Homeomorphic Measures on a Cantor Set

S. Bezuglyi

October 13, 2010
Workshop on concentration phenomenon, transformation groups and Ramsey theory
Fields Institute

Based on joint paper with O. Karpel

Plan of the talk

- Motivation
- Bernoulli measures
- Good and refinable measures on a Cantor set
- Measures on stationary Bratteli diagrams
- Main results

Homeomorphic measures

Definition

Two probability Borel measures μ and ν defined on a topological space Y are called homeomorphic or topologically equivalent (notation $\mu \sim \nu$) if there exists a self-homeomorphism f of Y such that $\mu = \nu \circ f$, i.e. $\mu(A) = \nu(f(A))$ for every Borel subset A of Y.

Homeomorphic measures

Definition

Two probability Borel measures μ and ν defined on a topological space Y are called homeomorphic or topologically equivalent (notation $\mu \sim \nu$) if there exists a self-homeomorphism f of Y such that $\mu = \nu \circ f$, i.e. $\mu(A) = \nu(f(A))$ for every Borel subset A of Y.

Notation:

H(Y) = the group of all homeomorphisms of Y, M(Y) = Borel probability non-atomic measures on Y.

Homeomorphic measures

Definition

Two probability Borel measures μ and ν defined on a topological space Y are called homeomorphic or topologically equivalent (notation $\mu \sim \nu$) if there exists a self-homeomorphism f of Y such that $\mu = \nu \circ f$, i.e. $\mu(A) = \nu(f(A))$ for every Borel subset A of Y.

Notation:

H(Y) = the group of all homeomorphisms of Y,

M(Y) =Borel probability non-atomic measures on Y.

Problems:

- (1) Classify measures from M(Y) (or some natural subsets of M(Y)) with respect to \sim .
- (2) Given $\mu \in M(Y)$, describe the class of measures equivalent to μ .

Oxtoby-Ulam Theorem

Theorem

Oxtoby - Ulam (1941): A non-atomic Borel probability measure μ on the finite-dimensional cube $[0,1]^n$ is homeomorphic to the Lebesgue measure if and only if every nonempty open set has a positive measure (in other words, μ is full) and the boundary of the cube has measure 0.

Any two probability measures on $[0, 1]^n$ satisfying the Oxtoby-Ulam theorem are *homeomorphic*.

Oxtoby-Ulam Theorem

Theorem

Oxtoby - Ulam (1941): A non-atomic Borel probability measure μ on the finite-dimensional cube $[0,1]^n$ is homeomorphic to the Lebesgue measure if and only if every nonempty open set has a positive measure (in other words, μ is full) and the boundary of the cube has measure 0.

Any two probability measures on $[0,1]^n$ satisfying the Oxtoby-Ulam theorem are *homeomorphic*.

Oxtoby - Prasad (1978) extended the previous result to the Hilbert cube $[0,1]^\mathbb{N}$. More results about measures on manifolds can be found in the book by Alpern - Prasad (2004).

Oxtoby-Ulam Theorem

Theorem

Oxtoby - Ulam (1941): A non-atomic Borel probability measure μ on the finite-dimensional cube $[0,1]^n$ is homeomorphic to the Lebesgue measure if and only if every nonempty open set has a positive measure (in other words, μ is full) and the boundary of the cube has measure 0.

Any two probability measures on $[0,1]^n$ satisfying the Oxtoby-Ulam theorem are *homeomorphic*.

Oxtoby - Prasad (1978) extended the previous result to the Hilbert cube $[0,1]^{\mathbb{N}}$. More results about measures on manifolds can be found in the book by Alpern - Prasad (2004).

E.Akin (1999, 2005) initiated the systematic study of homeomorphic measures on a *Cantor set*, i.e. on a 0-dimensional compact metric space without isolated points.

1. "Thing-in-itself" (c)

- 1. "Thing-in-itself" (c)
- 2. Orbit equivalence.

Let $f \in H(X)$ and $g \in H(Y)$ be two homeomorphisms of Cantor sets X and Y. They are called *orbit equivalent* if there exists a homeomorphism $h: X \to Y$ such that $h(Orb_f(x)) = Orb_g(hx)$ for all $x \in X$.

- 1. "Thing-in-itself" (c)
- 2. Orbit equivalence.

Let $f \in H(X)$ and $g \in H(Y)$ be two homeomorphisms of Cantor sets X and Y. They are called *orbit equivalent* if there exists a homeomorphism $h: X \to Y$ such that $h(Orb_f(x)) = Orb_g(hx)$ for all $x \in X$.

