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Black-box optimization

Problem formulation: min{f (x) : x ∈ Q}, where

Q ⊂ Rn is a closed bounded convex set (‖x‖ ≤ R, x ∈ Q),

f is a closed convex function.

Main Assumptions: the classes of functional components

C1 : ‖∇f (x)‖ ≤ L ∀x ∈ Q,

C2 : ‖∇f (x)−∇f (y)‖ ≤ M‖x − y‖ ∀x , y ∈ Q,

Convexity: f (y) ≥ f (x) + 〈∇f (x), y − x〉 ∀x , y ∈ Q.

Black-Box Assumption: Only (f (xi ),∇f (xi )), i = 1, . . . ,N,
are available.
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Complexity results

Model of the objective function: (provided by oracle)

Lk(x)
def
= max

1≤i≤k
[f (xi ) + 〈∇f (xi ), x − xi 〉] ≤ f (x), ∀x ∈ Q.

C2 : f (y) ≤ f (x)+〈∇f (x), y−x〉+ 1
2M‖y−x‖2, ∀x , y ∈ Q.

All methods use only this information.

Complexity Theory (Nemirovskii, Yudin 1977): # of oracle calls

Problem class Limit for calls Lower bound

C1 : ‖∇f (·)‖ ≤ L ≤ O(n) O
(
L2R2/ε2

)
C2 : ‖∇2f (·)‖ ≤ M ≤ O(n) O

(
M1/2R/ε1/2

)
C3 : ‖∇f (·)‖ ≤ L ≥ O(n) O (n ln[LR/ε])

The bounds are exact!
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Worst functions in the world

Class C1, bounded gradient.

f (x) = L · max
1≤i≤n

x (i), Q = {x : ‖x‖ ≤ R}.

Class C2, bounded Hessian.

f (x) = M
8

[
(x (1))2 +

n−1∑
i=1

(x (i) − x (i+1))2 + (x (n))2 − 2x (1)

]
.

Being in a Black Box, these problems are difficult for all
methods.

They become trivial when we can see their structure.

The structure is always visible when we code the problem.

Can we help the methods?
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First ring: Theory of self-concordant functions
(N. & Nemirovskii, 1987-1990)

Model of the problem: min{〈c , x〉 : x ∈ Q}.

Closed convex set Q is endowed with self-concordant barrier F (x):

D3F (x)[h, h, h] ≤ 2
(
D2F (x)[h, h]

)3/2 ∀x ∈ int Q, h ∈ Rn,

〈∇F (x), h〉2 ≤ ν · D2F (x)[h, h] ∀x ∈ int Q, h ∈ Rn.

The value ν ≥ 1 is called the parameter of the barrier.

Complexity of finding ε-solution:

O(ν1/2 ln ν
ε ) iterations of Newton method.

(This is a Black-Box method.)

How wide is the application field?
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Applicability of the theory

Universal barrier function

fQ(x) = κ · ln Vol P(x), P(x) = {s : 〈s, y − x〉 ≤ 1 ∀y ∈ Q}.

For some κ > 0, this function is O(n)-s.c. barrier for Q.

Hence, the convex problems can be solved in O(
√

n ln n
ε ) iterations.

(Impossible in the Black-Box framework!)

Conclusion

It is possible to construct s.c.b. (with appropriate ν) for all
convex sets with known structure.

These actions violate the Black-Box assumption for the initial
problem.
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How to use this theory?

We need to work directly with the elements of the problem.

Example: min
x

1
2‖Ax − b‖2 + ‖x‖1.

1 Rewrite the problem in the standard form:

min τ1 + τ2

s.t. 2τ1 ≥ ‖Ax − b‖2, τ2 ≥
n∑

i=1
yi ,

yi ≥ |xi |, i = 1, . . . , n.

2 Construct the s.c.barrier

− ln
(
2τ1 − ‖Ax − b‖2

)
− ln

(
τ2 −

n∑
i=1

yi

)
−

n∑
i=1

ln
(
y2
i − x2

i

)
with parameter ν = 2n + 2.
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Second ring: Smoothing technique (2005)

The most important problem: min
x∈Q

f (x) with f ∈ C1.

Complexity: O
(

L2R2

ε2

)
calls of oracle.

For a simpler problem (f ∈ C2) we have O
(

M1/2R
ε1/2

)
calls.

For ε = 10−2 the factor varies from 10 to 10000.
Can we decrease the gap? (No way in BB-framework!)

Simple Theorem. For f ∈ C1(Rn) there exists fε ∈ C2(Rn):

f (x) ≤ fε(x) ≤ f (x) + ε for any x ∈ Rn,

M(fε) = 1
2εL

2(f ).

