Recent advances in Structural Convex Optimization

Yurii Nesterov, CORE/INMA (UCL, Belgium)

December 7, 2010 (Fields Institute)

Outline

- 1 Black-Box optimization model and its complexity
- 2 Theory of self-concordant functions
- 3 Smoothing technique
- 4 Modern theory of gradient methods
- 5 Minimization of Composite Functions
- 6 Conclusion: the way to succeed in Structural Optimization

Problem formulation: $\min\{f(x): x \in Q\}$, where

- $Q \subset R^n$ is a closed bounded convex set $(||x|| \le R, x \in Q)$,
- *f* is a closed convex function.

Problem formulation: $\min\{f(x): x \in Q\}$, where

- $Q \subset R^n$ is a closed bounded convex set $(||x|| \le R, x \in Q)$,
- f is a closed convex function.

Main Assumptions: the classes of functional components

Problem formulation: $\min\{f(x): x \in Q\}$, where

- $Q \subset R^n$ is a closed bounded convex set $(||x|| \le R, x \in Q)$,
- f is a closed convex function.

Main Assumptions: the classes of functional components

Problem formulation: $\min\{f(x): x \in Q\}$, where

- $Q \subset R^n$ is a closed bounded convex set $(||x|| \le R, x \in Q)$,
- f is a closed convex function.

Main Assumptions: the classes of functional components

- C_2 : $\|\nabla f(x) \nabla f(y)\| \le M\|x y\| \quad \forall x, y \in Q$,

Problem formulation: $\min\{f(x): x \in Q\}$, where

- $Q \subset R^n$ is a closed bounded convex set $(||x|| \le R, x \in Q)$,
- f is a closed convex function.

Main Assumptions: the classes of functional components

- $C_1 : \|\nabla f(x)\| \le L \quad \forall x \in Q,$
- C_2 : $\|\nabla f(x) \nabla f(y)\| \le M\|x y\| \quad \forall x, y \in Q$,
- Convexity: $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle \quad \forall x, y \in Q$.

Problem formulation: $\min\{f(x): x \in \overline{Q}\}$, where

- $Q \subset R^n$ is a closed bounded convex set $(||x|| \le R, x \in Q)$,
- f is a closed convex function.

Main Assumptions: the classes of functional components

- C_2 : $\|\nabla f(x) \nabla f(y)\| \le M\|x y\| \quad \forall x, y \in Q$,
- Convexity: $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle \quad \forall x, y \in Q$.

Black-Box Assumption: Only $(f(x_i), \nabla f(x_i))$, i = 1, ..., N, are available.

Model of the objective function: (provided by *oracle*)

Model of the objective function: (provided by oracle)

Model of the objective function: (provided by *oracle*)

$$C_2: \quad f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}M \|y - x\|^2, \ \forall x, y \in Q.$$

Model of the objective function: (provided by *oracle*)

•
$$\mathcal{C}_2$$
: $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}M||y - x||^2, \ \forall x, y \in Q.$

All methods use only this information.

Model of the objective function: (provided by oracle)

- C_2 : $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2}M||y x||^2, \ \forall x, y \in Q$.

All methods use only this information.

Complexity Theory (Nemirovskii, Yudin 1977): # of oracle calls

Model of the objective function: (provided by oracle)

- C_2 : $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2}M||y x||^2, \ \forall x, y \in Q.$

All methods use only this information.

Complexity Theory (Nemirovskii, Yudin 1977): # of oracle calls

Problem class	Limit for calls	Lower bound
$C_1: \ \nabla f(\cdot)\ \leq L$	$\leq O(n)$	$O\left(L^2R^2/\epsilon^2\right)$

Model of the objective function: (provided by oracle)

- C_2 : $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2}M||y x||^2, \ \forall x, y \in Q$.

All methods use only this information.

Complexity Theory (Nemirovskii, Yudin 1977): # of oracle calls

Problem class	Limit for calls	Lower bound
$C_1: \ \nabla f(\cdot)\ \leq L$	$\leq O(n)$	$O\left(L^2R^2/\epsilon^2\right)$
$C_2: \ \nabla^2 f(\cdot)\ \leq M$	$\leq O(n)$	$O\left(\dot{M}^{1/2}R/\epsilon^{1/2}\right)$

Model of the objective function: (provided by *oracle*)

- C_2 : $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2}M||y x||^2, \ \forall x, y \in Q.$

All methods use only this information.