Giordano - Putnam - Skau (1995): For a minimal homeomorphism f of X, the set $M_f(X)$ of probability ergodic invariant measures is a *complete* invariant of orbit equivalence. So, if there is a homeomorphism $F: X \to Y$ that sends $M_g(Y)$ onto $M_f(X)$, then the minimal homeomorphisms f and g are orbit equivalent.

- 1. "Thing-in-itself" (c)
- 2. Orbit equivalence.

Let $f \in H(X)$ and $g \in H(Y)$ be two homeomorphisms of Cantor sets X and Y. They are called *orbit equivalent* if there exists a homeomorphism $h: X \to Y$ such that $h(Orb_f(x)) = Orb_g(hx)$ for all $x \in X$.

Giordano - Putnam - Skau (1995): For a minimal homeomorphism f of X, the set $M_f(X)$ of probability ergodic invariant measures is a *complete* invariant of orbit equivalence. So, if there is a homeomorphism $F: X \to Y$ that sends $M_g(Y)$ onto $M_f(X)$, then the minimal homeomorphisms f and g are orbit equivalent.

For aperiodic homeomorphisms, the problem of orbit equivalence is open.

Let
$$X = 2^{\mathbb{N}}$$
, $\mu_r = \bigotimes_i \mu_i$ where $\mu_i(\{1\}) = r$ and $\mu_i(\{0\}) = 1 - r$.

Let $X = 2^{\mathbb{N}}$, $\mu_r = \bigotimes_i \mu_i$ where $\mu_i(\{1\}) = r$ and $\mu_i(\{0\}) = 1 - r$.

Navarro-Bermudez (1979), Huang (1984): (1) Let r be a rational, transcendental, or an algebraic integer number of degree 2. Then $\mu_r \sim \mu_s \Leftrightarrow r = s$ or r = 1 - s. (2) There are continuum equivalence classes of Bernoulli measures on the Cantor space $2^{\mathbb{N}}$. Each class is at most countable.

In particular, $\mu_{1/2}$ and $\mu_{1/4}$ are not homeomorphic.

Let $X = 2^{\mathbb{N}}$, $\mu_r = \bigotimes_i \mu_i$ where $\mu_i(\{1\}) = r$ and $\mu_i(\{0\}) = 1 - r$.

Navarro-Bermudez (1979), Huang (1984): (1) Let r be a rational, transcendental, or an algebraic integer number of degree 2. Then $\mu_r \sim \mu_s \Leftrightarrow r = s$ or r = 1 - s. (2) There are continuum equivalence classes of Bernoulli measures on the Cantor space $2^{\mathbb{N}}$. Each class is at most countable.

In particular, $\mu_{1/2}$ and $\mu_{1/4}$ are not homeomorphic.

Oxtoby, Navarro-Bermudez (1988): Let t be the solution of $x^3+x^2-1=0$ taken from (0, 1). Then $\mu_t\sim \mu_{t^2}\sim \mu_{1-t}\sim \mu_{1-t^2}$.

Let $X = 2^{\mathbb{N}}$, $\mu_r = \bigotimes_i \mu_i$ where $\mu_i(\{1\}) = r$ and $\mu_i(\{0\}) = 1 - r$.

Navarro-Bermudez (1979), Huang (1984): (1) Let r be a rational, transcendental, or an algebraic integer number of degree 2. Then $\mu_r \sim \mu_s \Leftrightarrow r = s$ or r = 1 - s. (2) There are continuum equivalence classes of Bernoulli measures on the Cantor space $2^{\mathbb{N}}$. Each class is at most countable.

In particular, $\mu_{1/2}$ and $\mu_{1/4}$ are not homeomorphic.

Oxtoby, Navarro-Bermudez (1988): Let t be the solution of $x^3 + x^2 - 1 = 0$ taken from (0, 1). Then $\mu_t \sim \mu_{t^2} \sim \mu_{1-t} \sim \mu_{1-t^2}$.

It is unknown whether there are other measures homeomorphic to μ_t .

Problem: Is it true that for every 0 < r < 1

$$|\{0 < s < 1 : \mu_s \sim \mu_r\}| < \infty$$
?

Problem: Is it true that for every 0 < r < 1

$$|\{0 < s < 1 : \mu_s \sim \mu_r\}| < \infty$$
?

Yingst (2008): For any algebraic integer 0 < r < 1 there are only finitely many s such that μ_s is homeomorphic to μ_r .

Problem: Is it true that for every 0 < r < 1

$$|\{0 < s < 1 : \mu_s \sim \mu_r\}| < \infty$$
?

Yingst (2008): For any algebraic integer 0 < r < 1 there are only finitely many s such that μ_s is homeomorphic to μ_r .

Dougherty - Mauldin - Yingst (2007): For every $n \in \mathbb{N}$ there exists an algebraic integer number r such that

$$|\{s: \mu_s \sim \mu_r\}| \geq n.$$

Problem: Is it true that for every 0 < r < 1

$$|\{0 < s < 1 : \mu_s \sim \mu_r\}| < \infty$$
?

