T ) ⇔ X ∼= Y .

(3) If (X , α) is a minimal dynamical system, C (X ) oα Z.

(X , α) ∼= (Y , β) ⇒ C (X ) oα Z ∼= C (Y ) oβ Z.
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Classification results, I

UHF algebras are direct limits of full matrix algebras, Mn(C).

Theorem (Glimm, 1960)

Unital, separable UHF algebras are classified by the invariant∏
p prime pnp in NN.

AF algebras are direct limits of finite-dimensional C*-algebras.

Theorem (Elliott, 1975)

Separable AF algebras are classified by the ordered group
(K0(A),K0(A)+, 1).
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Classification results, II

Theorem (Kirchberg–Phillips, 1995)

All purely infinite, nuclear, separable, simple, unital C*-algebras
with UCT are classified by their K-theoretic invariant.

Theorem (Elliott–Evans, 1993)

Irrational rotation algebras are are classified by their K-theoretic
invariant.
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Rørdam, Toms, 2004 - counterexamples.

New directions

1. Classification of nuclear, simple, unital, separable, Z-stable
C*-algebras.

2. Cuntz semigroup as an invariant.



Descriptive set theory: Abstract classification

Assume the collection X of objects we are trying to classify forms
a ‘nice’ space, typically a Polish space or a standard Borel space
and the equivalence relation E is a Borel or analytic subset of X 2.
(Analytic set is a continuous image of a Borel set.)



The basic concept of abstract classification

Definition
If (X ,E ) and (Y ,F ) are equivalence relations, E is Borel-reducible
to F , in symbols

E ≤B F ,

if there is a Borel-measurable map f : X → Y such that

x E y ⇔ f (x) E f (y).

The intuitive meaning:
(1) Classification problem represented by E is at most as
complicated as that of F .
(2) F -classes are complete invariants for E-classes.

Example

Spectral theorems.
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The big picture: Borel equivalence relations

If E ≤B=R we say E is smooth.
OER: Orbit equivalence relation of a continuous Polish group
action on a Polish space.
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Modelling classification problems I

Example (The Polish space of countable groups)

A countable group G is coded by
(N, eG , xG ,

−1
G ), for e ∈ N, ×G : N2 → N, −1

G : N→ N.

This is a closed subspace of the compact metric space
P(N)× P(N3)× P(N2).

The isomorphism ∼=G is an S∞-orbit equivalence relation.
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Modelling classification problems II

In general, a given concrete classification problem for category C is
modelled by a standard Borel space (X ,Σ) and F : X � C such
that the relation E on X ,

x E y ⇔ F (x) ∼= F (y)

is analytic (i.e., a continuous image of a Borel set).



Classification by countable structures

An equivalence relation (X ,E ) is classified by countable structures
if there is a countable language L and a Borel map from X into
countable L-models such that

x E y iff F (x) ∼= F (y).

This is equivalent to being ≤B an S∞-orbit equivalence relation.

Lemma (Sasyk–Törnquist 2009, after Hjorth)

If G ( F are separable Banach spaces, G is dense in F , and
id : G → F is bounded, then the coset equivalence F/G cannot be
classified by countable structures.

Example

c0/`2.
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Examples

Theorem (Kechris–Sofronidis, 2001)

Unitary operators up to conjugacy are not classifiable by countable
structures.

Theorem (Foreman–Weiss, 2004)

Ergodic measure-preserving transformation up to conjugacy are not
classifiable by countable structures.

Theorem (Sasyk–Törnquist, 2009)

Type II1 factors are not classifiable by countable structures. The
same result applies to II∞ factors and IIIλ factors for 0 ≤ λ ≤ 1, to
injective III0 factors and to ITPFI factors.
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Effros Borel space

For a Polish space X let X ∗ be the space of closed subsets of X .
The σ-algebra Σ on X ∗ is generated by sets

{A ∈ X ∗ : A ⊆ U}

where U ranges over open subsets of X .

