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Black-box optimization

Problem formulation:  min{f(x): x € Q}, where

m Q C R"is a closed bounded convex set (||x|| < R, x € Q),

m f is a closed convex function.

Main Assumptions: the classes of functional components

mC: |[VFX)| <L VxeQ,
m G [[VE(X) = V) < Mlx =yl YxyeQ,
m Convexity:  f(y) > f(x) + (VFf(x),y —x) Vx,y € Q.

Black-Box Assumption: Only (f(x;),Vf(x;)), i=1,...,N,
are available.
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Complexity results

Model of the objective function:  (provided by oracle)

m L)Y max [F(x) + (VF(x),x = x)] < f(x), ¥x€Q.

m G2 fy) < F)H(VF(x),y—x)+3Mlly—x|, ¥x,y € Q.

All methods use only this information.

Complexity Theory (Nemirovskii, Yudin 1977): # of oracle calls

Problem class Limit for calls Lower bound
Ci: VIO <L < O(n) O (L’R?/&)
Co: V2O <M < 0(n) O (MY2R/V/2)
Ca: IVFOII<L > O(n) O (nIn[LR/€])

The bounds are exact!

Yu. Nesterov Advances in Structural Convex Optimization 4/23



Worst functions in the world

Yu. Nesterov Advances in Structural Convex Optimization 5/23



Worst functions in the world

Class C1, bounded gradient.

f(x)=L- max x/), Q= {x:]|x|| <R}

1<i<n

Yu. Nesterov Advances in Structural Convex Optimization



Worst functions in the world

Class C1, bounded gradient.

f(x)=L- max x/), Q= {x:]|x|| <R}

1<i<n

Class C», bounded Hessian.

n—1 . .
Flx) = M [(Xu))z + 8 () = RO 4 ()2 - 2X(1):| -

Yu. Nesterov Advances in Structural Convex Optimization



Worst functions in the world

Class C1, bounded gradient.

f(x)=L- max x/), Q= {x:]|x|| <R}

1<i<n

Class C», bounded Hessian.

n—1 . .
Flx) = M [(Xu))z + 8 () = RO 4 ()2 - 2X(1):| -

m Being in a Black Box, these problems are difficult for all
methods.

Yu. Nesterov Advances in Structural Convex Optimization



Worst functions in the world

Class C1, bounded gradient.

f(x)=L- max x1), Q= {x:]|x]| <R}

1<i<n

Class C», bounded Hessian.

n—1 . .
Flx) = M [(Xu))z + 8 () = RO 4 ()2 - 2X(1):| -

m Being in a Black Box, these problems are difficult for all
methods.

m They become trivial when we can see their structure.

Yu. Nesterov Advances in Structural Convex Optimization



Worst functions in the world

Class C1, bounded gradient.

— /. () =[x
f(x)=L 12?§an’ Q= {x:||x]| < R}.

Class C», bounded Hessian.

n—1 . .
Flx) = M [(Xu))z + 8 () = RO 4 ()2 - 2X(1):| -

m Being in a Black Box, these problems are difficult for all
methods.
m They become trivial when we can see their structure.

m The structure is always visible when we code the problem.

Yu. Nesterov Advances in Structural Convex Optimization




Worst functions in the world

Class C1, bounded gradient.

— /. () =[x
f(x)=L 12?§an’ Q= {x:||x]| < R}.

Class C», bounded Hessian.

n—1 . .
Flx) = M [(Xu))z + 8 () = RO 4 ()2 - 2X(1):| -

m Being in a Black Box, these problems are difficult for all
methods.
m They become trivial when we can see their structure.

m The structure is always visible when we code the problem.

Can we help the methods?
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First ring:  Theory of self-concordant functions
(N. & Nemirovskii, 1987-1990)

Model of the problem:  min{(c,x): x € Q}.

Closed convex set Q is endowed with self-concordant barrier F(x):
m D3F(x)[h, b, h] < 2 (D2F(x)[h, 1])** Vx €intQ,he R,
m (VF(x),h)? <v-D?F(x)[h,h] Vx €int@,he R".

The value v > 1 is called the parameter of the barrier.

Complexity of finding e-solution:

O(v'/?1n £) iterations of Newton method.

(This is a Black-Box method.)

How wide is the application field?
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Applicability of the theory

Universal barrier function

fo(x) =k -InVol P(x), P(x)={s: (s,y —x) <1Vye€ Q}.