Yingst (2008): For any algebraic integer 0 < r < 1 there are only finitely many s such that μ_s is homeomorphic to μ_r .

Dougherty - Mauldin - Yingst (2007): For every $n \in \mathbb{N}$ there exists an algebraic integer number r such that

$$|\{s: \mu_s \sim \mu_r\}| \geq n.$$

Yingst (2008) gave conditions which determine whether two Bernoulli trial measures are homeomorphic.

Very few results are known about homeomorphism of Bernoulli measures with more than two states.

Let X be a Cantor set and $\mu \in M(X)$, then $S(\mu) := \{\mu(U) : U \text{ is clopen in } X\}$ is called the clopen values set.

Let X be a Cantor set and $\mu \in M(X)$, then $S(\mu) := \{\mu(U) : U \text{ is clopen in } X\}$ is called the clopen values set.

 $S(\mu)$ is a countable dense subset of [0, 1] containing 0 and 1. Clearly, $S(\mu) = S(\mu \circ f)$ for any $f \in H(X)$.

Let X be a Cantor set and $\mu \in M(X)$, then $S(\mu) := \{\mu(U) : U \text{ is clopen in } X\}$ is called the clopen values set.

 $S(\mu)$ is a countable dense subset of [0, 1] containing 0 and 1. Clearly, $S(\mu) = S(\mu \circ f)$ for any $f \in H(X)$.

Akin (1999): There exists an uncountable subset $\mathcal{M} \subset M(X)$ such that for $\mu_1, \mu_2 \in \mathcal{M}$ and $f \in H(X)$

$$\mu_1 = \mu_2 \circ f \Longrightarrow (\mu_1 = \mu_2 \text{ and } f = id_X)$$

Let X be a Cantor set and $\mu \in M(X)$, then $S(\mu) := \{\mu(U) : U \text{ is clopen in } X\}$ is called the clopen values set.

 $S(\mu)$ is a countable dense subset of [0, 1] containing 0 and 1. Clearly, $S(\mu) = S(\mu \circ f)$ for any $f \in H(X)$.

Akin (1999): There exists an uncountable subset $\mathcal{M} \subset M(X)$ such that for $\mu_1, \mu_2 \in \mathcal{M}$ and $f \in H(X)$

$$\mu_1 = \mu_2 \circ f \Longrightarrow (\mu_1 = \mu_2 \text{ and } f = id_X)$$

The set $S(\mu)$ provides an *invariant* for homeomorphic measures (i.e. $S(\mu) = S(\mu \circ f), \ \forall f \in H(X)$) although it is not a *complete invariant*, in general. For example, $S(\mu(1/3,1/3,1/3)) = S(\mu(1/3,2/3))$ but the Bernoulli measures $\mu(1/3,1/3,1/3)$ and $\mu(1/3,2/3)$ are not homeomorphic.

Good measures

Definition

Akin (2005) A full non-atomic probability measure μ on a Cantor set X is called good if whenever U, V are clopen sets with $\mu(U) < \mu(V)$, there exists a clopen subset W of V such that $\mu(W) = \mu(U)$.

Good measures

Definition

Akin (2005) A full non-atomic probability measure μ on a Cantor set X is called good if whenever U, V are clopen sets with $\mu(U) < \mu(V)$, there exists a clopen subset W of V such that $\mu(W) = \mu(U)$.

Akin (2005): For the class of good measures, $S(\mu)$ is a complete invariant for homeomorphism. Akin (2005), Glasner - Weiss (1995): Good measures are exactly invariant measures of uniquely ergodic minimal homeomorphisms of Cantor sets.

Good measures

Definition

Akin (2005) A full non-atomic probability measure μ on a Cantor set X is called good if whenever U, V are clopen sets with $\mu(U) < \mu(V)$, there exists a clopen subset W of V such that $\mu(W) = \mu(U)$.

Akin (2005): For the class of good measures, $S(\mu)$ is a complete invariant for homeomorphism.

Akin (2005), Glasner - Weiss (1995): Good measures are exactly invariant measures of uniquely ergodic minimal homeomorphisms of Cantor sets.

A subset S of the unit interval [0, 1] is called group-like if $S = G \cap [0, 1]$ where G is an additive subgroup of \mathbb{R} .

For a good measure μ , the set $S(\mu)$ is *group-like*.

