Entropy in Measurable Dynamics

Lewis Bowen

Fields Institute,
October 2010

Notation

Let (X, μ) be a standard probability space.

Notation

Let (X, μ) be a standard probability space.

Let G be a countable discrete group acting by measure-preserving transformations on (X, μ).

Notation

Let (X, μ) be a standard probability space.

Let G be a countable discrete group acting by measure-preserving transformations on (X, μ).

The triple (G, X, μ) is a dynamical system .

Notation

Let (X, μ) be a standard probability space.

Let G be a countable discrete group acting by measure-preserving transformations on (X, μ).

The triple (G, X, μ) is a dynamical system .

Two systems (G, X_{1}, μ_{1}) and (G, X_{2}, μ_{2}) are isomorphic if there exists a measure-space isomorphism $\phi: X_{1} \rightarrow X_{2}$ with $\phi(g x)=g \phi(x)$ for a.e. $x \in X_{1}$ and for all $g \in G$.

Main Problem: Classify systems up to isomorphism.

Bernoulli shifts

- Let (K, κ) be a standard probability space.

Bernoulli shifts

- Let (K, κ) be a standard probability space.
- $K^{G}=\{x: G \rightarrow K\}$.

Bernoulli shifts

- Let (K, κ) be a standard probability space.
- $K^{G}=\{x: G \rightarrow K\}$.
- κ^{G} is the product measure on K^{G}.

Bernoulli shifts

- Let (K, κ) be a standard probability space.
- $K^{G}=\{x: G \rightarrow K\}$.
- κ^{G} is the product measure on K^{G}.
- G acts on K^{G} by shifting. $(g x)(f)=x\left(g^{-1} f\right)$ for all $x \in K^{G}, g, f \in G$.

Bernoulli shifts

- Let (K, κ) be a standard probability space.
- $K^{G}=\{x: G \rightarrow K\}$.
- κ^{G} is the product measure on K^{G}.
- G acts on K^{G} by shifting. $(g x)(f)=x\left(g^{-1} f\right)$ for all $x \in K^{G}, g, f \in G$.
- $\left(G, K^{G}, \kappa^{G}\right)$ is the Bernoulli shift over G with base space (K, κ).

von Neumann's question

von Neumann's question

If $|K|=n$ and κ is the uniform probability measure on K then (G, K^{G}, κ^{G}) is the full n-shift over G.

von Neumann's question

If $|K|=n$ and κ is the uniform probability measure on K then (G, K^{G}, κ^{G}) is the full n-shift over G.
von Neumann's question: Is the full 2-shift over \mathbb{Z} isomorphic to the full 3-shift over \mathbb{Z} ?

Ideas from Information Theory

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Ideas from Information Theory

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Goal: quantify the "amount of information" we gain by being told that $x \in E$.

Ideas from Information Theory

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Goal: quantify the "amount of information" we gain by being told that $x \in E$.

This amount, denoted $I(E)$, should depend only on $\mu(E)$. So write $I(E)=I(\mu(E))$.

Ideas from Information Theory

Let $x \in X$ be a point unknown to us. Let $E \subset X$.
Goal: quantify the "amount of information" we gain by being told that $x \in E$.

This amount, denoted $I(E)$, should depend only on $\mu(E)$. So write $I(E)=I(\mu(E))$.
$I(t)$ for $0 \leq t \leq 1$ should satisfy:
(1) $I(t) \geq 0$.
(2) $I(t)$ is continuous.
(3) $I(t s)=I(t)+I(s)$.

So $I(t)=-\log _{b}(t)$ for some $b>1$.

Entropy

An observable is a measurable map $\phi: X \rightarrow A$ into a finite (or countable) set A.

Entropy

An observable is a measurable map $\phi: X \rightarrow A$ into a finite (or countable) set A.
The Shannon entropy of ϕ is the average amount of information one gains by learning the value of ϕ. I.e.,

$$
H(\phi)=-\sum_{a \in A} \mu\left(\phi^{-1}(a)\right) \log \left(\mu\left(\phi^{-1}(a)\right)\right)
$$

Entropy

An observable is a measurable map $\phi: X \rightarrow A$ into a finite (or countable) set A.
The Shannon entropy of ϕ is the average amount of information one gains by learning the value of ϕ. I.e.,

$$
H(\phi)=-\sum_{a \in A} \mu\left(\phi^{-1}(a)\right) \log \left(\mu\left(\phi^{-1}(a)\right)\right)
$$

If $\phi: X \rightarrow A$ and $\psi: X \rightarrow B$ are two observables then their join is defined by $\phi \vee \psi(x):=(\phi(x), \psi(x)) \in A \times B$.

Entropy

An observable is a measurable map $\phi: X \rightarrow A$ into a finite (or countable) set A.

The Shannon entropy of ϕ is the average amount of information one gains by learning the value of ϕ. I.e.,

$$
H(\phi)=-\sum_{a \in A} \mu\left(\phi^{-1}(a)\right) \log \left(\mu\left(\phi^{-1}(a)\right)\right)
$$

If $\phi: X \rightarrow A$ and $\psi: X \rightarrow B$ are two observables then their join is defined by $\phi \vee \psi(x):=(\phi(x), \psi(x)) \in A \times B$.
Let $T: X \rightarrow X$ be measure-preserving. The entropy rate of ϕ w.r.t T is:

$$
h(T, \phi)=\lim _{n \rightarrow \infty} \frac{1}{2 n+1} H\left(\bigvee_{i=-n}^{n} \phi \circ T^{i}\right)
$$

Coding

Let (G, X, μ) be a system and $\phi: X \rightarrow A$ an observable.

Coding

Let (G, X, μ) be a system and $\phi: X \rightarrow A$ an observable.

Define $\Phi: X \rightarrow A^{G}$ by $\Phi(x):=g \mapsto \phi\left(g^{-1} x\right)$.

Coding

Let (G, X, μ) be a system and $\phi: X \rightarrow A$ an observable.

Define $\Phi: X \rightarrow A^{G}$ by $\Phi(x):=g \mapsto \phi\left(g^{-1} x\right)$.
ϕ is a generator if ϕ is an isomorphism from (G, X, μ) to ($G, A^{G}, \Phi_{*} \mu$).