Can we do this in a systematic way? (Then we pass to O
(

LR
ε

)
.)
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Max-representation of the objective function

Let Qd ⊆ Ed be a bounded convex dual feasible set and φ(u) be a
convex function. Consider

f (x) = max
u∈Qd

{〈Ax − b, u〉 − φ(u)},

Let us choose prox-function d(u) (strongly convex and positive)
and define

fµ(x) = max
u∈Qd

{〈Ax − b, u〉 − φ(u)− µ · d(u)}, µ > 0.

Denoting Dd = max
u∈Qd

d(u), we get f (x) ≥ fµ(x) ≥ f (x)− µDd .

Note: M(fµ) = 1
2µ‖A‖

2, with ‖A‖ = max
‖x‖≤1,‖u‖≤1

〈Ax , u〉.

Function fµ must be computable!
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Example

Consider f (x) = max
1≤j≤m

|〈aj , x〉 − b(j)|.

1. Ed = Rm, φ(u) = 〈b, u〉,

f (x) = max
u∈Rm

{
m∑

j=1
u(j)[〈aj , x〉 − b(j)] :

m∑
j=1
|u(j)| ≤ 1

}
.

2. Ed = R2m, φ(u) is a linear, Qd is a simplex:

f (x) = max
u∈R2m

+

{
m∑

j=1
(u

(j)
1 − u

(j)
2 ) · [〈aj , x〉 − b(j)] :

m∑
j=1

(u
(j)
1 + u

(j)
2 ) = 1}.
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Application: Consider min
x∈∆n

[
f (x)

def
= max

1≤j≤m
〈aj , x〉

]
,

where ∆n ∈ Rn is a standard simplex.

For the standard
subgradient method, we can guarantee

f (xN)− f ∗ ≤
√

ln n√
N+1
·max

i ,j
|a(i)

j |.

Note that f (x) = max
u∈∆m

〈Au, x〉. For the smoothing technique, let

us use the entropy function:

d(u) = ln m +
n∑

i=1
u(i) ln u(i), u ∈ ∆m.

Then fµ(x) = µ ln

[
1
m

m∑
j=1

e〈aj ,x〉/µ

]
, and we obtain the following

rate of convergence:

f (xN)− f ∗ ≤ 4
√

ln n·ln m
N ·max

i ,j
|a(i)

j |.
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Modern Gradient Methods: primal scheme

Problem: f (x) → min
x∈Q

, where f is convex function and

‖∇f (x)−∇f (y)‖∗ ≤ M(f )‖x − y‖ ∀x , y ∈ Q (closed, convex).

Primal Gradient Method (PGM): xk+1 = T (xk), where

T (xk) = arg minx∈Q [f (xk) + 〈f (xk), x − xk〉+ 1
2M(f )‖x − xk‖2︸ ︷︷ ︸

≥f (x)

].

Therefore f (T (xk)) + 1
2M(f )‖x∗ − T (xk)‖2

≤ f (xk) + 〈f (xk), x∗ − xk〉+ M(f )
2 ‖x

∗ − xk‖2 ≤ f ∗ + M(f )
2 ‖x

∗ − xk‖2.

Rate of convergence:
k∑

i=0
[f (xi )− f ∗] ≤ M(f )

2 ‖x
∗ − x0‖2 ⇒ f (x∗k )− f ∗ ≤ M(f )‖x∗−x0‖2

2(k+1) .

Main feature: moderate local improvement.
Interpretation: Practitioners, Industry, etc.
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Dual Gradient Method (DGM)

vk+1 = arg min
x∈Q

{
ψk(x) ≡

k∑
i=0

[f (vi ) + 〈f (vi ), x − vi 〉] + M(f )
2 ‖x − x0‖2

}
Theorem: Let xi = T (vi ). Then

k∑
i=0

[f (xi )− f ∗] ≤ M(f )
2 ‖x

∗− x0‖2.

Proof: 1. Let us prove by induction that
k∑

i=0
f (xi ) ≤ ψ∗k . Indeed,

ψk+1(x) = ψk(x) + f (vk+1) + 〈f (vk+1), x − vk+1〉
≥ ψ∗k + M(f )

2 ‖x − vk+1‖2 + f (vk+1) + 〈f (vk+1), x − vk+1〉

≥
k∑

i=0
f (xi ) + f (xk+1).

2. Note that ψ∗k ≤ (k + 1)f ∗ + M(f )
2 ‖x

∗ − x0‖2.

This method: 1. Updates the model. 2. Is not monotone.
3. Does not need xi . 4. Has the same efficiency as PGM.

Interpretation: Academic Science.