For some x > 0, this function is O(n)-s.c. barrier for Q.
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Applicability of the theory

Universal barrier function

fo(x) =k -InVol P(x), P(x)={s: (s,y —x) <1Vye Q}.
For some x > 0, this function is O(n)-s.c. barrier for Q.

Hence, the convex problems can be solved in O(y/nin Z) iterations.
(Impossible in the Black-Box framework!)

Conclusion

m It is possible to construct s.c.b. (with appropriate v) for all
convex sets with known structure.

m These actions violate the Black-Box assumption for the initial
problem.
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How to use this theory?

We need to work directly with the elements of the problem.
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min 7 +
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st. 21 > |[Ax—b|2, T > i
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How to use this theory?

We need to work directly with the elements of the problem.
Example:  min 3||Ax — b||> + |[x||1.

Rewrite the problem in the standard form:

min 7 +
n
st. 21 > |[Ax—b|2, T > i

y,'2|X,'|, i:].,...,n.

Construct the s.c.barrier
n n
—In (271 — |[Ax — b||?) — In <72 — Z y;) - Z In (y? — x?)

with parameter v = 2n + 2.
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For ¢ = 10~2 the factor varies from 10 to 10000.
Can we decrease the gap?
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X€

Complexity: O <L26§2> calls of oracle.

For a simpler problem (f € C») we have O (Mell//iR> calls.

For ¢ = 10~2 the factor varies from 10 to 10000.
Can we decrease the gap? (No way in BB-framework!)

Simple Theorem. For f € C1(R") there exists f. € C2(R"):

m f(x) < f(x) < f(x) + € for any x € R",

Yu. Nesterov Advances in Structural Convex Optimization



Second ring: Smoothing technique (2005)

The most important problem: miS f(x) with f € Cy.
X€

Complexity: O <L26§2> calls of oracle.

For a simpler problem (f € C») we have O (Mell//iR> calls.

For ¢ = 10~2 the factor varies from 10 to 10000.
Can we decrease the gap? (No way in BB-framework!)

Simple Theorem. For f € C1(R") there exists f. € C2(R"):

m f(x) < f(x) < f(x) + € for any x € R",

Can we do this in a systematic way?

Yu. Nesterov Advances in Structural Convex Optimization



Second ring: Smoothing technique (2005)

The most important problem: miS f(x) with f € Cy.
X€

Complexity: O <L26§2> calls of oracle.

For a simpler problem (f € C») we have O (Mell//iR> calls.

For ¢ = 10~2 the factor varies from 10 to 10000.
Can we decrease the gap? (No way in BB-framework!)

Simple Theorem. For f € C1(R") there exists f. € C2(R"):

m f(x) < f(x) < f(x) + € for any x € R",

Can we do this in a systematic way? (Then we pass to O (:£).)
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Max-representation of the objective function

Let Qs C E4 be a bounded convex dual feasible set and ¢(u) be a
convex function. Consider

Fx) = max{(Ax = b.u) — o(u)}
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convex function. Consider
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Let us choose prox-function d(u) (strongly convex and positive)
and define

ful) = max{{Ax—b,u) = ¢(u) —p-d(u)}, p>0.
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Max-representation of the objective function

Let Qs C E4 be a bounded convex dual feasible set and ¢(u) be a
convex function. Consider

Fx) = max{(Ax = b.u) — o(u)}

Let us choose prox-function d(u) (strongly convex and positive)
and define

ful) = max{{Ax—b,u) = ¢(u) —p-d(u)}, p>0.

Denoting Dy = max d(u), we get  f(x) > f,(x) > f(x)— pDg.
ue Wy

Note: M(f,) = = ||A||%, with ||A| = max Ax, u
() = AR, with 4] = max _ (Ax.u)

Function f, must be computable!
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Example

Consider f(x) =  Max [(aj, x) — bY)].
S/sm
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Example

Consider f(x) =  Max [(aj, x) — bY)].
S/sm

1. Eg=R™, ¢(u) = (b, u),

m

f(x) = max ¢ S ul[(aj,x) — b 3 [uW)] <15,
ueRrRm j=1 j=1
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Example

Consider f(x) = 1r<—nla<x [(aj, x) — bY)].