Kolmogorov's entropy

Theorem (Kolmogorov, 1958)
Let $T: X \rightarrow X$ be an automorphism of (X, μ). If ϕ and ψ are finite-entropy generators for $(\mathbb{Z}, X, \mu)=(\langle T\rangle, X, \mu)$ then $h(T, \phi)=h(T, \psi)$.

Kolmogorov's entropy

Theorem (Kolmogorov, 1958)

Let $T: X \rightarrow X$ be an automorphism of (X, μ). If ϕ and ψ are finite-entropy generators for $(\mathbb{Z}, X, \mu)=(\langle T\rangle, X, \mu)$ then $h(T, \phi)=h(T, \psi)$.
So $h(\mathbb{Z}, X, \mu):=h(T, \phi)$ is the entropy of the action.

Kolmogorov's entropy

Theorem (Kolmogorov, 1958)
Let $T: X \rightarrow X$ be an automorphism of (X, μ). If ϕ and ψ are finite-entropy generators for $(\mathbb{Z}, X, \mu)=(\langle T\rangle, X, \mu)$ then $h(T, \phi)=h(T, \psi)$.
So $h(\mathbb{Z}, X, \mu):=h(T, \phi)$ is the entropy of the action.

Theorem (Sinai, 1959)

If ϕ is any finite-entropy observable then $h(T, \phi) \leq h(\mathbb{Z}, X, \mu)$. Hence we may define the entropy of (\mathbb{Z}, X, μ) to be $\sup _{\phi} h(T, \phi)$.

Bernoulli shifts

For a probability space (K, κ), define the base entropy by

$$
H(K, \kappa):=-\sum_{k \in K} \kappa(k) \log (\kappa(k)) .
$$

Bernoulli shifts

For a probability space (K, κ), define the base entropy by

$$
H(K, \kappa):=-\sum_{k \in K} \kappa(k) \log (\kappa(k))
$$

A calculation reveals:

$$
h\left(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}\right)=H(K, \kappa)
$$

Bernoulli shifts

For a probability space (K, κ), define the base entropy by

$$
H(K, \kappa):=-\sum_{k \in K} \kappa(k) \log (\kappa(k)) .
$$

A calculation reveals:

$$
h\left(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}\right)=H(K, \kappa) .
$$

Theorem (Kolmogorov, 1958)

If $\left(\mathbb{Z}, K^{\mathbb{Z}}, \kappa^{\mathbb{Z}}\right)$ is isomorphic to $\left(\mathbb{Z}, L^{\mathbb{Z}}, \lambda^{\mathbb{Z}}\right)$ then $H(K, \kappa)=H(L, \lambda)$. So the full 2 -shift is not isomorphic to the full 3 -shift.

Questions

- Does the converse hold?
- What if \mathbb{Z} is replaced with some other group G ?

The Converse

The Converse

Definition

A group G is Ornstein if whenever $(K, \kappa),(L, \lambda)$ are two standard probability spaces with $H(\kappa)=H(\lambda)$ then $\left(G, K^{G}, \kappa^{G}\right)$ is isomorphic to $\left(G, L^{G}, \lambda^{G}\right)$.

The Converse

Definition

A group G is Ornstein if whenever $(K, \kappa),(L, \lambda)$ are two standard probability spaces with $H(\kappa)=H(\lambda)$ then $\left(G, K^{G}, \kappa^{G}\right)$ is isomorphic to $\left(G, L^{G}, \lambda^{G}\right)$.

- No finite group is Ornstein.

The Converse

Definition

A group G is Ornstein if whenever $(K, \kappa),(L, \lambda)$ are two standard probability spaces with $H(\kappa)=H(\lambda)$ then $\left(G, K^{G}, \kappa^{G}\right)$ is isomorphic to $\left(G, L^{G}, \lambda^{G}\right)$.

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].

The Converse

Definition

A group G is Ornstein if whenever $(K, \kappa),(L, \lambda)$ are two standard probability spaces with $H(\kappa)=H(\lambda)$ then $\left(G, K^{G}, \kappa^{G}\right)$ is isomorphic to $\left(G, L^{G}, \lambda^{G}\right)$.

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].

The Converse

Definition

A group G is Ornstein if whenever $(K, \kappa),(L, \lambda)$ are two standard probability spaces with $H(\kappa)=H(\lambda)$ then $\left(G, K^{G}, \kappa^{G}\right)$ is isomorphic to $\left(G, L^{G}, \lambda^{G}\right)$.

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
- If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975].

The Converse

Definition

A group G is Ornstein if whenever $(K, \kappa),(L, \lambda)$ are two standard probability spaces with $H(\kappa)=H(\lambda)$ then $\left(G, K^{G}, \kappa^{G}\right)$ is isomorphic to $\left(G, L^{G}, \lambda^{G}\right)$.

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
- If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975].
- Is every countably infinite group Ornstein?

Classification

Theorem (Ornstein, 1970)
Bernoulli shifts over \mathbb{Z} are completely classified by their entropy.

Classification

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031-1037.

Classification

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031-1037.
D. Ornstein and B. Weiss. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48 (1987), 1-141.

Classification

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031-1037.
D. Ornstein and B. Weiss. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48 (1987), 1-141.

Theorem

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).

Classification

J. C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. Ann. Probability 3 (1975), no. 6, 1031-1037.
D. Ornstein and B. Weiss. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48 (1987), 1-141.

Theorem

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).

What if G is nonamenable?

Factor maps

Definition

Let $(G, X, \mu),(G, Y, \nu)$ be two systems and $\phi: X \rightarrow Y$ a measurable map with $\phi_{*} \mu=\nu, \phi(g x)=g \phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a factor map from (G, X, μ) to (G, Y, ν).

Factor maps

Definition

Let $(G, X, \mu),(G, Y, \nu)$ be two systems and $\phi: X \rightarrow Y$ a measurable map with $\phi_{*} \mu=\nu, \phi(g x)=g \phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a factor map from (G, X, μ) to (G, Y, ν).

Let G be amenable.