Definition

Dougherty - Mauldin - Yingst (2007): (1) A measure $\mu \in M(X)$ on a Cantor set X is called refinable if for any clopen set U such that $\mu(U) = \sum_{i=1}^{n} \mu(U_i)$ with clopen sets U_i , there exist a clopen partition $\{U'_1, ..., U'_n\}$ of U with $\mu(U'_i) = \mu(U_i)$. (2) μ is weakly refinable if (i) X is refinable and (ii) every clopen set can be partitioned into (finitely many) refinable clopen sets.

Definition

Dougherty - Mauldin - Yingst (2007): (1) A measure $\mu \in M(X)$ on a Cantor set X is called refinable if for any clopen set U such that $\mu(U) = \sum_{i=1}^{n} \mu(U_i)$ with clopen sets U_i , there exist a clopen partition $\{U'_1, ..., U'_n\}$ of U with $\mu(U'_i) = \mu(U_i)$. (2) μ is weakly refinable if (i) X is refinable and (ii) every clopen set can be partitioned into (finitely many) refinable clopen sets.

Goodness \Longrightarrow Refinability \Longrightarrow Weak refinability.

Definition

Dougherty - Mauldin - Yingst (2007): (1) A measure $\mu \in M(X)$ on a Cantor set X is called refinable if for any clopen set U such that $\mu(U) = \sum_{i=1}^{n} \mu(U_i)$ with clopen sets U_i , there exist a clopen partition $\{U'_1, ..., U'_n\}$ of U with $\mu(U'_i) = \mu(U_i)$. (2) μ is weakly refinable if (i) X is refinable and (ii) every clopen set can be partitioned into (finitely many) refinable clopen sets.

 ${\sf Goodness} \Longrightarrow {\sf Refinability} \Longrightarrow {\sf Weak\ refinability}.$

Open question: Is it true that weak refinability implies refinability?

Definition

Dougherty - Mauldin - Yingst (2007): (1) A measure $\mu \in M(X)$ on a Cantor set X is called refinable if for any clopen set U such that $\mu(U) = \sum_{i=1}^{n} \mu(U_i)$ with clopen sets U_i , there exist a clopen partition $\{U'_1, ..., U'_n\}$ of U with $\mu(U'_i) = \mu(U_i)$. (2) μ is weakly refinable if (i) X is refinable and (ii) every clopen set can be partitioned into (finitely many) refinable clopen sets.

 ${\sf Goodness} \Longrightarrow {\sf Refinability} \Longrightarrow {\sf Weak\ refinability}.$

Open question: Is it true that weak refinability implies refinability?

Theorem

Akin - Dougherthy - Mauldin - Yingst (2008): Let μ and ν be weakly refinable measures on X. Then $\mu \sim \nu \iff S(\mu) = S(\nu)$.

Definition of a Bratteli diagram

Definition

A Bratteli diagram is an infinite graph B = (V, E) with the vertex set $V = \bigcup_{i>0} V_i$ and edge set $E = \bigcup_{i>1} E_i$:

- 1) $V_0 = \{v_0\}$ is a single point;
- 2) V_i and E_i are finite sets;
- 3) edges E_i connect V_i to V_{i+1} : there exist a range map r and a source map s from E to V such that $r(E_i) = V_i$, $s(E_i) = V_{i-1}$, and $s^{-1}(v) \neq \emptyset$; $r^{-1}(v') \neq \emptyset$ for all $v \in V$ and $v' \in V \setminus V_0$.

Definition of a Bratteli diagram

Definition

A Bratteli diagram is an infinite graph B = (V, E) with the vertex set $V = \bigcup_{i>0} V_i$ and edge set $E = \bigcup_{i>1} E_i$:

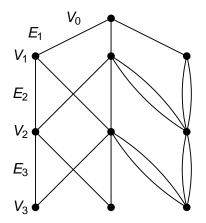
- 1) $V_0 = \{v_0\}$ is a single point;
- 2) V_i and E_i are finite sets;
- 3) edges E_i connect V_i to V_{i+1} : there exist a range map r and a source map s from E to V such that $r(E_i) = V_i, s(E_i) = V_{i-1}$, and $s^{-1}(v) \neq \emptyset$; $r^{-1}(v') \neq \emptyset$ for all $v \in V$ and $v' \in V \setminus V_0$.

 F_n = incidence matrix of size $|V_{n+1}| \times |V_n|$.

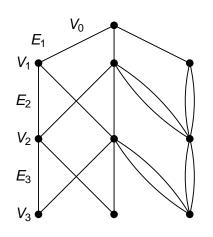
B is stationary if $F_n = F_1$ for $n \ge 2$.

Forrest (1997), Durand - Host - Skau (1999), B. - Kwiatkowski - Medynets (2009): The class of of stationary Bratteli diagrams describes exactly aperiodic substitution dynamical systems.

