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Definition
Two probability Borel measures µ and ν defined on a
topological space Y are called homeomorphic or topologically
equivalent (notation µ ∼ ν) if there exists a
self-homeomorphism f of Y such that µ = ν ◦ f , i.e.
µ(A) = ν(f (A)) for every Borel subset A of Y .

Notation:
H(Y ) = the group of all homeomorphisms of Y ,
M(Y ) = Borel probability non-atomic measures on Y .

Problems:
(1) Classify measures from M(Y ) (or some natural subsets of
M(Y )) with respect to ∼.
(2) Given µ ∈ M(Y ), describe the class of measures equivalent
to µ.
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Theorem
Oxtoby - Ulam (1941): A non-atomic Borel probability measure
µ on the finite-dimensional cube [0,1]n is homeomorphic to the
Lebesgue measure if and only if every nonempty open set has
a positive measure (in other words, µ is full) and the boundary
of the cube has measure 0.

Any two probability measures on [0,1]n satisfying the
Oxtoby-Ulam theorem are homeomorphic.
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Theorem
Oxtoby - Ulam (1941): A non-atomic Borel probability measure
µ on the finite-dimensional cube [0,1]n is homeomorphic to the
Lebesgue measure if and only if every nonempty open set has
a positive measure (in other words, µ is full) and the boundary
of the cube has measure 0.

Any two probability measures on [0,1]n satisfying the
Oxtoby-Ulam theorem are homeomorphic.

Oxtoby - Prasad (1978) extended the previous result to the
Hilbert cube [0,1]N. More results about measures on manifolds
can be found in the book by Alpern - Prasad (2004).

E.Akin (1999, 2005) initiated the systematic study of
homeomorphic measures on a Cantor set, i.e. on a
0-dimensional compact metric space without isolated points.
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1. “Thing-in-itself” (c)

2. Orbit equivalence.
Let f ∈ H(X ) and g ∈ H(Y ) be two homeomorphisms of Cantor
sets X and Y . They are called orbit equivalent if there exists a
homeomorphism h : X → Y such that h(Orbf (x)) = Orbg(hx)
for all x ∈ X .

Giordano - Putnam - Skau (1995): For a minimal
homeomorphism f of X , the set Mf (X ) of probability ergodic
invariant measures is a complete invariant of orbit equivalence.
So, if there is a homeomorphism F : X → Y that sends Mg(Y )
onto Mf (X ), then the minimal homeomorphisms f and g are
orbit equivalent.

For aperiodic homeomorphisms, the problem of orbit
equivalence is open.
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Navarro-Bermudez (1979), Huang (1984): (1) Let r be a
rational, transcendental, or an algebraic integer number of
degree 2. Then µr ∼ µs ⇔ r = s or r = 1 − s. (2) There are
continuum equivalence classes of Bernoulli measures on the
Cantor space 2N. Each class is at most countable.

In particular, µ1/2 and µ1/4 are not homeomorphic.

Oxtoby, Navarro-Bermudez (1988): Let t be the solution of
x3 + x2 −1 = 0 taken from (0,1). Then µt ∼ µt2 ∼ µ1−t ∼ µ1−t2 .

It is unknown whether there are other measures homeomorphic
to µt .
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Homeomorphic Bernoulli trial measures

Problem: Is it true that for every 0 < r < 1

|{0 < s < 1 : µs ∼ µr}| < ∞?

Yingst (2008): For any algebraic integer 0 < r < 1 there are
only finitely many s such that µs is homeomorphic to µr .

Dougherty - Mauldin - Yingst (2007): For every n ∈ N there
exists an algebraic integer number r such that

|{s : µs ∼ µr}| ≥ n.

Yingst (2008) gave conditions which determine whether two
Bernoulli trial measures are homeomorphic.

Very few results are known about homeomorphism of Bernoulli
measures with more than two states.
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Let X be a Cantor set and µ ∈ M(X ), then
S(µ) := {µ(U) : U is clopen in X} is called the clopen values
set.

S(µ) is a countable dense subset of [0,1] containing 0 and 1.
Clearly, S(µ) = S(µ ◦ f ) for any f ∈ H(X ).

Akin (1999): There exists an uncountable subset M ⊂ M(X )
such that for µ1, µ2 ∈ M and f ∈ H(X )

µ1 = µ2 ◦ f =⇒ (µ1 = µ2 and f = idX )

The set S(µ) provides an invariant for homeomorphic
measures (i.e. S(µ) = S(µ ◦ f ), ∀f ∈ H(X )) although it is not a
complete invariant, in general. For example,
S(µ(1/3,1/3,1/3)) = S(µ(1/3,2/3)) but the Bernoulli
measures µ(1/3,1/3,1/3) and µ(1/3,2/3) are not
homeomorphic.
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Good measures

Definition
Akin (2005) A full non-atomic probability measure µ on a
Cantor set X is called good if whenever U, V are clopen sets
with µ(U) < µ(V ), there exists a clopen subset W of V such
that µ(W ) = µ(U).