Factor maps

Definition

Let $(G, X, \mu),(G, Y, \nu)$ be two systems and $\phi: X \rightarrow Y$ a measurable map with $\phi_{*} \mu=\nu, \phi(g x)=g \phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a factor map from (G, X, μ) to (G, Y, ν).

Let G be amenable.

- Entropy is nonincreasing under factor maps.

Factor maps

Definition

Let $(G, X, \mu),(G, Y, \nu)$ be two systems and $\phi: X \rightarrow Y$ a measurable map with $\phi_{*} \mu=\nu, \phi(g x)=g \phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a factor map from (G, X, μ) to (G, Y, ν).

Let G be amenable.

- Entropy is nonincreasing under factor maps.
- The full n-shift over G has entropy $\log (n)$.

Factor maps

Definition

Let $(G, X, \mu),(G, Y, \nu)$ be two systems and $\phi: X \rightarrow Y$ a measurable map with $\phi_{*} \mu=\nu, \phi(g x)=g \phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a factor map from (G, X, μ) to (G, Y, ν).

Let G be amenable.

- Entropy is nonincreasing under factor maps.
- The full n-shift over G has entropy $\log (n)$.
\Longrightarrow the full 2 -shift over G cannot factor onto the full 4 -shift over G.

The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)
If $\mathbb{F}=\langle a, b\rangle$ is the rank 2 free group then the full 2 -shift over \mathbb{F} factors onto the full 4 -shift over \mathbb{F}.

The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)
If $\mathbb{F}=\langle a, b\rangle$ is the rank 2 free group then the full 2 -shift over \mathbb{F} factors onto the full 4 -shift over \mathbb{F}.

Define $\phi:(\mathbb{Z} / \mathbb{Z})^{\mathbb{F}} \rightarrow(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}}$ by

The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)
If $\mathbb{F}=\langle a, b\rangle$ is the rank 2 free group then the full 2 -shift over \mathbb{F} factors onto the full 4 -shift over \mathbb{F}.

Define $\phi:(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}} \rightarrow(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}}$ by

$$
\phi(x)(g)=(x(g)+x(g a), x(g)+x(g b)) .
$$

More Counterexamples

Theorem (Karen Ball, 2005)
If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.

More Counterexamples

Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.
If G is any nonamenable group then there is some $m>0$ such that the 2^{m}-shift over G factors onto every Bernoulli shift over G.

More Counterexamples

Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.
If G is any nonamenable group then there is some $m>0$ such that the 2^{m}-shift over G factors onto every Bernoulli shift over G.

Theorem

If G contains a nonabelian free subgroup then every nontrivial Bernoulli shift over G factors onto every other Bernoulli shift over G.

New Results

Theorem

If G is a sofic group (e.g., a linear group) then Kolmogorov's direction holds. I.e., if $\left(G, K^{G}, \kappa^{G}\right)$ is isomorphic to ($\left.G, L^{G}, \lambda^{G}\right)$ then $H(K, \kappa)=H(L, \lambda)$.

The case $G=\mathbb{Z}$.

Let $T: X \rightarrow X$ be an automorphism of (X, μ).

The case $G=\mathbb{Z}$.

Let $T: X \rightarrow X$ be an automorphism of (X, μ).

Let $\phi: X \rightarrow A$ be an observable.

The case $G=\mathbb{Z}$.

Let $T: X \rightarrow X$ be an automorphism of (X, μ).

Let $\phi: X \rightarrow A$ be an observable.

Let $x \in X$ be a typical element and consider the sequence $\left(\ldots, \phi\left(T^{-1} x\right), \phi(x), \phi(T x), \ldots\right)$.

The case $G=\mathbb{Z}$.

Let $T: X \rightarrow X$ be an automorphism of (X, μ).

Let $\phi: X \rightarrow A$ be an observable.

Let $x \in X$ be a typical element and consider the sequence $\left(\ldots, \phi\left(T^{-1} x\right), \phi(x), \phi(T x), \ldots\right)$.

The idea: For $n>0$, count the number of sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with elements $a_{i} \in A$ that approximate the above sequence.

Local statistics

Let $W \subset \mathbb{Z}$ be finite. (W stands for window)

Local statistics

Let $W \subset \mathbb{Z}$ be finite. (W stands for window)

Define $\phi^{W}: X \rightarrow A^{W}=\underbrace{A \times A \times \ldots \times A}_{W}$ by

$$
\phi^{W}(x):=\left(\phi\left(T^{w} x\right)\right)_{w \in W} .
$$

Local statistics

Let $W \subset \mathbb{Z}$ be finite. (W stands for window)

Define $\phi^{W}: X \rightarrow A^{W}=\underbrace{A \times A \times \ldots \times A}_{W}$ by

$$
\phi^{w}(x):=\left(\phi\left(T^{w} x\right)\right)_{w \in w} .
$$

$\phi_{*}^{W} \mu$ is a measure on A^{W} that encodes the local statistics.

Sequences

Let $\psi:\{1, \ldots, n\} \rightarrow A$ be a map.

Sequences

Let $\psi:\{1, \ldots, n\} \rightarrow A$ be a map.
$\psi^{W}:\{1, \ldots, n\} \rightarrow A^{W}$ is defined by

$$
\psi^{W}(j)=(\psi(j+w))_{w \in W}
$$

Sequences

Let $\psi:\{1, \ldots, n\} \rightarrow A$ be a map.
$\psi^{W}:\{1, \ldots, n\} \rightarrow A^{W}$ is defined by

$$
\psi^{W}(j)=(\psi(j+w))_{w \in W}
$$

(define it arbitrarily if $j+w \notin\{1, \ldots, n\}$)

Sequences

Let $\psi:\{1, \ldots, n\} \rightarrow A$ be a map.
$\psi^{W}:\{1, \ldots, n\} \rightarrow A^{W}$ is defined by

$$
\psi^{W}(j)=(\psi(j+w))_{w \in W}
$$

(define it arbitrarily if $j+w \notin\{1, \ldots, n\}$)

Let u be the uniform measure on $\{1, \ldots, n\} . \psi_{*}^{W} u$ is a measure on A^{W} that encodes the local statistics of the sequence $(\psi(1), \ldots, \psi(n)) \in A^{n}$.