1. Eg=R™, ¢(u) = (b, u),
f(x) = max{zum[@, x) - bU ;'"1|u<f>|31}.

ueRm™ j=1
2. Eg = R?>™, ¢(u) is a linear, Qg is a simplex:

f(x) = max{z( ) — U9 [(aj, x) — b)) - é(u@ﬂ?)-ﬂ-

UGR_%_’" j=
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Application: Consider mT f(x)
XeA,

where A, € R" is a standard simplex.
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Application: Consider mT f(x)
XeA,

where A, € R" is a standard simplex. For the standard
subgradient method, we can guarantee

f(xy) — f* < 7‘/7/{;‘%1 . mi?ix|aj(-')\.
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Note that f(x) = max (Au, x). For the smoothing technique, let
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us use the entropy function:
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Application: Consider mT f(x
XeA,

where A, € R" is a standard simplex. For the standard
subgradient method, we can guarantee

f(xy) — f* < 7‘/7/{;‘%1 . mi?ix|aj(-')\.

Note that f(x) = max (Au, x). For the smoothing technique, let
uchm

us use the entropy function:

du) = Inm+ S uDnu®  uve A,
i=1

Then f,(x) = pln [; > e<"f’X>/“] , and we obtain the following
rate of convergence:
f(XN) —f* < 4\/InNn-|nm . (’)|

max |a
i,jX| J
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Modern Gradient Methods: primal scheme
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Modern Gradient Methods: primal scheme

Problem: f(x) — miS, where f is convex function and
X€

|IVF(x) = VF(y)||* < M(f)||x —y| Vx,y € Q (closed, convex).
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Modern Gradient Methods: primal scheme

Problem: f(x) — miS, where f is convex function and
X€

|IVF(x) = VF(y)||* < M(f)||x —y| Vx,y € Q (closed, convex).

Primal Gradient Method (PGM):  xx41 = T(xk), where

T(xx) = arg minyeo[f(xk) + (F(xk), x — xk) + %I\/I(f)”x — Xk”i]

2f(x)
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Therefore (T (xk)) + 3M(F)llx* — T (xc)II?

2
< Fx) + (FOx), x* = xi) + M — |2 < e MO e — 2.
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Modern Gradient Methods: primal scheme

Problem: f(x) — miS, where f is convex function and
X€

|IVF(x) = VF(y)||* < M(f)||x —y| Vx,y € Q (closed, convex).

Primal Gradient Method (PGM):  xx41 = T(xk), where

T(xx) = arg minyeo[f(xk) + (F(xk), x — xk) + %I\/I(f)”x — Xk”i]

2f(x)

Therefore (T (xx)) + %M( )| x* — (xk)H2
< F k) + (FOxk), x = xie) + M e — i |2 < £+ MO s — |2
Rate of convergence:

k
* M(f * * * M()||x* —xol|?
UORISE MO |xr — 302 = F(xg) — £+ < MOl
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Modern Gradient Methods: primal scheme

Problem: f(x) — miS, where f is convex function and
X€

|IVF(x) = VF(y)||* < M(f)||x —y| Vx,y € Q (closed, convex).

Primal Gradient Method (PGM):  xx41 = T(xk), where

T(xx) = arg minyeo[f(xk) + (F(xk), x — xk) + %I\/I(f)”x — Xk”i]

2f(x)

Therefore (T (xx)) + %M( )| x* — (xk)H2
< F k) + (FOxk), x = xie) + M e — i |2 < £+ MO s — |2
Rate of convergence:

k
* M(f * * * M()||x* —xol|?
UORISE MO |xr — 302 = F(xg) — £+ < MOl

Main feature: moderate local improvement.
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Modern Gradient Methods: primal scheme

Problem: f(x) — miS, where f is convex function and
X€

|IVF(x) = VF(y)||* < M(f)||x —y| Vx,y € Q (closed, convex).

Primal Gradient Method (PGM):  xx41 = T(xk), where

T(xx) = arg minyeo[f(xk) + (F(xk), x — xk) + %I\/I(f)”x — Xk”i]

>f(x)
Therefore  f(T(xk)) + 3 M(f)||x* — T ()|
< F(x) + {F O X = x) + S =2 < £ R = x 2
Rate of convergence:

k
* M(f * * * M()||x* —xol|?
UORISE MO |xr — 302 = F(xg) — £+ < MOl

Main feature: moderate local improvement.
Interpretation:
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Modern Gradient Methods: primal scheme

Problem: f(x) — miS, where f is convex function and
X€

|IVF(x) = VF(y)||* < M(f)||x —y| Vx,y € Q (closed, convex).

