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H: a complex Hilbert space
(B(H),+,-,*,|l-||); the algebra of bounded linear operators on H

Definition
A (concrete) C*-algebra is a norm-closed subalgebra of B(H).

Theorem (Gelfand—Naimark-Segal, 1942)

A Banach algebra with involution A is isomorphic to a concrete
C*-algebra if and only if

laa" || = all?

for all a € A.
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Examples

Example
(1) B(H), Ma(C).
(2) If X is a compact metric space, C(X).

CX)=C(T) &  X=V.

(3) If (X, ) is a minimal dynamical system, C(X) x,, Z.

(X,a)=(Y.8) =  C(X)xaZ=C(Y)xgZ.
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Classification results, |

UHF algebras are direct limits of full matrix algebras, M,(C).

Theorem (Glimm, 1960)
Unital, separable UHF algebras are classified by the invariant

Hp prime pnp in NN‘
AF algebras are direct limits of finite-dimensional C*-algebras.

Theorem (Elliott, 1975)

Separable AF algebras are classified by the ordered group
(Ko(A), Ko(A)*, 1).
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Classification results, 1l

Theorem (Kirchberg—Phillips, 1995)

All purely infinite, nuclear, separable, simple, unital C*-algebras
with UCT are classified by their K-theoretic invariant.
Theorem (Elliott—Evans, 1993)

Irrational rotation algebras are are classified by their K-theoretic
invariant.
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Elliott program as of 2003

All nuclear, separable, simple, unital C*-algebras are classified by
the Elliott invariant,

((KO(A)> KO(A)+7 1)7 Kl(A)v T(A)v pA)'

A—s E||(A)

|

B — ElI(B)



Rgrdam, Toms, 2004 - counterexamples.
New directions

1. Classification of nuclear, simple, unital, separable,
C*-algebras.

2. Cuntz semigroup as an invariant.



Descriptive set theory: Abstract classification

Assume the collection X of objects we are trying to classify forms
a ‘nice’ space, typically a Polish space or a standard Borel space
and the equivalence relation E is a Borel or analytic subset of X?.
(Analytic set is a continuous image of a Borel set.)
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The basic concept of abstract classification

Definition
If (X, E) and (Y, F) are equivalence relations, E is Borel-reducible

to F, in symbols
E SB F)

if there is a Borel-measurable map f: X — Y such that

xEy < f(x)Ef(y).

The intuitive meaning:

(1) Classification problem represented by E is at most as
complicated as that of F.

(2) F-classes are complete invariants for E-classes.

Example
Spectral theorems.
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OER: Orbit equivalence relation of a continuous Polish group
action on a Polish space.
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Modelling classification problems |

Example (The Polish space of countable groups)

A countable group G is coded by

(N,eg,xg, t¢g) foreeN, xg: N2 =N, 1¢c:N— N
This is a closed subspace of the compact metric space
P(N) x P(N3) x P(N?).

The isomorphism =€ is an S,.-orbit equivalence relation.



Modelling classification problems [l

In general, a given concrete classification problem for category C is
modelled by a standard Borel space (X, %) and F: X — C such
that the relation E on X,

xEy & F(x) = F(y)

is analytic (i.e., a continuous image of a Borel set).
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Classification by countable structures

An equivalence relation (X, E) is classified by countable structures
if there is a countable language L and a Borel map from X into
countable [-models such that

x Ey iff F(x) = F(y).

This is equivalent to being <p an S..-orbit equivalence relation.

Lemma (Sasyk-Tornquist 2009, after Hjorth)

If G C F are separable Banach spaces, G is dense in F, and
id: G — F is bounded, then the coset equivalence F /G cannot be
classified by countable structures.

Example
Co/fz.
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Examples

Theorem (Kechris—Sofronidis, 2001)

Unitary operators up to conjugacy are not classifiable by countable
structures.

Theorem (Foreman—Weiss, 2004)
Ergodic measure-preserving transformation up to conjugacy are not
classifiable by countable structures.

Theorem (Sasyk—Tornquist, 2009)

Type I} factors are not classifiable by countable structures. The
same result applies to Il factors and Il factors for0 < X\ <1, to
injective llly factors and to ITPFI factors.
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Effros Borel space

For a Polish space X let X* be the space of closed subsets of X.
The o-algebra & on X* is generated by sets

{AcX*:AC U}

where U ranges over open subsets of X.

Proposition

(X*,X) is a standard Borel space. If X is a separable C*-algebra
then
S(X)={B € X*: B is a subalgebra of X}

is a Borel subspace of X*.
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Examples

Theorem (Kirchberg, 1994)
5(0,) is the space of all exact separable C*-algebras.

Theorem (Pisier—Junge, 1995)

S(A) is not the space of all separable C*-algebras for any separable
C*-algebra A.



Borel space of separable C*-algebras

Definition (Kechris, 1996)
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Borel space of separable C*-algebras

Definition (Kechris, 1996)
Let T be B(£2)N, with respect to the weak operator topology. Then

Fsvy— C*(v)

maps [ onto the space of all separable C*-algebras represented on
H, and
Y Em < C(y) = C'(m)

is analytic.