Akin (2005): For the class of good measures, S(µ) is a
complete invariant for homeomorphism.
Akin (2005), Glasner - Weiss (1995): Good measures are
exactly invariant measures of uniquely ergodic minimal
homeomorphisms of Cantor sets.

A subset S of the unit interval [0,1] is called group-like if
S = G

⋂

[0,1] where G is an additive subgroup of R.

For a good measure µ, the set S(µ) is group-like.
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(2) µ is weakly refinable if (i) X is refinable and (ii) every clopen
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Refinable measures

Definition
Dougherty - Mauldin - Yingst (2007): (1) A measure µ ∈ M(X )
on a Cantor set X is called refinable if for any clopen set U
such that µ(U) =

∑n
i=1 µ(Ui) with clopen sets Ui , there exist a

clopen partition {U ′
1, ...,U

′
n} of U with µ(U ′

i ) = µ(Ui).
(2) µ is weakly refinable if (i) X is refinable and (ii) every clopen
set can be partitioned into (finitely many) refinable clopen sets.

Goodness =⇒ Refinability =⇒ Weak refinability.

Open question: Is it true that weak refinability implies
refinability?

Theorem
Akin - Dougherthy - Mauldin - Yingst (2008): Let µ and ν be
weakly refinable measures on X. Then µ ∼ ν ⇐⇒ S(µ) = S(ν).
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i≥0 Vi and edge set E =
⋃

i≥1 Ei :
1) V0 = {v0} is a single point;
2) Vi and Ei are finite sets;
3) edges Ei connect Vi to Vi+1: there exist a range map r and a
source map s from E to V such that r(Ei) = Vi , s(Ei) = Vi−1,
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Definition
A Bratteli diagram is an infinite graph B = (V ,E) with the vertex
set V =

⋃

i≥0 Vi and edge set E =
⋃

i≥1 Ei :
1) V0 = {v0} is a single point;
2) Vi and Ei are finite sets;
3) edges Ei connect Vi to Vi+1: there exist a range map r and a
source map s from E to V such that r(Ei) = Vi , s(Ei) = Vi−1,
and s−1(v) 6= ∅; r−1(v ′) 6= ∅ for all v ∈ V and v ′ ∈ V \ V0.

Fn = incidence matrix of size |Vn+1| × |Vn|.

B is stationary if Fn = F1 for n ≥ 2.

Forrest (1997), Durand - Host - Skau (1999), B. - Kwiatkowski -
Medynets (2009): The class of of stationary Bratteli diagrams
describes exactly aperiodic substitution dynamical systems.
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V0

V1

V2

V3

E1

E2

E3

The diagram is stationary

F =





1 1 0
1 1 0
0 2 2





Topology on the path space
XB: two paths are close if
they agree on a large initial
segment.
XB is a Cantor set if it has no
isolated points.
There is one minimal
component on the diagram.
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Definition
Two infinite paths x = (xi ) and y = (yi) from the path space XB

of a Bratteli diagram B = (V ,E) are called tail (cofinal)
equivalent if there exists i0 such that xi = yi for all i ≥ i0.
Denote by R the tail equivalence relation on XB.

A Bratteli diagram is called simple if the tail equivalence relation
R is minimal.

E(v0, v) is the set of all path that connect v0 and v ∈ V . Set
h(n)

v = |E(v0, v)|, v ∈ Vn and

X (n)
w (e) := {x = (xi ) ∈ XB : xi = ei , i = 1, ...,n}

where e = (e1, . . . ,en) ∈ E(v0,w), n ≥ 1.

A measure µ is R-invariant on XB if and only if
µ(X (n)

v (e)) = µ(X (n)
v (e′)) for any e,e′ ∈ E(v0, v).



Measures on stationary Bratteli diagrams

Theorem
B. - Kwiatkowski - Medynets - Solomyak (2010): Let B be a
stationary Bratteli diagram and A = F T is the matrix transposed
to the incidence matrix of B. Then there is a one-to-one
correspondence between vectors of the cone

core(A) =
⋂

k≥1

Ak (Rn
+)

and R-invariant measures on XB. The ergodic measures
correspond to the extreme vectors of core(A). Some of the
ergodic measures may be infinite.



Frobenius normal form

Let B be a stationary Bratteli diagram and A the matrix
transpose to the incidence matrix of B. Then A can be
transformed to the Frobenius normal form:

A =

























A1 0 · · · 0 Y1,s+1 · · · Y1,m

0 A2 · · · 0 Y2,s+1 · · · Y2,m
...

...
. . .