Complexity Theory (Nemirovskii, Yudin 1977): # of oracle calls

Problem class	Limit for calls	Lower bound
$C_1: \ \nabla f(\cdot)\ \leq L$	$\leq O(n)$	$O\left(L^2R^2/\epsilon^2\right)$
$C_2: \ \nabla^2 f(\cdot)\ \leq M$	$\leq O(n)$	$O\left(\dot{M}^{1/2}R/\epsilon^{1/2}\right)$
$C_3: \ \nabla f(\cdot)\ \leq L$	$\geq O(n)$	$O(n \ln[LR/\epsilon])$

The bounds are exact!

Class C_1 , bounded gradient.

$$f(x) = L \cdot \max_{1 \le i \le n} x^{(i)}, \quad Q = \{x : ||x|| \le R\}.$$

Class C_1 , bounded gradient.

$$f(x) = L \cdot \max_{1 \le i \le n} x^{(i)}, \quad Q = \{x : ||x|| \le R\}.$$

Class C_2 , bounded Hessian.

$$f(x) = \frac{M}{8} \left[(x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i)} - x^{(i+1)})^2 + (x^{(n)})^2 - 2x^{(1)} \right].$$

Class C_1 , bounded gradient.

$$f(x) = L \cdot \max_{1 \le i \le n} x^{(i)}, \quad Q = \{x : ||x|| \le R\}.$$

Class C_2 , bounded Hessian.

$$f(x) = \frac{M}{8} \left[(x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i)} - x^{(i+1)})^2 + (x^{(n)})^2 - 2x^{(1)} \right].$$

Being in a Black Box, these problems are difficult for <u>all</u> methods.

Class C_1 , bounded gradient.

$$f(x) = L \cdot \max_{1 \le i \le n} x^{(i)}, \quad Q = \{x : ||x|| \le R\}.$$

Class C_2 , bounded Hessian.

$$f(x) = \frac{M}{8} \left[(x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i)} - x^{(i+1)})^2 + (x^{(n)})^2 - 2x^{(1)} \right].$$

- Being in a Black Box, these problems are difficult for <u>all</u> methods.
- They become trivial when we can see their structure.

Class C_1 , bounded gradient.

$$f(x) = L \cdot \max_{1 \le i \le n} x^{(i)}, \quad Q = \{x : ||x|| \le R\}.$$

Class C_2 , bounded Hessian.

$$f(x) = \frac{M}{8} \left[(x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i)} - x^{(i+1)})^2 + (x^{(n)})^2 - 2x^{(1)} \right].$$

- Being in a Black Box, these problems are difficult for <u>all</u> methods.
- They become trivial when we can see their structure.
- The structure is always visible when we code the problem.

Class C_1 , bounded gradient.

$$f(x) = L \cdot \max_{1 \le i \le n} x^{(i)}, \quad Q = \{x : ||x|| \le R\}.$$

Class C_2 , bounded Hessian.

$$f(x) = \frac{M}{8} \left[(x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i)} - x^{(i+1)})^2 + (x^{(n)})^2 - 2x^{(1)} \right].$$

- Being in a Black Box, these problems are difficult for <u>all</u> methods.
- They become trivial when we can see their structure.
- The structure is always visible when we code the problem.

Can we help the methods?

Model of the problem: $\min\{\langle c, x \rangle : x \in Q\}$.

Closed convex set Q is endowed with self-concordant barrier F(x):

Model of the problem: $\min\{\langle c, x \rangle : x \in Q\}$.

Closed convex set Q is endowed with self-concordant barrier F(x):

■
$$D^3F(x)[h, h, h] \le 2(D^2F(x)[h, h])^{3/2} \quad \forall x \in \text{int } Q, h \in \mathbb{R}^n$$
,

Model of the problem: $\min\{\langle c, x \rangle : x \in Q\}$.

Closed convex set Q is endowed with self-concordant barrier F(x):

- $D^3F(x)[h, h, h] \le 2(D^2F(x)[h, h])^{3/2} \quad \forall x \in \text{int } Q, h \in \mathbb{R}^n$,
- $\nabla F(x), h \rangle^2 \le \nu \cdot D^2 F(x)[h, h] \quad \forall x \in \text{int } Q, h \in \mathbb{R}^n.$

The value $\nu \geq 1$ is called the *parameter* of the barrier.