Entropy as a growth rate

Let $d_{W}(\phi, \psi)$ be the I^{1}-distance between $\phi_{*}^{W} \mu$ and $\psi_{*}^{W} u$:

Entropy as a growth rate

Let $d_{W}(\phi, \psi)$ be the I^{1}-distance between $\phi_{*}^{W} \mu$ and $\psi_{*}^{W} u$:

$$
d_{W}(\phi, \psi):=\sum_{\alpha \in A^{W}}\left|\phi_{*}^{W} \mu(\alpha)-\psi_{*}^{W} u(\alpha)\right|
$$

Entropy as a growth rate

Let $d_{W}(\phi, \psi)$ be the I^{1}-distance between $\phi_{*}^{W} \mu$ and $\psi_{*}^{W} u$:

$$
d_{W}(\phi, \psi):=\sum_{\alpha \in A^{W}}\left|\phi_{*}^{W} \mu(\alpha)-\psi_{*}^{W} u(\alpha)\right| .
$$

Theorem

$$
h(T, \phi)=\inf _{W \subset \mathbb{Z}} \inf _{\epsilon>0} \lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\left\{\psi:\{1, \ldots, n\} \rightarrow A: d_{W}(\phi, \psi)<\epsilon\right\}\right| .
$$

Sofic Groups

Let $\operatorname{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.

Sofic Groups

Let $\operatorname{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.
Let G be a group and $\sigma: G \rightarrow \operatorname{Sym}(m)$ a map.

Sofic Groups

Let $\operatorname{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.
Let G be a group and $\sigma: G \rightarrow \operatorname{Sym}(m)$ a map.
σ is not necessarily a homomorphism!

Sofic Groups

Let $\operatorname{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.
Let G be a group and $\sigma: G \rightarrow \operatorname{Sym}(m)$ a map.
σ is not necessarily a homomorphism!
For $W \subset G$, let $\mathcal{G}(W) \subset\{1, \ldots, m\}$ be the set of all p such that

$$
\begin{aligned}
\sigma(f g) p & =\sigma(f) \sigma(g) p \forall f, g \in W \text { with } f g \in W \\
\sigma(f) p & \neq \sigma(g) p \Leftarrow f \neq g \in W
\end{aligned}
$$

Sofic Groups

Let $\operatorname{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.
Let G be a group and $\sigma: G \rightarrow \operatorname{Sym}(m)$ a map.
σ is not necessarily a homomorphism!
For $W \subset G$, let $\mathcal{G}(W) \subset\{1, \ldots, m\}$ be the set of all p such that

$$
\begin{aligned}
\sigma(f g) p & =\sigma(f) \sigma(g) p \forall f, g \in W \text { with } f g \in W \\
\sigma(f) p & \neq \sigma(g) p \Leftarrow f \neq g \in W
\end{aligned}
$$

σ is a (W, ϵ)-approximation to G if $|\mathcal{G}(W)| \geq(1-\epsilon) m$.

Sofic Groups

A sequence $\Sigma=\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ of maps $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$ is a sofic approximation if σ_{i} is an $\left(W_{i}, \epsilon_{i}\right)$-approximation with $\epsilon_{i} \rightarrow 0$ and $W_{i} \rightarrow G$ (i.e., $\bigcup_{n=1}^{\infty} \cap_{i=n}^{\infty} W_{i}=G$).

Sofic Groups

A sequence $\Sigma=\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ of maps $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$ is a sofic approximation if σ_{i} is an $\left(W_{i}, \epsilon_{i}\right)$-approximation with $\epsilon_{i} \rightarrow 0$ and $W_{i} \rightarrow G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_{i}=G$).
G is sofic if there exists a sofic approximation to G.

Sofic Groups

A sequence $\Sigma=\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ of maps $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$ is a sofic approximation if σ_{i} is an $\left(W_{i}, \epsilon_{i}\right)$-approximation with $\epsilon_{i} \rightarrow 0$ and $W_{i} \rightarrow G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_{i}=G$).
G is sofic if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)

Sofic Groups

A sequence $\Sigma=\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ of maps $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$ is a sofic approximation if σ_{i} is an $\left(W_{i}, \epsilon_{i}\right)$-approximation with $\epsilon_{i} \rightarrow 0$ and $W_{i} \rightarrow G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_{i}=G$).
G is sofic if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).

Sofic Groups

A sequence $\Sigma=\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ of maps $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$ is a sofic approximation if σ_{i} is an $\left(W_{i}, \epsilon_{i}\right)$-approximation with $\epsilon_{i} \rightarrow 0$ and $W_{i} \rightarrow G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_{i}=G$).
G is sofic if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.

Sofic Groups

A sequence $\Sigma=\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ of maps $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$ is a sofic approximation if σ_{i} is an $\left(W_{i}, \epsilon_{i}\right)$-approximation with $\epsilon_{i} \rightarrow 0$ and $W_{i} \rightarrow G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_{i}=G$).
G is sofic if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.
- Amenable groups are sofic.

Sofic Groups

A sequence $\Sigma=\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ of maps $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$ is a sofic approximation if σ_{i} is an $\left(W_{i}, \epsilon_{i}\right)$-approximation with $\epsilon_{i} \rightarrow 0$ and $W_{i} \rightarrow G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_{i}=G$).
G is sofic if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.
- Amenable groups are sofic.
- Is every countable group sofic?

Entropy for Sofic Groups

Let (G, X, μ) be a system,

Entropy for Sofic Groups

Let (G, X, μ) be a system,
$\Sigma=\left\{\sigma_{i}\right\}$ be a sofic approximation to G where $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$,

Entropy for Sofic Groups

Let (G, X, μ) be a system,
$\Sigma=\left\{\sigma_{i}\right\}$ be a sofic approximation to G where $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$,
$\phi: X \rightarrow A$ be a measurable map into a finite set.

Entropy for Sofic Groups

Let (G, X, μ) be a system,
$\Sigma=\left\{\sigma_{i}\right\}$ be a sofic approximation to G where $\sigma_{i}: G \rightarrow \operatorname{Sym}\left(m_{i}\right)$,
$\phi: X \rightarrow A$ be a measurable map into a finite set.