Primal Gradient Method (PGM):  xx41 = T(xk), where

T(xx) = arg minyeo[f(xk) + (F(xk), x — xk) + %I\/I(f)”x — Xk”i]

>f(x)
Therefore  f(T(xk)) + 3 M(f)||x* — T ()|
< F(x) + {F O X = x) + S =2 < £ R = x 2
Rate of convergence:

k
* M(f * * * M()||x* —xol|?
UORISE MO |xr — 302 = F(xg) — £+ < MOl

Main feature: moderate local improvement.
Interpretation: Practitioners, Industry, etc.

Yu. Nesterov Advances in Structural Convex Optimization 13/23



Dual Gradient Method (DGM)
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Dual Gradient Method (DGM)

s = argmig {n(x) = S 17() + (7()ox = )] + 20—l

1=

k
Theorem: Let x; = T(v;). Then 3. [f(x;) — ] < M3+ — x||2.
i=0
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Dual Gradient Method (DGM)

s = arg min {wk( )= 1) + () x — vi)] + M0 — xO||2}

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,

=0
Proof: 1. Let us prove by induction that Z f(xi) < ¢
i=0
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Dual Gradient Method (DGM)

s = arg min {wk( )= 1) + () x — vi)] + M0 — xO||2}

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Z f(xi) < ¢ Indeed,
=0
Viy1(x) = (%) + F(Vier1) + (F(Vier1)s X — Viera)
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Dual Gradient Method (DGM)

s = arg min {wk( )= 1) + () x — vi)] + M0 — xO||2}

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Z f(xi) < ¢ Indeed,

Ver1 () = () + F(Vier) + (F(Vier1)sx — Viera)
> 4+ MO | — 1|2 4 F(viesn) + (F(vkpn)s X — Vi)
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Zof(x,) < 9;. Indeed,
Vi1 (%) = () + F (Vi) + (F(Vies1)s X — Vie)
> o+ M0 x = viea |2+ F(virn) + (F(vira) X = Vi)

> é}f(xi) + f(Xk+1)-
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Zof(x,) < 9;. Indeed,
Vi1 (%) = () + F (Vi) + (F(Vies1)s X — Vie)
2 U+ H5 = vl 4 (Vi) + (P x = i)
> Z F(xi) + f(Xi41)-
2. Note that v < (k+1)f* + éf)Hx* — xol|%. O
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Zof(x,) < 9;. Indeed,
Yier1(x) = Vr(x) + F(Vier) + (F(Viep1) X = viey)
2 U+ H5 = vl 4 (Vi) + (P x = i)
> Z F(xi) + f(Xet1)-
2. Note that v < (k+1)f* + éf)Hx* — xol|%. O
This method: 1. Updates the model.
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then Z[f(x,) £ < M| 3 — 5|2,
Proof: 1. Let us prove by mductlonothat > f(xi) < 9. Indeed,
Gk (x) = k() + F(Vhg1) + (F(vira), X = Vi)
2 U+ H5 = vl 4 (Vi) + (P x = i)
> Z F(xi) + f(Xet1)-
2. Note that v < (k+1)f* + éf)Hx* — xol|%. O
This method: 1. Updates the model. 2. Is not monotone.
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Zof(x,) < 9;. Indeed,
Vi1 (%) = () + F (Vi) + (F(Vies1)s X — Vie)
2 U+ H5 = vl 4 (Vi) + (P x = i)
> Z F(xi) + f(Xi41)-
2. Note that v < (k+1)f* + éf)Hx* — xol|%. O

This method: 1. Updates the model. 2. Is not monotone.
3. Does not need x;.
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Zof(x,) < 9;. Indeed,
Vi1 (%) = () + F (Vi) + (F(Vies1)s X — Vie)
2 U+ H5 = vl 4 (Vi) + (P x = i)
> Z F(xi) + f(Xi41)-
2. Note that v < (k+1)f* + éf)Hx* — xol|%. O

This method: 1. Updates the model. 2. Is not monotone.
3. Does not need x;. 4. Has the same efficiency as PGM.
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Zof(x,) < 9;. Indeed,
Vi1 (%) = () + F (Vi) + (F(Vies1)s X — Vie)
2 U+ H5 = vl 4 (Vi) + (P x = i)
> Z F(xi) + f(Xi41)-
2. Note that v < (k+1)f* + éf)Hx* — xol|%. O

This method: 1. Updates the model. 2. Is not monotone.
3. Does not need x;. 4. Has the same efficiency as PGM.