...
... · · ·

...
0 0 · · · As Ys,s+1 · · · Ys,m

0 0 · · · 0 As+1 · · · Ys+1,m
...

... · · ·
...

...
. . .

...
0 0 · · · 0 0 · · · Am

























where all Ai are primitive matrices, A1, ...,As determine minimal
components of R, non-zero matrices Yi ,j show how
non-minimal components “interact” with minimal ones.
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Let λi be the spectral radius of Ai . Then λi is a distinguished
eigenvalue if λi > λj for any j with Yi ,j 6= 0. Then there exists a
non-negative eigenvector x = (x1, ..., xK )

T with Ax = λix such
that xv > 0 if the vertex v is accessible from Ai .
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Let λi be the spectral radius of Ai . Then λi is a distinguished
eigenvalue if λi > λj for any j with Yi ,j 6= 0. Then there exists a
non-negative eigenvector x = (x1, ..., xK )

T with Ax = λix such
that xv > 0 if the vertex v is accessible from Ai .
Let λ be a distinguished eigenvalue and x the corresponding
probability non-negative eigenvector. The ergodic probability
R-invariant measure µ defined by λ and x satisfies the relation:

µ(X (n)
i (e)) =

xi

λn−1

where i ∈ Vn and e is a finite path that ends at i . Thus,

S(µ) =

{

K
∑

i=1

k (n)
i

xi

λn−1 : 0 ≤ k (n)
i ≤ h(n)

i ; n = 1,2, . . .

}

.

Non-distinguished eigenvalues determine infinite ergodic
invariant measures.
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Main results

Let S be the set of all ergodic probability R-invariant measures
on stationary Bratteli diagrams.

Questions: 1. Is S(µ) group-like for every µ ∈ S?
2. Which measures from S are good?
3. What is the cardinality of the set {ν ∈ S : ν ∼ µ}?

THEOREM 1 (B. - Karpel)

Let µ be an ergodic invariant measure on a stationary diagram
B defined by a distinguished eigenvalue λ of the matrix A = F T .
Let x = (x1, . . . , xn)

T be the corresponding vector and H the
additive subgroup of R generated by {x1, . . . , xn}. Then the
clopen values set S(µ) is group-like and

S(µ) =

( ∞
⋃

N=0

1
λN H

)

∩ [0,1].



Idea of the proof of Theorem 1
The proof is divided into two parts depending on the properties
of λ. The first part deals with rational (hence integer) λ, and the
second one contains the proof of the case of irrational (hence
algebraic integer) λ.
1. λ ∈ Q and x = (p1

q , . . . , pn
q ), where p1, . . . ,pn,q ∈ N and

gcd(p1, . . . ,pn) = 1. We prove that

S(µ) =

{

m
qλN | m,N ∈ N, 0 ≤ m ≤ qλN

}

.

We use the fact that every clopen set can be represented as a
finite disjoint union of cylinder sets with arbitrary large length.
We also use the fact that the Bratteli diagram is not simple and
the formula for asymptotic behavior of h(N)

i ∼ λN as N → +∞.
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of λ. The first part deals with rational (hence integer) λ, and the
second one contains the proof of the case of irrational (hence
algebraic integer) λ.
1. λ ∈ Q and x = (p1

q , . . . , pn
q ), where p1, . . . ,pn,q ∈ N and

gcd(p1, . . . ,pn) = 1. We prove that

S(µ) =

{

m
qλN | m,N ∈ N, 0 ≤ m ≤ qλN

}

.

We use the fact that every clopen set can be represented as a
finite disjoint union of cylinder sets with arbitrary large length.
We also use the fact that the Bratteli diagram is not simple and
the formula for asymptotic behavior of h(N)

i ∼ λN as N → +∞.

2. λ ∈ R\Q and x = (x1, ..., xn). Then S(µ) ⊂ Q(λ) = Q[λ]. Let
k be the degree of the minimal polynomial for λ. Then
Q[λ] = {

∑k−1
i=0 aiλ

i}, ai ∈ Q.



Idea of the proof of Theorem 1

There is a one-to-one correspondence:

a0 + a1λ+ . . .+ ak−1λ
k−1 ↔ (a0,a1, ...,ak−1)

T .

Every element of S(µ) ⊂ Q(λ) can be considered as a vector in
Qk . Denote by {e1, ...,ek} the standard basis in Rk (or Qk ). Let
n = (1, λ, ..., λk−1)T . Denote by π = {y : 〈y,n〉 = 0} the
hyperplane in Rk . We prove that all points of S(µ) "uniformly"
fill the gap between π and π + e1.

S(µ) =

{

DN−1

(

n
∑

i=1

k (N)
i xi

)

| 0 ≤ k (N)
i ≤ h(N)

i ; N = 1,2, ...