The idea: Count the number of observables $\psi:\left\{1, \ldots, m_{i}\right\} \rightarrow \boldsymbol{A}$ so that $\left(G,\left[m_{i}\right], u_{i}, \psi\right)$ approximates (G, X, μ, ϕ).

Approximating

If $W \subset G$ is finite, let $\phi^{W}: X \rightarrow A^{W}$ be the map $\phi^{W}(x):=(\phi(w x))_{w \in W}$.

Approximating

If $W \subset G$ is finite, let $\phi^{W}: X \rightarrow A^{W}$ be the map $\phi^{W}(x):=(\phi(w x))_{w \in W}$.

Given $\psi:\left\{1, \ldots, m_{i}\right\} \rightarrow A, \psi^{W}:\left\{1, \ldots, m_{i}\right\} \rightarrow A^{W}$ is the map

$$
\psi^{w}(j):=(\psi(\sigma(w) j))_{w \in w} .
$$

Approximating

If $W \subset G$ is finite, let $\phi^{W}: X \rightarrow A^{W}$ be the map $\phi^{W}(x):=(\phi(w x))_{w \in W}$.

Given $\psi:\left\{1, \ldots, m_{i}\right\} \rightarrow A, \psi^{W}:\left\{1, \ldots, m_{i}\right\} \rightarrow A^{W}$ is the map

$$
\psi^{w}(j):=(\psi(\sigma(w) j))_{w \in w} .
$$

Let $d_{W}(\phi, \psi)$ be the I^{1}-distance between $\phi_{*}^{W} \mu$ and $\psi_{*}^{W} u$.

Entropy for sofic groups

$$
h(\Sigma, \phi):=\inf _{W \subset G \in>0} \inf _{\limsup } \frac{\log \left|\left\{\psi:\left\{1, \ldots, m_{i}\right\} \rightarrow A: d_{W}(\phi, \psi) \leq \epsilon\right\}\right|}{m_{i}}
$$

Entropy for sofic groups

$h(\Sigma, \phi):=\inf _{W \subset G} \inf _{\epsilon \rightarrow 0} \limsup _{i \rightarrow \infty} \frac{\log \left|\left\{\psi:\left\{1, \ldots, m_{i}\right\} \rightarrow A: d_{W}(\phi, \psi) \leq \epsilon\right\}\right|}{m_{i}}$.

Theorem

If ϕ_{1} and ϕ_{2} are generating then $h\left(\Sigma, \phi_{1}\right)=h\left(\Sigma, \phi_{2}\right)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Entropy for sofic groups

$h(\Sigma, \phi):=\inf _{W \subset G} \inf _{\epsilon \rightarrow 0} \limsup _{i \rightarrow \infty} \frac{\log \left|\left\{\psi:\left\{1, \ldots, m_{i}\right\} \rightarrow A: d_{W}(\phi, \psi) \leq \epsilon\right\}\right|}{m_{i}}$.

Theorem

If ϕ_{1} and ϕ_{2} are generating then $h\left(\Sigma, \phi_{1}\right)=h\left(\Sigma, \phi_{2}\right)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Theorem

If G is amenable then $h(\Sigma, G, X, \mu)$ is the classical entropy of (G, X, μ).

Entropy for sofic groups

$h(\Sigma, \phi):=\inf _{W \subset G} \inf _{\epsilon>0} \limsup _{i \rightarrow \infty} \frac{\log \left|\left\{\psi:\left\{1, \ldots, m_{i}\right\} \rightarrow A: d_{W}(\phi, \psi) \leq \epsilon\right\}\right|}{m_{i}}$.

Theorem

If ϕ_{1} and ϕ_{2} are generating then $h\left(\Sigma, \phi_{1}\right)=h\left(\Sigma, \phi_{2}\right)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Theorem

If G is amenable then $h(\Sigma, G, X, \mu)$ is the classical entropy of (G, X, μ).
Theorem
$h\left(\Sigma, G, K^{G}, \kappa^{G}\right)=H(K, \kappa)$.

Proof sketch

Theorem

If ϕ_{1} and ϕ_{2} are generating then $h\left(\Sigma, \phi_{1}\right)=h\left(\Sigma, \phi_{2}\right)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Proof sketch

Theorem

If ϕ_{1} and ϕ_{2} are generating then $h\left(\Sigma, \phi_{1}\right)=h\left(\Sigma, \phi_{2}\right)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Two observables $\phi: X \rightarrow A, \psi: X \rightarrow B$ are equivalent if the partitions $\left\{\phi^{-1}(a): a \in A\right\},\left\{\psi^{-1}(b): b \in B\right\}$ agree up to measure zero.

Proof sketch

Theorem

If ϕ_{1} and ϕ_{2} are generating then $h\left(\Sigma, \phi_{1}\right)=h\left(\Sigma, \phi_{2}\right)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Two observables $\phi: X \rightarrow A, \psi: X \rightarrow B$ are equivalent if the partitions $\left\{\phi^{-1}(a): a \in A\right\},\left\{\psi^{-1}(b): b \in B\right\}$ agree up to measure zero.

Let \mathcal{P} be the set of all equivalence classes of observables ϕ with $H(\phi)<\infty$.

Proof sketch

Theorem

If ϕ_{1} and ϕ_{2} are generating then $h\left(\Sigma, \phi_{1}\right)=h\left(\Sigma, \phi_{2}\right)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Two observables $\phi: X \rightarrow A, \psi: X \rightarrow B$ are equivalent if the partitions $\left\{\phi^{-1}(a): a \in A\right\},\left\{\psi^{-1}(b): b \in B\right\}$ agree up to measure zero.

Let \mathcal{P} be the set of all equivalence classes of observables ϕ with $H(\phi)<\infty$.

Definition (Rohlin distance)

$$
d(\phi, \psi):=2 H(\phi \vee \psi)-H(\psi)-H(\phi)=H(\phi \mid \psi)+H(\psi \mid \phi) .
$$

Proof sketch

Theorem

If ϕ_{1} and ϕ_{2} are generating then $h\left(\Sigma, \phi_{1}\right)=h\left(\Sigma, \phi_{2}\right)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Two observables $\phi: X \rightarrow A, \psi: X \rightarrow B$ are equivalent if the partitions $\left\{\phi^{-1}(a): a \in A\right\},\left\{\psi^{-1}(b): b \in B\right\}$ agree up to measure zero.