Example



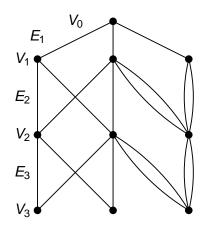
Example



The diagram is stationary

$$F = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & 2 \end{array}\right)$$

Example

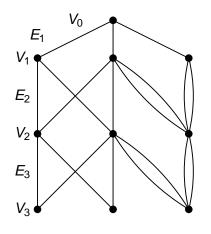


The diagram is stationary

$$F = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & 2 \end{array}\right)$$

Topology on the path space X_B : two paths are close if they agree on a large initial segment.

 X_B is a Cantor set if it has no isolated points.



The diagram is stationary

$$F = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & 2 \end{array}\right)$$

Topology on the path space X_B : two paths are close if they agree on a large initial segment.

 X_B is a Cantor set if it has no isolated points.

There is one minimal component on the diagram.

Definition

Two infinite paths $x = (x_i)$ and $y = (y_i)$ from the path space X_B of a Bratteli diagram B = (V, E) are called tail (cofinal) equivalent if there exists i_0 such that $x_i = y_i$ for all $i \ge i_0$. Denote by \mathcal{R} the tail equivalence relation on X_B .

Definition

Two infinite paths $x = (x_i)$ and $y = (y_i)$ from the path space X_B of a Bratteli diagram B = (V, E) are called tail (cofinal) equivalent if there exists i_0 such that $x_i = y_i$ for all $i \ge i_0$. Denote by \mathcal{R} the tail equivalence relation on X_B .

A Bratteli diagram is called simple if the tail equivalence relation \mathcal{R} is minimal.

Definition

Two infinite paths $x = (x_i)$ and $y = (y_i)$ from the path space X_B of a Bratteli diagram B = (V, E) are called tail (cofinal) equivalent if there exists i_0 such that $x_i = y_i$ for all $i \ge i_0$. Denote by \mathcal{R} the tail equivalence relation on X_B .

A Bratteli diagram is called simple if the tail equivalence relation \mathcal{R} is minimal.

 $E(v_0, v)$ is the set of all path that connect v_0 and $v \in V$. Set $h_v^{(n)} = |E(v_0, v)|, v \in V_n$ and

$$X_w^{(n)}(\overline{e}) := \{x = (x_i) \in X_B : x_i = e_i, i = 1, ..., n\}$$

where
$$\overline{e} = (e_1, \dots, e_n) \in E(v_0, w), n \ge 1$$
.

Definition

Two infinite paths $x = (x_i)$ and $y = (y_i)$ from the path space X_B of a Bratteli diagram B = (V, E) are called tail (cofinal) equivalent if there exists i_0 such that $x_i = y_i$ for all $i \ge i_0$. Denote by \mathcal{R} the tail equivalence relation on X_B .

A Bratteli diagram is called simple if the tail equivalence relation \mathcal{R} is minimal.

 $E(v_0, v)$ is the set of all path that connect v_0 and $v \in V$. Set $h_v^{(n)} = |E(v_0, v)|, v \in V_n$ and

$$X_w^{(n)}(\overline{e}) := \{x = (x_i) \in X_B : x_i = e_i, i = 1, ..., n\}$$

where
$$\overline{\mathbf{e}} = (\mathbf{e}_1, \dots, \mathbf{e}_n) \in E(\mathbf{v}_0, \mathbf{w}), \ n \geq 1$$
.

A measure μ is \mathcal{R} -invariant on X_B if and only if $\mu(X_v^{(n)}(\overline{e})) = \mu(X_v^{(n)}(\overline{e}'))$ for any $\overline{e}, \overline{e}' \in E(v_0, v)$.

Measures on stationary Bratteli diagrams

Theorem

B. - Kwiatkowski - Medynets - Solomyak (2010): Let B be a stationary Bratteli diagram and $A = F^T$ is the matrix transposed to the incidence matrix of B. Then there is a one-to-one correspondence between vectors of the cone

$$core(A) = \bigcap_{k \geq 1} A^k(\mathbb{R}^n_+)$$

and \mathcal{R} -invariant measures on X_B . The ergodic measures correspond to the extreme vectors of core(A). Some of the ergodic measures may be infinite.

Frobenius normal form

Let *B* be a stationary Bratteli diagram and *A* the matrix transpose to the incidence matrix of *B*. Then *A* can be transformed to the *Frobenius normal form*:

$$A = \left(\begin{array}{ccccccccc} A_1 & 0 & \cdots & 0 & Y_{1,s+1} & \cdots & Y_{1,m} \\ 0 & A_2 & \cdots & 0 & Y_{2,s+1} & \cdots & Y_{2,m} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & A_s & Y_{s,s+1} & \cdots & Y_{s,m} \\ 0 & 0 & \cdots & 0 & A_{s+1} & \cdots & Y_{s+1,m} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & A_m \end{array} \right)$$

where all A_i are primitive matrices, $A_1, ..., A_s$ determine minimal components of \mathcal{R} , non-zero matrices $Y_{i,j}$ show how non-minimal components "interact" with minimal ones.