Interpretation:
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Zof(x,) < 9;. Indeed,
Vi1 (%) = () + F (Vi) + (F(Vies1)s X — Vie)
2 U+ H5 = vl 4 (Vi) + (P x = i)
> Z F(xi) + f(Xi41)-
2. Note that v < (k+1)f* + éf)Hx* — xol|%. O

This method: 1. Updates the model. 2. Is not monotone.
3. Does not need x;. 4. Has the same efficiency as PGM.

Interpretation: Academic Science.
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Dual Gradient Method (DGM)

s = argmig { ) = L) + (7). x = vl + 4020~ ol

Theorem: Let x; = T(v;). Then z[f(x,) £ < M| 3 — 5|2,
i=0
Proof: 1. Let us prove by induction that Zof(x,) < 9;. Indeed,
Vi1 (%) = () + F (Vi) + (F(Vies1)s X — Vie)
2 U+ H5 = vl 4 (Vi) + (P x = i)
> Z F(xi) + f(Xi41)-
2. Note that v < (k+1)f* + éf)Hx* — xol|%. O

This method: 1. Updates the model. 2. Is not monotone.
3. Does not need x;. 4. Has the same efficiency as PGM.

Interpretation: Academic Science.

Can we combine the primal and dual strategy?
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Fast Gradient Methods (N. 1984-2005)

(Assume Q@ = R")
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Fast Gradient Methods (N. 1984-2005)
(Assume Q@ = R")

Estimate sequences: {1x(x)}, {ak}, {xx} such that
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Fast Gradient Methods (N. 1984-2005)
(Assume Q@ = R")

Estimate sequences: {1x(x)}, {ak}, {xx} such that

b)) = 3 alf() + (VA x — yid] + Hx — o2

=
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Fast Gradient Methods (N. 1984-2005)
(Assume Q@ = R")

Estimate sequences: {1x(x)}, {ak}, {xx} such that

b)) = 3 alf() + (VA x — yid] + Hx — o2

=

o def . &
Akf(Xk) S wk = min ¢k(x). (Ak = Z a;.)

xeRn i=0

Yu. Nesterov Advances in Structural Convex Optimization



Fast Gradient Methods (N. 1984-2005)
(Assume Q@ = R")

Estimate sequences: {1x(x)}, {ak}, {xx} such that

k
W) = 3 alf() + (V). x — vl + Bllx — ol
k
At(s) < 0 min ). (A= 2 o)
xXER" i=0

Note: ¢k(X*) < Apf* + %HX* — X0||2 = f(Xk) —f*< HX*2;‘);0||2_

Yu. Nesterov Advances in Structural Convex Optimization



Fast Gradient Methods (N. 1984-2005)
(Assume Q@ = R")

Estimate sequences: {1x(x)}, {ak}, {xx} such that

b)) = 3 alf() + (VA x — yid] + Hx — o2

1=

k
Akf(Xk) < wt d:ef Xrgi’{,'ln ¢k(x). (Ak = Z a;.)

i=0

Note: ¢k(X*) < Apf* + %HX* — X0||2 = f(Xk) —f*< HX*2;‘);0||2_

Main properties: Let v, = arg mkn Ui (x).
xeR"
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Fast Gradient Methods (N. 1984-2005)
(Assume Q@ = R")

Estimate sequences: {1k(x)}, {ax}, {xx} such that

b)) = 3 alf() + (VA x — yid] + Hx — o2

1=

k
Akf(Xk) S wz d:ef min ¢k(X). (Ak = Z a;.)
XERN i=0
Note: ¢y (x*) < Acf* + 3[x* — x|l = F(x0) — < 0l
Main properties: Let v, = arg mkn Ui (x).
xeR"

A1 Vi HARXK

a1 IVF(yis)l2
If ki1 = T A tAC then Zblt—i—l > Ak+1f(}/k+1) - Mf
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Fast Gradient Methods (N. 1984-2005)
(Assume Q@ = R")