Let \mathcal{P} be the set of all equivalence classes of observables ϕ with $H(\phi)<\infty$.

Definition (Rohlin distance)

$$
d(\phi, \psi):=2 H(\phi \vee \psi)-H(\psi)-H(\phi)=H(\phi \mid \psi)+H(\psi \mid \phi) .
$$

Proof sketch

Definition

ϕ refines ψ if $H(\psi \vee \phi)=H(\phi)$.

Proof sketch

Definition
 ϕ refines ψ if $H(\psi \vee \phi)=H(\phi)$.

Definition

ϕ and ψ are combinatorially equivalent if there exists finite subsets $K, L \subset G$ such that ϕ^{K} refines ψ and ψ^{L} refines ϕ.

Proof sketch

Theorem

If ϕ is a generator then its combinatorial equivalence class is dense in the space of all generating observables.

Proof sketch

Theorem

If ϕ is a generator then its combinatorial equivalence class is dense in the space of all generating observables.

Lemma
$h(\Sigma, \phi)$ is upper semi-continuous in ϕ.

Proof sketch

Theorem

If ϕ is a generator then its combinatorial equivalence class is dense in the space of all generating observables.

Lemma
$h(\Sigma, \phi)$ is upper semi-continuous in ϕ.

Theorem

If ϕ and ψ are combinatorially equivalent then $h(\Sigma, \phi)=h(\Sigma, \psi)$.

Proof sketch

Definition

ϕ is a simple splitting of ψ if there exists $f \in G$ and an observable ω refined by ψ such that

$$
\phi=\psi \vee \omega \circ f .
$$

ϕ is a splitting of ψ if it can be obtained from ψ by a sequence of simple splittings.

Proof sketch

Definition

ϕ is a simple splitting of ψ if there exists $f \in G$ and an observable ω refined by ψ such that

$$
\phi=\psi \vee \omega \circ f .
$$

ϕ is a splitting of ψ if it can be obtained from ψ by a sequence of simple splittings.

Lemma

If ϕ and ψ are equivalent then there exists an observable ω that is a splitting of both ϕ and ψ.

Proof sketch

Definition

ϕ is a simple splitting of ψ if there exists $f \in G$ and an observable ω refined by ψ such that

$$
\phi=\psi \vee \omega \circ f
$$

ϕ is a splitting of ψ if it can be obtained from ψ by a sequence of simple splittings.

Lemma

If ϕ and ψ are equivalent then there exists an observable ω that is a splitting of both ϕ and ψ.

Proposition
 If ϕ is a simple splitting of ψ then $h(\Sigma, \phi)=h(\Sigma, \psi)$.

Applications: von Neumann algebras

A system (G, X, μ) gives rise in a natural way to a crossed product von Neumann algebra $L^{\infty}(X, \mu) \rtimes G$.

Applications: von Neumann algebras

A system (G, X, μ) gives rise in a natural way to a crossed product von Neumann algebra $L^{\infty}(X, \mu) \rtimes G$.

If the action is ergodic and free and G is infinite then $L^{\infty}(X, \mu) \rtimes G$ is a I_{1} factor.
Major problem: classify these algebras up to isomorphism in terms of the group/action data.

Applications: von Neumann algebras

A system (G, X, μ) gives rise in a natural way to a crossed product von Neumann algebra $L^{\infty}(X, \mu) \rtimes G$.

If the action is ergodic and free and G is infinite then $L^{\infty}(X, \mu) \rtimes G$ is a I_{1} factor.
Major problem: classify these algebras up to isomorphism in terms of the group/action data.

Theorem (Connes, 1976)
If G is infinite and amenable and the action $G \curvearrowright(X, \mu)$ is free and ergodic then $L^{\infty}(X, \mu) \rtimes G$ is hyperfinite. In particular, all such algebras are isomorphic.

Rigidity

Definition

(G_{1}, X_{1}, μ_{1}) and (G_{2}, X_{2}, μ_{2}) are von Neumann equivalent (vNE) if $L^{\infty}\left(X_{1}, \mu_{1}\right) \rtimes G_{1} \cong L^{\infty}\left(X_{2}, \mu_{2}\right) \rtimes G_{2}$.

Rigidity

Definition

(G_{1}, X_{1}, μ_{1}) and (G_{2}, X_{2}, μ_{2}) are von Neumann equivalent (vNE) if $L^{\infty}\left(X_{1}, \mu_{1}\right) \rtimes G_{1} \cong L^{\infty}\left(X_{2}, \mu_{2}\right) \rtimes G_{2}$.

Theorem (Popa, 2006)
If G is an ICC property T group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic.

Rigidity

Definition

(G_{1}, X_{1}, μ_{1}) and (G_{2}, X_{2}, μ_{2}) are von Neumann equivalent (vNE) if $L^{\infty}\left(X_{1}, \mu_{1}\right) \rtimes G_{1} \cong L^{\infty}\left(X_{2}, \mu_{2}\right) \rtimes G_{2}$.

Theorem (Popa, 2006)
If G is an ICC property T group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic.

Corollary

If, in addition, G is sofic and Ornstein then Bernoulli shifts over G are classified up to vNE by base measure entropy. E.g., this occurs when $G=P S L_{n}(\mathbb{Z})$ for $n>2$.

Applications: orbit equivalence

Definition

(G_{1}, X_{1}, μ_{1}) is orbit equivalent (OE) to (G_{2}, X_{2}, μ_{2}) if there exists a measure-space isomorphism $\phi: X_{1} \rightarrow X_{2}$ such that $\phi\left(G_{1} x\right)=G_{2} \phi(x)$ for a.e. $x \in X_{1}$.

Applications: orbit equivalence

Definition

(G_{1}, X_{1}, μ_{1}) is orbit equivalent (OE) to (G_{2}, X_{2}, μ_{2}) if there exists a measure-space isomorphism $\phi: X_{1} \rightarrow X_{2}$ such that $\phi\left(G_{1} x\right)=G_{2} \phi(x)$ for a.e. $x \in X_{1}$.