Proposition

(X ∗,Σ) is a standard Borel space. If X is a separable C*-algebra
then

S(X ) = {B ∈ X ∗ : B is a subalgebra of X}

is a Borel subspace of X ∗.
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Examples

Theorem (Kirchberg, 1994)

S(O2) is the space of all exact separable C*-algebras.

Theorem (Pisier–Junge, 1995)

S(A) is not the space of all separable C*-algebras for any separable
C*-algebra A.
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Borel space of separable C*-algebras

Definition (Kechris, 1996)

Let Γ be B(`2)N, with respect to the weak operator topology. Then

Γ 3 γ 7→ C ∗(γ)

maps Γ onto the space of all separable C*-algebras represented on
H, and

γ0 E γ1 ⇔ C ∗(γ0) ∼= C ∗(γ1)

is analytic.

There is also a space ∆ of abstract separable C*-algebras.
Two representations are equivalent.
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Lemma (Kechris, 1996)

There are Borel maps Φj : Γ→ Γ (j = 1, 2, 3) such that

1. Φ1(γ) enumerates a norm-dense subset of C ∗(γ),

2. Φ2(γ) enumerates a norm-dense subset of C ∗(γ)+,

3. Φ3(γ) enumerates a norm-dense subset of the projections of
C ∗(γ).

Proposition (Effros, 1996)

The set {γ ∈ Γ : C ∗(γ) is nuclear} is Borel.
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Classification problem of C*-algebras

Lemma (Farah–Toms–Törnquist, 2009)

There is a Borel map Ψ: Γ2 → Γ such that

C ∗(Ψ(γ1, γ2)) ∼= C ∗(γ1)⊗min C ∗(γ2).

Proposition (Farah–Toms–Törnquist, 2009)

Computation of the Elliott invariant is Borel.

Theorem (Farah–Toms–Törnquist, 2009)

The isomorphism of separable, simple, unital, nuclear C*-algebras
is not classifiable by countable structures.

Actually we can do this for AI algebras.
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Classifiable C*-algebras are not classifiable. . .
by countable structures

Theorem (Elliott, 1993)

AI algebras are classified by the Elliott invariant.
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If L is a countable language, then the isomorphism of countable
L-models is ≤B to the isomorphism of AI algebras.
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The top

Theorem (Ferenczi–Louveau–Rosendal, 2009)

Isomorphism of separable Banach spaces is the ≤B -maximal
analytic equivalence relation.

In particular, separable Banach spaces cannot be classified by
orbits of a polish group action.

Theorem (Kechris–Solecki, 200?)

Homeomorphism of compact metric spaces is ≤B a Polish group
action.

Proposition (Farah–Toms–Törnquist, 2010)

The isomorphism of simple separable nuclear C*-algebras is ≤B to
an orbit equivalence relation of a Polish group action.
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The Cuntz semigroup, W (A)

Theorem (Perera–Toms, 2007)

Upon restriction to Z-stable (simple, separable, nuclear, unital)
C*-algebras, Ell(A) ∼= Ell(B) if and only if
(W (A),K1(A)) ∼= (W (B),K1(B)).

On positive elements of a C*-algebra A define the relation - by

a - b ⇔ (∀ε > 0)(∃x ∈ A)‖a− xbx∗‖ < ε

and let a ∼ b iff a - b and b - a.
Cuntz semigroup, W (A), is the quotient structure of
(A⊕K,-,+,�) with respect to ∼, where

a + b :=

(
a 0
0 b

)
and � is a subrelation of - called compact containment.
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Borel space of Cuntz semigroups

(The following space has the space of Cuntz semigroups of
separable C*-algebras as its proper subspace, but there is no
precise range of invariant result anyway.)

Let Cu be the space of all countable ordered semigroups with 0
and distinguished subset of elements compactly contained in
themselves. This is a compact subspace of P(N)6.

Proposition (Farah–Toms–Tørnquist, 2010)

There is a Borel map Φ: Γ→ Cu such that the equivalence
relation E on Cu

Φ(γ) E Φ(γ′) if and only if Cu(C ∗(γ)) ∼= Cu(C ∗(γ′))

is analytic.