Clopen values set for ergodic measures

Let λ_i be the spectral radius of A_i . Then λ_i is a distinguished eigenvalue if $\lambda_i > \lambda_j$ for any j with $Y_{i,j} \neq 0$. Then there exists a non-negative eigenvector $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_K)^T$ with $A\mathbf{x} = \lambda_i \mathbf{x}$ such that $\mathbf{x}_v > 0$ if the vertex \mathbf{v} is accessible from A_i .

Clopen values set for ergodic measures

Let λ_i be the spectral radius of A_i . Then λ_i is a distinguished eigenvalue if $\lambda_i > \lambda_j$ for any j with $Y_{i,j} \neq 0$. Then there exists a non-negative eigenvector $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_K)^T$ with $A\mathbf{x} = \lambda_i \mathbf{x}$ such that $\mathbf{x}_v > 0$ if the vertex v is accessible from A_i .

Let λ be a distinguished eigenvalue and x the corresponding probability non-negative eigenvector. The ergodic probability \mathcal{R} -invariant measure μ defined by λ and x satisfies the relation:

$$\mu(X_i^{(n)}(\overline{e})) = \frac{X_i}{\lambda^{n-1}}$$

where $i \in V_n$ and \overline{e} is a finite path that ends at i. Thus,

$$S(\mu) = \left\{ \sum_{i=1}^K k_i^{(n)} \frac{x_i}{\lambda^{n-1}} : 0 \le k_i^{(n)} \le h_i^{(n)}; \ n = 1, 2, \dots \right\}.$$

Clopen values set for ergodic measures

Let λ_i be the spectral radius of A_i . Then λ_i is a distinguished eigenvalue if $\lambda_i > \lambda_j$ for any j with $Y_{i,j} \neq 0$. Then there exists a non-negative eigenvector $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_K)^T$ with $A\mathbf{x} = \lambda_i \mathbf{x}$ such that $\mathbf{x}_v > 0$ if the vertex \mathbf{v} is accessible from A_i .

Let λ be a distinguished eigenvalue and x the corresponding probability non-negative eigenvector. The ergodic probability \mathcal{R} -invariant measure μ defined by λ and x satisfies the relation:

$$\mu(X_i^{(n)}(\overline{e})) = \frac{X_i}{\lambda^{n-1}}$$

where $i \in V_n$ and \overline{e} is a finite path that ends at i. Thus,

$$S(\mu) = \left\{ \sum_{i=1}^{K} k_i^{(n)} \frac{x_i}{\lambda^{n-1}} : 0 \le k_i^{(n)} \le h_i^{(n)}; \ n = 1, 2, \dots \right\}.$$

Non-distinguished eigenvalues determine infinite ergodic invariant measures.

Let $\mathcal S$ be the set of all ergodic probability $\mathcal R$ -invariant measures on stationary Bratteli diagrams.

Let $\mathcal S$ be the set of all ergodic probability $\mathcal R$ -invariant measures on stationary Bratteli diagrams.

Questions: 1. Is $S(\mu)$ *group-like* for every $\mu \in S$?

Let $\mathcal S$ be the set of all ergodic probability $\mathcal R$ -invariant measures on stationary Bratteli diagrams.

Questions: 1. Is $S(\mu)$ *group-like* for every $\mu \in S$?

2. Which measures from \mathcal{S} are good?

Let $\mathcal S$ be the set of all ergodic probability $\mathcal R$ -invariant measures on stationary Bratteli diagrams.

Questions: 1. Is $S(\mu)$ *group-like* for every $\mu \in S$?

- 2. Which measures from S are good?
- 3. What is the *cardinality* of the set $\{\nu \in \mathcal{S} : \nu \sim \mu\}$?

Let $\mathcal S$ be the set of all ergodic probability $\mathcal R$ -invariant measures on stationary Bratteli diagrams.

Questions: 1. Is $S(\mu)$ *group-like* for every $\mu \in S$?

- 2. Which measures from S are good?
- 3. What is the *cardinality* of the set $\{\nu \in \mathcal{S} : \nu \sim \mu\}$?