Can we combine the primal and dual strategy?
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Fast Gradient Methods (N. 1984-2005)
(Assume Q ≡ Rn)

Estimate sequences: {ψk(x)}, {ak}, {xk} such that

ψk(x) =
k∑

i=0
ai [f (yi ) + 〈∇f (yi ), x − yi 〉] + 1

2‖x − x0‖2.

Ak f (xk) ≤ ψ∗k
def
= min

x∈Rn
ψk(x).

(
Ak =

k∑
i=0

ai .

)

Note: ψk(x∗) ≤ Ak f ∗ + 1
2‖x
∗ − x0‖2 ⇒ f (xk)− f ∗ ≤ ‖x

∗−x0‖2

2Ak
.

Main properties: Let vk = arg min
x∈Rn

ψk(x).

If yk+1 = ak+1vk+Akxk

ak+1+Ak
, then ψ∗k+1 ≥ Ak+1f (yk+1)− a2

k+1‖∇f (yk+1)‖2
∗

2 .

If xk+1 = yk+1 − ∇f (yk+1)
M(f ) , then f (yk+1) ≥ f (xk+1) + ‖∇f (yk+1)‖2

∗
2M(f ) .
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Algorithmic Scheme

1. Compute vk = arg min
x∈Rn

ψk(x).

2. Assume that f (xk) ≤ 1
Ak
ψk(vk).

3. Find ak+1 :
a2
k+1

ak+1+Ak
= 1

M(f ) .

4. Define yk+1 = ak+1vk+Akxk

ak+1+Ak
.

5. Compute xk+1 = yk+1 − ∇f (yk+1)
M(f ) .

⇒ f (xk+1) ≤ 1
Ak+1

ψ∗k+1.

Note: a(t) ≈ A′(t). Hence, A′(t) =
(

A(t)
M(f )

)1/2
⇒ A(t) ≈ t2

4M(f ) .

Interpretation: Efficient collaboration of Theory and Practice
organized by the wise government.

Expected outcome: achieve the maximal performance in 10 years
instead of 100.
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Third ring: Minimization of Composite Functions (2007)

Problem formulation: min{φ(x)
def
= f (x) + Ψ(x) : x ∈ Rn},

function f is differentiable (f ∈ C2),

function Ψ is closed and convex on Rn.

Note: in general f + Ψ 6∈ C1.
(No complexity bounds in BB-framework!)

Examples:

Ψ(x) =

{
0, if x ∈ Q,

+∞, otherwise.

Ψ is a barrier function for Q.

Ψ is a simple nonsmooth function (e.g. ‖x‖1).

Main Assumption: The problem min
x

[q(x) + Ψ(x)] is easy.

(q is a “simple” quadratic function.)
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Modified tools: Composite Gradient Mapping

For any y ∈ dom Ψ define

mL(y ; x) = f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2 + Ψ(x),

TL(y) = arg min
x∈Rn

mL(y ; x),

where L is a positive constant.

Then the direction

gL(y) = L · (y − TL(y))

is a constrained analogue of the gradient of smooth function.

Main property: If L ≥ M(f ) then

φ(y)− φ(TL(y)) ≥ 1
2L‖gL(y)‖2.
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Basic Gradient Methods for Composite Functions

Primal Gradient Method

Consider the method: xk+1 = TM(f )(xk), k ≥ 0. Then
k∑

i=0
[φ(xi )− φ∗] ≤ 2M(f )‖x∗ − x0‖2.

Dual Gradient Method. Consider the method

vk+1 = arg min
x∈Rn
{ψ̂k(x) ≡

k∑
i=0

[f (vi ) + 〈f (vi ), x − vi 〉+ Ψ(x)]

+M(f )
2 ‖x − x0‖2}.

Define xi = TM(f )(vi ). Then
k∑

i=0
[φ(xi )− φ∗] ≤ 2M(f )‖x∗ − x0‖2.

Same as for Ψ ≡ 0!
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Fast gradient methods for Composite Functions

Main change: New definition of the model

ψ̂k(x) =
k∑

i=0
ai [f (xi ) + 〈f (xi ), x − xi 〉+ Ψ(x)] + 1

2‖x − x0‖2.

The scheme becomes as follows:

1. Compute vk = arg min
x∈Rn

ψ̂k(x).

2. Compute ak from equation
a2
k

Ak+ak
= 2

M(f ) .

3. Define yk = Akxk+akvk
Ak+ak

and compute xk+1 = TM(f )(yk).

Rate of convergence: φ(xk)− φ∗ ≤ 2M(f )‖x0−x∗‖2

(k+1)2 .

Example: φ(x) = 1
2‖Ax − b‖2 +

n∑
i=1
|x (i)|.
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x∈Rn

ψ̂k(x).