Estimate sequences: {1k(x)}, {ax}, {xx} such that

b)) = 3 alf() + (VA x — yid] + Hx — o2

1=

k
Akf(Xk) S wz d:ef min ¢k(X). (Ak = Z a;.)
XERN i=0
Note: ¢y (x*) < Acf* + 3[x* — x|l = F(x0) — < 0l
Main properties: Let v, = arg mkn Ui (x).
xeR"

Ak Vet ARXk
If yy1 = m- then ¢y, > A1 f(Yir1) —

2
If Xk+1 = yh41 — V’;%;“, then f(yk+1) = f(Xkt1) + 7“%%@3)”*-

a1 V(i) 13
> :
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Algorithmic Scheme

Compute v, = arg mi? Yi(x).
xeR"
Assume that f(xx) < Aikwk(vk).
2

- % 1 < Lok
F|nd ak_l,_]_ . ak+l+Ak — M(f) = f(Xk+1) — Ak+1wk+1'

k41 Vi +AkXk

akr1tAk VA )
Compute xx11 = Yki1 — #

Define Yk+1 =

ok w -
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Algorithmic Scheme

Compute v, = arg mi? Yi(x).
xeR"
Assume that f(xx) < Aikwk(vk).
2

- % 1 < Lok
F|nd ak_l,_]_ . ak+l+Ak — M(f) = f(Xk+1) — Ak+1¢k+1'

A1 VT ARXK

a+1+Ak V-f( |
Compute xx11 = Yki1 — #

Define Yk+1 =

ok w -

Note: a(t) ~ A'(t). Hence, A'(t)

Il
/N
=
2
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Algorithmic Scheme

Compute v, = arg mi? Yi(x).
xeR"
Assume that f(xx) < Aikwk(vk).
2

- % 1 < Lok
F|nd ak_l,_]_ . ak+l+Ak — M(f) = f(Xk+1) — Ak+1¢k+1'

A1 VT ARXK

a+1+Ak V-f( |
Compute xx11 = Yki1 — #

Define Yk+1 =

ok w -

Note: a(t) ~ A'(t). Hence, A'(t)

Il
/N
=
2

Interpretation:
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Algorithmic Scheme

Compute v, = arg mi? Yi(x).
xeR"
Assume that f(xx) < Aikwk(vk).
2

- % 1 < Lok
F|nd ak_l,_]_ . ak+l+Ak — M(f) = f(Xk+1) — Ak+1¢k+1'

A1 VT ARXK

a+1+Ak V-f( |
Compute xx11 = Yki1 — M)('ﬁl .

Define Yk+1 =

ok w -

1/2
Note: a(t) ~ A'(t). Hence, A'(t) = (%) / = A(t) ~

Interpretation: Efficient collaboration of Theory and Practice
organized by the wise government.

Yu. Nesterov Advances in Structural Convex Optimization



Algorithmic Scheme

Compute v, = arg min ¥, (x).
XERN

Assume that f(xx) < Aikwk(vk).
2

- % 1 < Lok
F|nd ak_l,_]_ . ak+l+Ak — M(f) = f(Xk+1) — Ak+1¢k+1'

A1 VT ARXK

a+1+Ak V-f( |
Compute xx11 = Yki1 — M)('ﬁl .

Define Yk+1 =

ok w -

1/2
Note: a(t) ~ A'(t). Hence, A'(t) = (%) / = At) ~

Interpretation: Efficient collaboration of Theory and Practice
organized by the wise government.

Expected outcome: achieve the maximal performance in 10 years
instead of 100.
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Third ring: Minimization of Composite Functions (2007)
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Third ring: Minimization of Composite Functions (2007)

Problem formulation:  min{¢(x) e f(x)+WV(x):x e R"},

m function f is differentiable (f € Cp),

m function V is closed and convex on R".
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Third ring: Minimization of Composite Functions (2007)

Problem formulation:  min{¢(x) e f(x)+WV(x):x e R"},

m function f is differentiable (f € Cp),

m function V is closed and convex on R".

Note: in general f + WV ¢ C;.
(No complexity bounds in BB-framework!)
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Third ring: Minimization of Composite Functions (2007)

Problem formulation:  min{¢(x) e f(x)+WV(x):x e R"},

m function f is differentiable (f € Cp),
m function V is closed and convex on R".

Note: in general f + WV ¢ C;.
(No complexity bounds in BB-framework!)