THEOREM 1 (B. - Karpel)

Let μ be an ergodic invariant measure on a stationary diagram B defined by a distinguished eigenvalue λ of the matrix $A = F^T$. Let $x = (x_1, \dots, x_n)^T$ be the corresponding vector and H the additive subgroup of $\mathbb R$ generated by $\{x_1, \dots, x_n\}$. Then the clopen values set $S(\mu)$ is group-like and

$$S(\mu) = \left(\bigcup_{N=0}^{\infty} \frac{1}{\lambda^N} H\right) \cap [0,1].$$

The proof is divided into two parts depending on the properties of λ . The first part deals with rational (hence integer) λ , and the second one contains the proof of the case of irrational (hence algebraic integer) λ .

1. $\lambda \in \mathbb{Q}$ and $x = (\frac{p_1}{q}, \dots, \frac{p_n}{q})$, where $p_1, \dots, p_n, q \in \mathbb{N}$ and $gcd(p_1, \dots, p_n) = 1$. We prove that

$$S(\mu) = \left\{ \frac{m}{q\lambda^N} \mid m, N \in \mathbb{N}, \ 0 \le m \le q\lambda^N \right\}.$$

We use the fact that every clopen set can be represented as a finite disjoint union of cylinder sets with arbitrary large length. We also use the fact that the Bratteli diagram is not simple and the formula for asymptotic behavior of $h_i^{(N)} \sim \lambda^N$ as $N \to +\infty$.

The proof is divided into two parts depending on the properties of λ . The first part deals with rational (hence integer) λ , and the second one contains the proof of the case of irrational (hence algebraic integer) λ .

1. $\lambda \in \mathbb{Q}$ and $x = (\frac{p_1}{q}, \dots, \frac{p_n}{q})$, where $p_1, \dots, p_n, q \in \mathbb{N}$ and $gcd(p_1, \dots, p_n) = 1$. We prove that

$$S(\mu) = \left\{ \frac{m}{q\lambda^N} \mid m, N \in \mathbb{N}, \ 0 \le m \le q\lambda^N \right\}.$$

We use the fact that every clopen set can be represented as a finite disjoint union of cylinder sets with arbitrary large length. We also use the fact that the Bratteli diagram is not simple and the formula for asymptotic behavior of $h_i^{(N)} \sim \lambda^N$ as $N \to +\infty$.

2. $\lambda \in \mathbb{R} \setminus \mathbb{Q}$ and $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_n)$. Then $S(\mu) \subset \mathbb{Q}(\lambda) = \mathbb{Q}[\lambda]$. Let k be the degree of the minimal polynomial for λ . Then $\mathbb{Q}[\lambda] = \{\sum_{i=0}^{k-1} a_i \lambda^i\}, a_i \in \mathbb{Q}$.

There is a one-to-one correspondence:

$$a_0 + a_1 \lambda + ... + a_{k-1} \lambda^{k-1} \leftrightarrow (a_0, a_1, ..., a_{k-1})^T$$
.

Every element of $S(\mu) \subset \mathbb{Q}(\lambda)$ can be considered as a vector in \mathbb{Q}^k . Denote by $\{\mathbf{e}_1,...,\mathbf{e}_k\}$ the standard basis in \mathbb{R}^k (or \mathbb{Q}^k). Let $\mathbf{n}=(1,\lambda,...,\lambda^{k-1})^T$. Denote by $\pi=\{\mathbf{y}:\langle\mathbf{y},\mathbf{n}\rangle=0\}$ the hyperplane in \mathbb{R}^k . We prove that all points of $S(\mu)$ "uniformly" fill the gap between π and $\pi+\mathbf{e}_1$.

$$S(\mu) = \left\{ D^{N-1} \left(\sum_{i=1}^{n} k_i^{(N)} \mathbf{x}_i \right) \mid 0 \le k_i^{(N)} \le h_i^{(N)}; \ N = 1, 2, \dots \right\},\,$$

where $D \in Mat(k \times k, \mathbb{Q})$ which corresponds to the multiplication by $\frac{1}{\lambda}$ in $\mathbb{Q}(\lambda)$. The entries of D are obtained from the coefficients of the minimal polynomial for λ .

THEOREM 2 (B. - Karpel)

Let μ be an ergodic \mathcal{R} -invariant probability measure on a stationary Bratteli diagram B defined by a distinguished eigenvalue λ of the matrix $A = F^T$. Denote by $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_n)^T$ the corresponding probability eigenvector. Let the vertices $m+1,\ldots,n$ belong to the distinguished class α corresponding to μ . Then μ is good if and only if there exists $R \in \mathbb{N}$ such that $\lambda^R \mathbf{x}_1, ..., \lambda^R \mathbf{x}_m$ belong to the additive group generated by $\{\mathbf{x}_{m+1}, ..., \mathbf{x}_n\}$.

Corollaries

COROLLARY 1

If the clopen values set of μ is rational and $(\frac{p_1}{q},\ldots,\frac{p_n}{q})$ is the corresponding eigenvector, then μ is good if and only if $\gcd(p_{m+1},...,p_n)|\lambda^R$ for some $R\in\mathbb{R}$. If $\gcd(p_{m+1},...,p_n)=1$, then μ is good.