Borel space of Cuntz semigroups

(The following space has the space of Cuntz semigroups of
separable C*-algebras as its proper subspace, but there is no
precise range of invariant result anyway.)
Let Cu be the space of all countable ordered semigroups with 0
and distinguished subset of elements compactly contained in
themselves. This is a compact subspace of P(N)6.

Proposition (Farah–Toms–Tørnquist, 2010)

There is a Borel map Φ: Γ→ Cu such that the equivalence
relation E on Cu

Φ(γ) E Φ(γ′) if and only if Cu(C ∗(γ)) ∼= Cu(C ∗(γ′))

is analytic.



Borel space of Cuntz semigroups

(The following space has the space of Cuntz semigroups of
separable C*-algebras as its proper subspace, but there is no
precise range of invariant result anyway.)
Let Cu be the space of all countable ordered semigroups with 0
and distinguished subset of elements compactly contained in
themselves. This is a compact subspace of P(N)6.

Proposition (Farah–Toms–Tørnquist, 2010)

There is a Borel map Φ: Γ→ Cu such that the equivalence
relation E on Cu

Φ(γ) E Φ(γ′) if and only if Cu(C ∗(γ)) ∼= Cu(C ∗(γ′))

is analytic.



Sketch of the proof: γ 7→ Cu(C ∗(γ) is Borel

Replace γ ∈ Γ with γ′ such that

C ∗(γ′) ∼= C ∗(γ)⊗K.

By Kechris, we have effective enumerations:
(xn) of a dense subset of C ∗(γ)⊗K and
(an) of a dense sequence of positive elements of C ∗(γ)⊗K.
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Sketch of the proof: γ 7→ Cu(C ∗(γ) is Borel, II

Define -γ on N by

m -γ n ⇔ (∀i)(∃j)‖xjanx∗j − am‖ < 1/i

The map Γ 3 γ 7→-γ∈ P(N)2 is Borel.

Map Γ 3 γ 7→ +γ ∈ P(N)3 is similarly Borel. . .
. . . and so is Γ 3 γ 7→�γ∈ P(N)2 (here � is the compact
containment relation).

The quotient structure on N, wrt ≈γ , +γ and -γ , belongs to Cu.
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Sketch of the proof: γ 7→ Cu(C ∗(γ) is Borel, III:
Recovering Cu

Given D = (N,-,+,C ) ∈ Cu, define D̃ and D↗ as follows.

Let D↗ be the set of �-increasing sequences in D, and let

(xn) ≤ (yn) ⇔ (∀m)(∃n)xm � yn and ym � xn

Let (xn) ∼ (yn) iff (xn) ≤ (yn) and (yn) ≤ (xn).
Then D̃ = D↗/ ∼ is the Cuntz semigroup of C ∗(γ).
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Sketch of the proof: γ 7→ Cu(C ∗(γ) is Borel, III
The isomorphism relation is analytic

Lemma
The relation on Cu defined by D1 E D2 iff D̃1

∼= D̃2 is analytic.

Proof.
D̃1
∼= D̃2 iff:

(∃Φ1) : D1 → D↗2 , homomorphism

(∃Φ2) : D2 → D↗1 , homomorphism

Φ1 ◦ Φ2 = idD2 / ∼
Φ2 ◦ Φ1 = idD1 / ∼
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Corollary

The set {γ ∈ Γ : C ∗(γ) is simple } is Borel.

Proof.
A is simple if and only if Cu(A⊗O2) has only one positive
element.



Relative complexity of some isomorphism relations
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Some problems

Question
Is the isomorphism of all separable, unital C*-algebras ≤B orbit
equivalence relation?

What about the not necessarily simple nuclear C*-algebras? Exact
C*-algebras? Arbitrary C*-algebras?

Problem
Develop set-theoretic framework for Elliott’s functorial
classification.

Problem
Is the isomorphism of countably determined Cuntz semigroups ≤B

orbit equivalence relation?
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