Examples:

.w(x):{ 0, ifxeQ,

400, otherwise.
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Third ring: Minimization of Composite Functions (2007)

Problem formulation:  min{¢(x) e f(x)+WV(x):x e R"},

m function f is differentiable (f € Cp),
m function V is closed and convex on R".

Note: in general f + WV ¢ C;.
(No complexity bounds in BB-framework!)

Examples:

.w(x):{ 0, ifxeQ,

400, otherwise.
m V is a barrier function for Q.
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Third ring: Minimization of Composite Functions (2007)

Problem formulation:  min{¢(x) e f(x)+WV(x):x e R"},

m function f is differentiable (f € Cp),
m function V is closed and convex on R".

Note: in general f + WV ¢ C;.
(No complexity bounds in BB-framework!)

Examples:

.w(x):{ 0, ifxeQ,

400, otherwise.
m V is a barrier function for Q.

m WV is a simple nonsmooth function (e.g. ||x]1).
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Third ring: Minimization of Composite Functions (2007)

Problem formulation:  min{¢(x) e f(x)+WV(x):x e R"},

m function f is differentiable (f € Cp),
m function V is closed and convex on R".

Note: in general f + WV ¢ C;.
(No complexity bounds in BB-framework!)

Examples:

.w(x):{ 0, ifxeQ,

400, otherwise.
m V is a barrier function for Q.
m WV is a simple nonsmooth function (e.g. ||x]1).
Main Assumption: The problem mXin[q(x) + W(x)] s easy.

(g is a “simple” quadratic function.)
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Modified tools: Composite Gradient Mapping

For any y € dom W define

mi(y;x) = fly)+(VF(y),x—y)+ 5lx = | + ¥(x),
Tuly) = arg min my(y;x),

where L is a positive constant.
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Modified tools: Composite Gradient Mapping

For any y € dom W define

mi(y;x) = fly)+(VF(y),x—y)+ 5lx = | + ¥(x),
Tuly) = arg min my(y;x),

where L is a positive constant. Then the direction

gly) = L-(y—Tuly))

is a constrained analogue of the gradient of smooth function.
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Modified tools: Composite Gradient Mapping

For any y € dom W define

mi(y;x) = fly)+(VF(y),x—y)+ 5lx = | + ¥(x),
Tuly) = arg min my(y;x),

where L is a positive constant. Then the direction

gly) = L-(y=Tuly))
is a constrained analogue of the gradient of smooth function.
Main property: If L > M(f) then
$(y) = S(TL(y)) = 5 llec(y)]>-
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Basic Gradient Methods for Composite Functions
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Basic Gradient Methods for Composite Functions

Primal Gradient Method

Consider the method:  xx41 = Tpy(r)(xk), kK > 0. Then

éw(x;)—cb*] < 2M(F)x* — xol2
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Basic Gradient Methods for Composite Functions

Primal Gradient Method

Consider the method:  xx41 = Tpy(r)(xk), kK > 0. Then

éw(x,-)—w] < 2M(F)x* — xol2

Dual Gradient Method. Consider the method

) k
Vil = argxrgwn{i/;k(x) = S [f(vi)+ (F(vi),x — vi) + V(x)]

1=
M(f
+ M0 x — x|}

k
Define X = TM(f)(Vi). Then Z[gb(x,) - d)*] < 2M(f)||X* — Xo||2.
i=0
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Basic Gradient Methods for Composite Functions

Primal Gradient Method

Consider the method:  xx41 = Tpy(r)(xk), kK > 0. Then

éw(x,-)—w] < 2M(F)x* — xol2

Dual Gradient Method. Consider the method

) k
Vil = argxrgwn{i/;k(x) = S [f(vi)+ (F(vi),x — vi) + V(x)]

1=
M(f
+ M0 x — x|}

k
Define X = TM(f)(Vi). Then Z[gb(x,) - d)*] < 2M(f)||X* — Xo||2.
i=0

Same as for ¥ = 0!
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Fast gradient methods for Composite Functions
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Fast gradient methods for Composite Functions

Main change: New definition of the model

b)) = io alF) + (F0).x — ) + W]+ Lx — ol 2.
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Fast gradient methods for Composite Functions

Main change: New definition of the model
Vk(x) = 2 ailf () + (F(xi), x = xi) + W(x)] + 5]1x — xol 2.
i=0
The scheme becomes as follows:

1. Compute v, = arg min z/A)k(x).
xER" )

i A 2
2. Compute ak /fqrom equation Actar . M(F)"
3. Define Yk = W and compute Xk+1 = TI\/I(f)(}/k)
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Fast gradient methods for Composite Functions

Main change: New definition of the model
Vk(x) = 2 ailf () + (F(xi), x = xi) + W(x)] + 5]1x — xol 2.
i=0
The scheme becomes as follows:

1. Compute v, = arg min z/A)k(x).
xER" )

i A 2
2. Compute ak /fqrom equation Actar . M(F)"
3. Define Yk = W and compute Xk+1 = TI\/I(f)(}/k)

Rate of convergence: ¢(xx) — ¢* < %W
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Fast gradient methods for Composite Functions

Main change: New definition of the model

b)) = io alF) + (F0).x — ) + W]+ Lx — ol 2.

The scheme becomes as follows:

1. Compute v, = arg min zf)k(x).
xERN "
2. Compute a, from equation ﬁ = %

3. Define yyx = W and compute xk11 = Tpyer) (Vi)

Rate of convergence: ¢(xx) — ¢* < %W

Example: ¢(x) = %HAX —b|I2+ > |x].
=1

1
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Conclusion
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Conclusion

For breaking the BB-limitations, optimization methods need help!
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Conclusion

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

m Interior-point methods. Rewrite the problem in a standard
form. Construct the s.c.barrier. Complexity: O (y/vInl).
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Conclusion

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

m Interior-point methods. Rewrite the problem in a standard
. . . 1
form. Construct the s.c.barrier. Complexity: O (y/vIn ).
m Smoothing technique. Find a reasonable max-representation
of the objective with computable smooth approximation.
Complexity: O (1).
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Conclusion

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

m Interior-point methods. Rewrite the problem in a standard
form. Construct the s.c.barrier. Complexity: O (y/vInl).

m Smoothing technique. Find a reasonable max-representation
of the objective with computable smooth approximation.
Complexity: O (1).

m Composite function. Find a possibility to minimize a bad

part of the objective. Complexity: O (6%)
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Conclusion

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

m Interior-point methods. Rewrite the problem in a standard
form. Construct the s.c.barrier. Complexity: O (y/vInl).

m Smoothing technique. Find a reasonable max-representation
of the objective with computable smooth approximation.
Complexity: O (1).

m Composite function. Find a possibility to minimize a bad

part of the objective. Complexity: O (6%)

And some others!
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How to use the structure?
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How to use the structure?

1. Fix analytical form of functional components. (Too fragile!)

Yu. Nesterov Advances in Structural Convex Optimization 22/23



How to use the structure?

1. Fix analytical form of functional components. (Too fragile!)

2. Reformulations.

P— ... — (", x").

Yu. Nesterov Advances in Structural Convex Optimization 22/23



How to use the structure?

1. Fix analytical form of functional components. (Too fragile!)

2. Reformulations.

P— ... — (", x").

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

Yu. Nesterov Advances in Structural Convex Optimization



How to use the structure?

1. Fix analytical form of functional components. (Too fragile!)

2. Reformulations.

P— ... — (", x").

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

Check if A is symmetric and positive definite.

Yu. Nesterov Advances in Structural Convex Optimization



How to use the structure?

1. Fix analytical form of functional components. (Too fragile!)

2. Reformulations.

P— ... — (", x").

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

Check if A is symmetric and positive definite.

H Compute Cholesky factorization of this matrix: A = LLT,
where L is a lower-triangular matrix.

Yu. Nesterov Advances in Structural Convex Optimization



How to use the structure?

1. Fix analytical form of functional components. (Too fragile!)

2. Reformulations.

P— ... — (", x").

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

Check if A is symmetric and positive definite.

H Compute Cholesky factorization of this matrix: A = LLT,
where L is a lower-triangular matrix.

Solve the systems Ly = b, LT x = y by sequential elimination
of variables.
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How to discover a new method?

Golden Rules

m Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

m Describe the transformation rules for converting the initial
problem into desired form.

m Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for
m IPM: Newton for s.c.functions + rules for constructing s.c.b.
m Smoothing: Fast GM + max representation.

m Composite functions: Fast GM + exact minimization of
difficult parts of the objective.
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