Corollaries

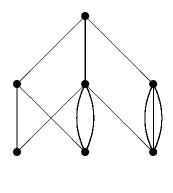
COROLLARY 1

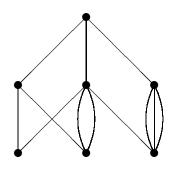
If the clopen values set of μ is rational and $(\frac{p_1}{q},\ldots,\frac{p_n}{q})$ is the corresponding eigenvector, then μ is good if and only if $\gcd(p_{m+1},...,p_n)|\ \lambda^R$ for some $R\in\mathbb{R}$. If $\gcd(p_{m+1},...,p_n)=1$, then μ is good.

COROLLARY 2

Let $\mu \in S$. The following are equivalent:

- μ is good;
- μ is refinable;
- μ is weakly refinable.

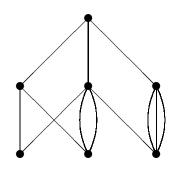




For the matrix

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 3 \end{array}\right),$$

the eigenvectors $x=(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}-1}{2},0)^T$ and $y=(\frac{1}{4},\frac{1}{2},\frac{1}{4})^T$ correspond to the eigenvalues $\lambda_1=\frac{3+\sqrt{5}}{2}$ and $\lambda_2=3$, respectively.



For the matrix

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 3 \end{array}\right),$$

the eigenvectors $x=(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}-1}{2},0)^T$ and $y=(\frac{1}{4},\frac{1}{2},\frac{1}{4})^T$ correspond to the eigenvalues $\lambda_1=\frac{3+\sqrt{5}}{2}$ and $\lambda_2=3$, respectively. It gives two ergodic good measures μ_1 and μ_2 . But for any $t\in(0,1)$ the measure $\nu_t=t\mu_1+(1-t)\mu_2$ is not good.

Fix an integer $N \ge 3$ and let

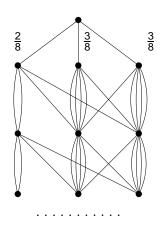
$$F_N = \begin{pmatrix} 2 & 0 & 0 \\ 1 & N & 1 \\ 1 & 1 & N \end{pmatrix}.$$

The Perron-Frobenius eigenvalue $\lambda = N + 1$ and the corresponding probability eigenvector

$$X = \left(\frac{1}{N}, \frac{N-1}{2N}, \frac{N-1}{2N}\right)^T$$
.

The full ergodic measure μ_N is a good measure if and only if $N = 2^k + 1$.

Example 2 (cont'd)



For N=4, we have $\lambda=5$ and $x=\left(\frac{2}{8},\frac{3}{8},\frac{3}{8}\right)$. For any $m\in\mathbb{N}$, $3\nmid 5^m$.

The cylinder set U of the length 1 that ends in the first vertex has the measure $\frac{2}{8}$. The cylinder set V of the length 1 that ends in the second vertex has the measure $\frac{3}{8}$.

There is no clopen subset $W \subset V$ such that $\mu(W) = \mu(U) = \frac{2}{8}$. Hence, the measure μ_4 is not good.

Theorem 3 (B. - Karpel)

Let μ be a good ergodic \mathcal{R} -invariant probability measure on a stationary (non-simple) Bratteli diagram B. Then there exist stationary Bratteli diagrams $\{B_i\}_{i=0}^{\infty}$ and good ergodic \mathcal{R}_i -invariant probability measures μ_i on B_i such that each measure μ_i is homeomorphic to μ and the dynamical systems (B_i, \mathcal{R}_i) , (B_j, \mathcal{R}_j) are topologically orbit equivalent if and only if i=j. Moreover, the diagram B_i has exactly i minimal components for the tail equivalence relation \mathcal{R}_i , $i \in \mathbb{N}$.

1. Let
$$S(\mu) \subset \mathbb{Q}$$
. Then $S(\mu) = \{ \frac{m}{q\lambda^N} \mid m, N \in \mathbb{N}, \ 0 \le m \le q\lambda^N \}$.

We construct a simple Bratteli diagram B_0 and an ergodic probability invariant measure μ_0 such that $S(\mu_0) = S$. Then, on the base of B_0 , we construct Bratteli diagrams B_i with i minimal components and full measures μ_i homeomorphic to μ .

- **2**. Let $\lambda \in \mathbb{R} \setminus \mathbb{Q}$. We construct a stationary Bratteli diagram B' such that:
- (i) there is an ergodic invariant probability good measure ν on B' such that $S(\nu) = S(\mu)$;
- (ii) B' has one more minimal component in comparison with B