Theorem (Dye 1959, Connes-Feldman-Weiss 1981)

If G_{1} and G_{2} are amenable and infinite and their respective actions are ergodic and free then $\left(G_{1}, X_{1}, \mu_{1}\right)$ is OE to $\left(G_{2}, X_{2}, \mu_{2}\right)$.

OE rigidity

Theorem (Kida, 2008)
Let G be the mapping class group of a genus g surface with n holes. Assume $3 g+n-4>0$ and $(g, n) \notin\{(1,2),(2,0)\}$. If (G, X, μ) is free and ergodic then it is strongly orbitally rigid. I.e., if $\left(G_{2}, X_{2}, \mu_{2}\right)$ is free, ergodic and $O E$ to (G, X, μ) then it is isomorphic to (G, X, μ).

OE rigidity

Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes. Assume $3 g+n-4>0$ and $(g, n) \notin\{(1,2),(2,0)\}$. If (G, X, μ) is free and ergodic then it is strongly orbitally rigid. I.e., if $\left(G_{2}, X_{2}, \mu_{2}\right)$ is free, ergodic and $O E$ to (G, X, μ) then it is isomorphic to (G, X, μ).

Corollary

If G is as above then Bernoulli shifts over G are classified up to OE by base measure entropy.

Free Groups: a special case

Let $\mathbb{F}=\left\langle s_{1}, \ldots, s_{r}\right\rangle$. Let \mathbb{F} act on (X, μ).

Free Groups: a special case

Let $\mathbb{F}=\left\langle s_{1}, \ldots, s_{r}\right\rangle$. Let \mathbb{F} act on (X, μ).
Given an observable $\phi: X \rightarrow A$, define

$$
\begin{gathered}
F(\phi):=-(2 r-1) H(\phi)+\sum_{i=1}^{r} H\left(\phi \vee \phi \circ s_{i}\right) ; \\
f(\phi):=\inf _{n} F\left(\phi^{B(e, n)}\right) .
\end{gathered}
$$

Free Groups: a special case

Let $\mathbb{F}=\left\langle s_{1}, \ldots, s_{r}\right\rangle$. Let \mathbb{F} act on (X, μ).
Given an observable $\phi: X \rightarrow A$, define

$$
\begin{gathered}
F(\phi):=-(2 r-1) H(\phi)+\sum_{i=1}^{r} H\left(\phi \vee \phi \circ s_{i}\right) ; \\
f(\phi):=\inf _{n} F\left(\phi^{B(e, n)}\right) .
\end{gathered}
$$

Theorem

If ϕ_{1} and ϕ_{2} are generating then $f\left(\phi_{1}\right)=f\left(\phi_{2}\right)$. So we may define $f(\mathbb{F}, X, \mu)=f\left(\phi_{1}\right)$. Moreover, $f\left(\mathbb{F}, K^{\mathbb{F}}, \kappa^{\mathbb{F}}\right)=H(K, \kappa)$.

Free Groups: a special case

For each $n \geq 1$, let $\sigma_{n}: \mathbb{F}=\left\langle s_{1}, \ldots, s_{r}\right\rangle \rightarrow \operatorname{Sym}(n)$ be chosen uniformly at random.

Free Groups: a special case

For each $n \geq 1$, let $\sigma_{n}: \mathbb{F}=\left\langle s_{1}, \ldots, s_{r}\right\rangle \rightarrow \operatorname{Sym}(n)$ be chosen uniformly at random.

Define

$h_{*}(\phi):=\inf _{W} \inf _{\epsilon>0} \limsup _{n \rightarrow \infty} \frac{\log \mathbb{E}\left[\left|\left\{\psi:\{1, \ldots, n\} \rightarrow A: d_{W}(\phi, \psi) \leq \epsilon\right\}\right|\right]}{n}$.

Free Groups: a special case

For each $n \geq 1$, let $\sigma_{n}: \mathbb{F}=\left\langle s_{1}, \ldots, s_{r}\right\rangle \rightarrow \operatorname{Sym}(n)$ be chosen uniformly at random.

Define

$$
h_{*}(\phi):=\inf _{W} \inf _{\epsilon>0} \limsup _{n \rightarrow \infty} \frac{\log \mathbb{E}\left[\left|\left\{\psi:\{1, \ldots, n\} \rightarrow A: d_{W}(\phi, \psi) \leq \epsilon\right\}\right|\right]}{n} .
$$

Theorem

$h_{*}(\phi)=f(\phi)$.

A Markov chain example

A Markov chain example

The Cayley graph

The Ising model

Example

Let μ_{ϵ} be the probability measure on $\{\text { magenta, brown }\}^{\mathbb{F}}$ determined by this process.

Example

Let μ_{ϵ} be the probability measure on $\{\text { magenta, brown }\}^{\mathbb{F}}$ determined by this process.

Let $\phi:\{\text { magenta, brown }\}^{\mathbb{F}} \rightarrow\{$ magenta, brown $\}$ be evaluation at the identity.

Example

Let μ_{ϵ} be the probability measure on $\{\text { magenta, brown }\}^{\mathbb{F}}$ determined by this process.

Let $\phi:\{\text { magenta, brown }\}^{\mathbb{F}} \rightarrow\{$ magenta, brown $\}$ be evaluation at the identity.

Then

$$
F\left(\mu_{\epsilon}, \phi\right)=-2 \epsilon \log (\epsilon)-2(1-\epsilon) \log (1-\epsilon)-\log (2)
$$

Example

Let μ_{ϵ} be the probability measure on $\{\text { magenta, brown }\}^{\mathbb{F}}$ determined by this process.

Let $\phi:\{\text { magenta, brown }\}^{\mathbb{F}} \rightarrow\{$ magenta, brown $\}$ be evaluation at the identity.