2. Compute ak from equation
a2
k

Ak+ak
= 2

M(f ) .

3. Define yk = Akxk+akvk
Ak+ak

and compute xk+1 = TM(f )(yk).

Rate of convergence: φ(xk)− φ∗ ≤ 2M(f )‖x0−x∗‖2

(k+1)2 .

Example: φ(x) = 1
2‖Ax − b‖2 +

n∑
i=1
|x (i)|.
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Conclusion

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

Interior-point methods. Rewrite the problem in a standard
form. Construct the s.c.barrier. Complexity: O

(√
ν ln 1

ε

)
.

Smoothing technique. Find a reasonable max-representation
of the objective with computable smooth approximation.
Complexity: O

(
1
ε

)
.

Composite function. Find a possibility to minimize a bad

part of the objective. Complexity: O
(

1
ε1/2

)
.

And some others!
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How to use the structure?

1. Fix analytical form of functional components. (Too fragile!)

2. Reformulations.

P −→ . . . −→ (f ∗, x∗).

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

1 Check if A is symmetric and positive definite.

2 Compute Cholesky factorization of this matrix: A = LLT ,
where L is a lower-triangular matrix.

3 Solve the systems Ly = b, LT x = y by sequential elimination
of variables.
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How to discover a new method?

Golden Rules

Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

Describe the transformation rules for converting the initial
problem into desired form.

Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for

IPM: Newton for s.c.functions + rules for constructing s.c.b.

Smoothing: Fast GM + max representation.

Composite functions: Fast GM + exact minimization of
difficult parts of the objective.

Yu. Nesterov Advances in Structural Convex Optimization 23/23



How to discover a new method?

Golden Rules

Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

Describe the transformation rules for converting the initial
problem into desired form.

Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for

IPM: Newton for s.c.functions + rules for constructing s.c.b.

Smoothing: Fast GM + max representation.

Composite functions: Fast GM + exact minimization of
difficult parts of the objective.

Yu. Nesterov Advances in Structural Convex Optimization 23/23



How to discover a new method?

Golden Rules

Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

Describe the transformation rules for converting the initial
problem into desired form.

Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for

IPM: Newton for s.c.functions + rules for constructing s.c.b.

Smoothing: Fast GM + max representation.

Composite functions: Fast GM + exact minimization of
difficult parts of the objective.

Yu. Nesterov Advances in Structural Convex Optimization 23/23



How to discover a new method?

Golden Rules

Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

Describe the transformation rules for converting the initial
problem into desired form.

Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for

IPM: Newton for s.c.functions + rules for constructing s.c.b.

Smoothing: Fast GM + max representation.

Composite functions: Fast GM + exact minimization of
difficult parts of the objective.

Yu. Nesterov Advances in Structural Convex Optimization 23/23



How to discover a new method?

Golden Rules

Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

Describe the transformation rules for converting the initial
problem into desired form.

Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for

IPM: Newton for s.c.functions + rules for constructing s.c.b.

Smoothing: Fast GM + max representation.

Composite functions: Fast GM + exact minimization of
difficult parts of the objective.

Yu. Nesterov Advances in Structural Convex Optimization 23/23



How to discover a new method?

Golden Rules

Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

Describe the transformation rules for converting the initial
problem into desired form.

Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for

IPM: Newton for s.c.functions + rules for constructing s.c.b.

Smoothing: Fast GM + max representation.

Composite functions: Fast GM + exact minimization of
difficult parts of the objective.

Yu. Nesterov Advances in Structural Convex Optimization 23/23



How to discover a new method?

Golden Rules

Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

Describe the transformation rules for converting the initial
problem into desired form.

Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for

IPM: Newton for s.c.functions + rules for constructing s.c.b.

Smoothing: Fast GM + max representation.

Composite functions: Fast GM + exact minimization of
difficult parts of the objective.

Yu. Nesterov Advances in Structural Convex Optimization 23/23



How to discover a new method?

Golden Rules

Find a class of problems which can be solved very efficiently.
(e.g. the class of linear systems with triangular matrices.)

Describe the transformation rules for converting the initial
problem into desired form.

Describe the class of problems for which these transformation
rules are applicable.

We have seen how it works for

IPM: Newton for s.c.functions + rules for constructing s.c.b.

Smoothing: Fast GM + max representation.

Composite functions: Fast GM + exact minimization of
difficult parts of the objective.

Yu. Nesterov Advances in Structural Convex Optimization 23/23


	Black-Box optimization model and its complexity
	Theory of self-concordant functions
	Smoothing technique
	Modern theory of gradient methods
	Minimization of Composite Functions
	Conclusion: the way to succeed in Structural Optimization