}

,

where D ∈ Mat(k × k ,Q) which corresponds to the
multiplication by 1

λ in Q(λ). The entries of D are obtained from
the coefficients of the minimal polynomial for λ.



Main results

THEOREM 2 (B. - Karpel)

Let µ be an ergodic R-invariant probability measure on a
stationary Bratteli diagram B defined by a distinguished
eigenvalue λ of the matrix A = F T . Denote by x = (x1, ..., xn)

T

the corresponding probability eigenvector. Let the vertices
m + 1, . . . ,n belong to the distinguished class α corresponding
to µ. Then µ is good if and only if there exists R ∈ N such that
λRx1, ..., λ

Rxm belong to the additive group generated by
{xm+1, ..., xn}.



Corollaries

COROLLARY 1

If the clopen values set of µ is rational and (p1
q , . . . , pn

q ) is the
corresponding eigenvector, then µ is good if and only if
gcd(pm+1, ...,pn)| λ

R for some R ∈ R. If gcd(pm+1, ...,pn) = 1,
then µ is good.



Corollaries

COROLLARY 1

If the clopen values set of µ is rational and (p1
q , . . . , pn

q ) is the
corresponding eigenvector, then µ is good if and only if
gcd(pm+1, ...,pn)| λ

R for some R ∈ R. If gcd(pm+1, ...,pn) = 1,
then µ is good.

COROLLARY 2

Let µ ∈ S. The following are equivalent:
◮ µ is good;
◮ µ is refinable;
◮ µ is weakly refinable.



Example 1

u

�
�

�
�

��

@
@
@
@
@@uu u

@
@
@
@
@@

�
�

�
�

��

@
@
@
@
@@uu u

. . . . . . . . . . . . . .



Example 1

u

�
�

�
�

��

@
@
@
@
@@uu u

@
@
@
@
@@

�
�

�
�

��

@
@
@
@
@@uu u

. . . . . . . . . . . . . .

For the matrix

A =





1 1 0
1 1 1
0 0 3



 ,

the eigenvectors
x = (3−

√
5

2 ,
√

5−1
2 ,0)T and

y = (1
4 ,

1
2 ,

1
4)

T correspond to the

eigenvalues λ1 = 3+
√

5
2 and

λ2 = 3, respectively.
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For the matrix

A =





1 1 0
1 1 1
0 0 3



 ,

the eigenvectors
x = (3−

√
5

2 ,
√

5−1
2 ,0)T and

y = (1
4 ,

1
2 ,

1
4)

T correspond to the

eigenvalues λ1 = 3+
√

5
2 and

λ2 = 3, respectively.
It gives two ergodic good
measures µ1 and µ2. But for any
t ∈ (0,1) the measure
νt = tµ1 + (1 − t)µ2 is not good.



Example 2

Fix an integer N ≥ 3 and let

FN =





2 0 0
1 N 1
1 1 N



 .

The Perron-Frobenius eigenvalue λ = N + 1 and the
corresponding probability eigenvector

x =

(

1
N
,

N − 1
2N

,
N − 1

2N

)T

.

The full ergodic measure µN is a good measure if and only if
N = 2k + 1.



Example 2 (cont’d)

2
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For N = 4, we have λ = 5 and
x = (2

8 ,
3
8 ,

3
8). For any m ∈ N,

3 ∤ 5m.

The cylinder set U of the length 1
that ends in the first vertex has the
measure 2

8 . The cylinder set V of
the length 1 that ends in the
second vertex has the measure 3

8 .

There is no clopen subset W ⊂ V
such that µ(W ) = µ(U) = 2

8 .
Hence, the measure µ4 is not
good.



Main results

Theorem 3 (B. - Karpel)

Let µ be a good ergodic R-invariant probability measure on a
stationary (non-simple) Bratteli diagram B. Then there exist
stationary Bratteli diagrams {Bi}

∞
i=0 and good ergodic

Ri -invariant probability measures µi on Bi such that each
measure µi is homeomorphic to µ and the dynamical systems
(Bi ,Ri), (Bj ,Rj) are topologically orbit equivalent if and only if
i = j . Moreover, the diagram Bi has exactly i minimal
components for the tail equivalence relation Ri , i ∈ N.



Idea of the proof of Theorem 3

1. Let S(µ) ⊂ Q. Then S(µ) = { m
qλN | m,N ∈ N, 0 ≤ m ≤ qλN}.

We construct a simple Bratteli diagram B0 and an ergodic
probability invariant measure µ0 such that S(µ0) = S. Then, on
the base of B0, we construct Bratteli diagrams Bi with i minimal
components and full measures µi homeomorphic to µ.

2. Let λ ∈ R \Q. We construct a stationary Bratteli diagram B′

such that:
(i) there is an ergodic invariant probability good measure ν on
B′ such that S(ν) = S(µ);
(ii) B′ has one more minimal component in comparison with B