Then

$$
F\left(\mu_{\epsilon}, \phi\right)=-2 \epsilon \log (\epsilon)-2(1-\epsilon) \log (1-\epsilon)-\log (2)
$$

Theorem

$$
F\left(\mu_{\epsilon}, \phi\right)=h_{*}\left(\mathbb{F},\{\text { magenta, brown }\}^{\mathbb{F}}, \mu_{\epsilon}\right)
$$

Systems of algebraic origin

Let \mathcal{G} be a compact separable group and let $T: \mathcal{G} \rightarrow \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N}.

Systems of algebraic origin

Let \mathcal{G} be a compact separable group and let $T: \mathcal{G} \rightarrow \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N}.

Theorem (Yuzvinskii, 1965)
$h\left(T, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}\right)=h\left(T, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}\right)+h\left(T, \mathcal{G} / \mathcal{N}, \operatorname{Haar}_{\mathcal{G} / \mathcal{N}}\right)$.

Systems of algebraic origin

Let \mathcal{G} be a compact separable group and let $T: \mathcal{G} \rightarrow \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N}.

Theorem (Yuzvinskii, 1965)
$h\left(T, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}\right)=h\left(T, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}\right)+h\left(T, \mathcal{G} / \mathcal{N}, \operatorname{Haar}_{\mathcal{G} / \mathcal{N}}\right)$.
Theorem (Bowen 2009, Gutman 2010)
If \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then $f\left(\mathbb{F}, \mathcal{G}\right.$, Haar $\left._{\mathcal{G}}\right)=f\left(\mathbb{F}, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}\right)+f\left(\mathbb{F}, \mathcal{G} / \mathcal{N}\right.$, Haar $\left._{\mathcal{G} / \mathcal{N}}\right)$.

Systems of algebraic origin

Let \mathcal{G} be a compact separable group and let $T: \mathcal{G} \rightarrow \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N}.

Theorem (Yuzvinskii, 1965)
$h\left(T, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}\right)=h\left(T, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}\right)+h\left(T, \mathcal{G} / \mathcal{N}, \operatorname{Haar}_{\mathcal{G} / \mathcal{N}}\right)$.
Theorem (Bowen 2009, Gutman 2010)
If \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then $f\left(\mathbb{F}, \mathcal{G}\right.$, Haar $\left._{\mathcal{G}}\right)=f\left(\mathbb{F}, \mathcal{N}\right.$, Haar $\left._{\mathcal{N}}\right)+f\left(\mathbb{F}, \mathcal{G} / \mathcal{N}\right.$, Haar $\left._{\mathcal{G} / \mathcal{N}}\right)$.

Let $\mathcal{G}=(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}}$. Let $\mathcal{N}=\{\mathbf{0}, \mathbf{1}\}$. By Ornstein-Weiss' example,

$$
\mathcal{G} / \mathcal{N} \cong \mathcal{G} \times \mathcal{G}=(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}}
$$

Systems of algebraic origin

Let \mathcal{G} be a compact separable group and let $T: \mathcal{G} \rightarrow \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N}.
Theorem (Yuzvinskii, 1965)
$h\left(T, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}\right)=h\left(T, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}\right)+h\left(T, \mathcal{G} / \mathcal{N}, \operatorname{Haar}_{\mathcal{G} / \mathcal{N}}\right)$.
Theorem (Bowen 2009, Gutman 2010)
If \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then $f\left(\mathbb{F}, \mathcal{G}\right.$, Haar $\left._{\mathcal{G}}\right)=f\left(\mathbb{F}, \mathcal{N}\right.$, Haar $\left._{\mathcal{N}}\right)+f\left(\mathbb{F}, \mathcal{G} / \mathcal{N}\right.$, Haar $\left._{\mathcal{G} / \mathcal{N}}\right)$.

Let $\mathcal{G}=(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}}$. Let $\mathcal{N}=\{\mathbf{0}, \mathbf{1}\}$. By Ornstein-Weiss' example,

$$
\mathcal{G} / \mathcal{N} \cong \mathcal{G} \times \mathcal{G}=(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}} .
$$

$$
f\left(\mathbb{F}, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}\right)=f\left(\mathbb{F}, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}\right)+f\left(\mathbb{F}, \mathcal{G} / \mathcal{N}, \operatorname{Haar}_{\mathcal{G} / \mathcal{N}}\right)
$$

Systems of algebraic origin

Let \mathcal{G} be a compact separable group and let $T: \mathcal{G} \rightarrow \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N}.
Theorem (Yuzvinskii, 1965)
$h\left(T, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}\right)=h\left(T, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}\right)+h\left(T, \mathcal{G} / \mathcal{N}, \operatorname{Haar}_{\mathcal{G} / \mathcal{N}}\right)$.
Theorem (Bowen 2009, Gutman 2010)
If \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then $f\left(\mathbb{F}, \mathcal{G}\right.$, Haar $\left._{\mathcal{G}}\right)=f\left(\mathbb{F}, \mathcal{N}\right.$, Haar $\left._{\mathcal{N}}\right)+f\left(\mathbb{F}, \mathcal{G} / \mathcal{N}\right.$, Haar $\left._{\mathcal{G} / \mathcal{N}}\right)$.

Let $\mathcal{G}=(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}}$. Let $\mathcal{N}=\{\mathbf{0}, \mathbf{1}\}$. By Ornstein-Weiss' example,

$$
\mathcal{G} / \mathcal{N} \cong \mathcal{G} \times \mathcal{G}=(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z})^{\mathbb{F}} .
$$

$$
\begin{aligned}
f\left(\mathbb{F}, \mathcal{G}, \operatorname{Haar}_{\mathcal{G}}\right) & =f\left(\mathbb{F}, \mathcal{N}, \operatorname{Haar}_{\mathcal{N}}\right)+f\left(\mathbb{F}, \mathcal{G} / \mathcal{N}, \operatorname{Haar}_{\mathcal{G} / \mathcal{N}}\right) \\
\log (2) & =-\log (2)+\log (4) .
\end{aligned}
$$

Further Results \& Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.

Further Results \& Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.

Further Results \& Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy. (D. Kerr, H. Li)

Further Results \& Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy. (D. Kerr, H. Li)
- Noncommutative entropy.

Further Results \& Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
- Topological entropy. (D. Kerr, H. Li)
- Noncommutative entropy.
- Extend the f-invariant to more general groups.