There is also a space A of abstract separable C*-algebras.
Two representations are equivalent.
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Lemma (Kechris, 1996)
There are Borel maps ®;: I — I (j =1,2,3) such that

1. ®1(vy) enumerates a norm-dense subset of C*(v),

2. ®y() enumerates a norm-dense subset of C*(7y)4,

3. ®3() enumerates a norm-dense subset of the projections of
(7).

Proposition (Effros, 1996)
The set {y € T : C*(v) is nuclear} is Borel.
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Classification problem of C*-algebras

Lemma (Farah—Toms—Tornquist, 2009)
There is a Borel map W: > — T such that

C*(V(11,72)) = €' (1) @min C(72)-

Proposition (Farah—Toms—Tornquist, 2009)
Computation of the Elliott invariant is Borel.

Theorem (Farah—Toms—Tornquist, 2009)

The isomorphism of separable, simple, unital, nuclear C*-algebras
is not classifiable by countable structures.

Actually we can do this for Al algebras.



Classifiable C*-algebras are not classifiable. ..
by countable structures

Theorem (Elliott, 1993)
Al algebras are classified by the Elliott invariant.



Classifiable C*-algebras are not classifiable. ..
by countable structures

Theorem (Elliott, 1993)
Al algebras are classified by the Elliott invariant.

Theorem (Farah—-Toms—Tornquist, 2009)

If L is a countable language, then the isomorphism of countable
L-models is <g to the isomorphism of Al algebras.
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Theorem (Ferenczi-Louveau—Rosendal, 2009)

Isomorphism of separable Banach spaces is the <g-maximal
analytic equivalence relation.

In particular, separable Banach spaces cannot be classified by
orbits of a polish group action.

Theorem (Kechris=Solecki, 2007)

Homeomorphism of compact metric spaces is <g a Polish group
action.

Proposition (Farah—Toms—Tornquist, 2010)

The isomorphism of simple separable nuclear C*-algebras is <g to
an orbit equivalence relation of a Polish group action.
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The Cuntz semigroup, W(A)

Theorem (Perera—Toms, 2007)

Upon restriction to Z-stable (simple, separable, nuclear, unital)
C*-algebras, Ell(A) = Ell(B) if and only if
(W(A), K1(A)) = (W(B), K1(B)).

On positive elements of a C*-algebra A define the relation =< by
azsbs (Ve>0)(Ix € A)|la— xbx™|| < e

and let a~ biffa S band b3 a
Cuntz semigroup, W(A), is the quotient structure of
(Ad K, 3, +, <) with respect to ~, where

a 0
a+b:= (0 b)

and < is a subrelation of = called compact containment.
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Borel space of Cuntz semigroups

(The following space has the space of Cuntz semigroups of
separable C*-algebras as its proper subspace, but there is no
precise range of invariant result anyway.)

Let Cu be the space of all countable ordered semigroups with 0
and distinguished subset of elements compactly contained in
themselves. This is a compact subspace of P(N)°.

Proposition (Farah-Toms-Tgrnquist, 2010)

There is a Borel map ®: I — Cu such that the equivalence
relation E on Cu

&(v) E®(v) if and only if Cu(C*()) = Cu(C*(v))

is analytic.
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Sketch of the proof: v — Cu(C*(~) is Borel

Replace v € T with +/ such that
(=K.

By Kechris, we have effective enumerations:
(xn) of a dense subset of C*() ® K and
(an) of a dense sequence of positive elements of C*(y) ® K.
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Sketch of the proof: v +— Cu(C*(v) is Borel, Il

Define <, on N by
mZyn & (V)(EF)xanx; —amll <1/i

The map I 5 v —3,€ P(N)? is Borel.

Map I 3 v — +, € P(N)3 is similarly Borel. ..
...and so is [ 3 v <€ P(N)? (here < is the compact
containment relation).

The quotient structure on N, wrt ~,, 4+, and 3, belongs to Cu.
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Sketch of the proof: v +— Cu(C*(7) is Borel, Il
The isomorphism relation is analytic

Lemma
The relation on Cu defined by Dy E D, iff D1 D2 is analytic.

Proof.
Dl D2 iff:

(3%1): D1 — D5”, homomorphism
(3P2): Dy — Dl/, homomorphism

®1 00y =idp, / ~
®y 001 =idp, / ~



Corollary
The set {y € [ : C*(v) is simple } is Borel.

Proof.
A is simple if and only if Cu(A ® O,) has only one positive
element.



Relative complexity of some isomorphism relations
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Some problems

Question

Is the isomorphism of all separable, unital C*-algebras <g orbit
equivalence relation?

What about the not necessarily simple nuclear C*-algebras? Exact
C*-algebras? Arbitrary C*-algebras?

Problem
Develop set-theoretic framework for Elliott’s functorial
classification.

Problem
Is the isomorphism of countably determined Cuntz semigroups <g
orbit equivalence relation?