Model of the problem: $\min\{\langle c, x \rangle : x \in Q\}.$

Closed convex set Q is endowed with self-concordant barrier F(x):

- $D^3F(x)[h, h, h] \le 2(D^2F(x)[h, h])^{3/2} \quad \forall x \in \text{int } Q, h \in \mathbb{R}^n$,
- $\nabla F(x), h \rangle^2 \le \nu \cdot D^2 F(x)[h, h] \quad \forall x \in \text{int } Q, h \in \mathbb{R}^n.$

The value $\nu \geq 1$ is called the *parameter* of the barrier.

Complexity of finding ϵ -solution:

 $O(\nu^{1/2} \ln \frac{\nu}{\epsilon})$ iterations of Newton method.

(This is a Black-Box method.)

Model of the problem: $\min\{\langle c, x \rangle : x \in Q\}.$

Closed convex set Q is endowed with self-concordant barrier F(x):

- $D^3F(x)[h, h, h] \le 2(D^2F(x)[h, h])^{3/2} \quad \forall x \in \text{int } Q, h \in \mathbb{R}^n$,
- $\nabla F(x), h \rangle^2 \le \nu \cdot D^2 F(x)[h, h] \quad \forall x \in \text{int } Q, h \in \mathbb{R}^n.$

The value $\nu \geq 1$ is called the *parameter* of the barrier.

Complexity of finding ϵ -solution:

 $O(\nu^{1/2} \ln \frac{\nu}{\epsilon})$ iterations of Newton method.

(This is a Black-Box method.)

How wide is the application field?

Universal barrier function

$$f_Q(x) = \kappa \cdot \text{ln Vol } P(x), \quad P(x) = \{s : \langle s, y - x \rangle \leq 1 \ \forall y \in Q\}.$$

For some $\kappa > 0$, this function is O(n)-s.c. barrier for Q.

Universal barrier function

$$f_Q(x) = \kappa \cdot \ln \operatorname{Vol} P(x), \quad P(x) = \{s : \langle s, y - x \rangle \le 1 \ \forall y \in Q\}.$$

For some $\kappa > 0$, this function is O(n)-s.c. barrier for Q.

Hence, the convex problems can be solved in $O(\sqrt{n} \ln \frac{n}{\epsilon})$ iterations.

Universal barrier function

$$f_Q(x) = \kappa \cdot \ln \operatorname{Vol} P(x), \quad P(x) = \{s : \langle s, y - x \rangle \le 1 \ \forall y \in Q\}.$$

For some $\kappa > 0$, this function is O(n)-s.c. barrier for Q.

Hence, the convex problems can be solved in $O(\sqrt{n} \ln \frac{n}{\epsilon})$ iterations. (Impossible in the Black-Box framework!)

Universal barrier function

$$f_Q(x) = \kappa \cdot \text{ln Vol } P(x), \quad P(x) = \{s : \langle s, y - x \rangle \leq 1 \ \forall y \in Q\}.$$

For some $\kappa > 0$, this function is O(n)-s.c. barrier for Q.

Hence, the convex problems can be solved in $O(\sqrt{n} \ln \frac{n}{\epsilon})$ iterations. (Impossible in the Black-Box framework!)

Conclusion

It is possible to construct s.c.b. (with appropriate ν) for all convex sets with known structure.

Universal barrier function

$$f_Q(x) = \kappa \cdot \text{ln Vol } P(x), \quad P(x) = \{s : \langle s, y - x \rangle \leq 1 \ \forall y \in Q\}.$$

For some $\kappa > 0$, this function is O(n)-s.c. barrier for Q.

Hence, the convex problems can be solved in $O(\sqrt{n} \ln \frac{n}{\epsilon})$ iterations. (Impossible in the Black-Box framework!)

Conclusion

- It is possible to construct s.c.b. (with appropriate ν) for all convex sets with known structure.
- These actions <u>violate</u> the Black-Box assumption for the initial problem.

How to use this theory?

We need to work directly with the elements of the problem.

How to use this theory?

We need to work directly with the elements of the problem.

Example:
$$\min_{x} \frac{1}{2} ||Ax - b||^2 + ||x||_1.$$

How to use this theory?

We need to work directly with the elements of the problem.

Example:
$$\min_{x} \frac{1}{2} ||Ax - b||^2 + ||x||_1.$$

1 Rewrite the problem in the standard form:

min
$$\tau_1 + \tau_2$$

s.t. $2\tau_1 \ge ||Ax - b||^2$, $\tau_2 \ge \sum_{i=1}^n y_i$, $y_i \ge |x_i|, i = 1, ..., n$.

How to use this theory?

We need to work directly with the elements of the problem.

Example:
$$\min_{x} \frac{1}{2} ||Ax - b||^2 + ||x||_1.$$

1 Rewrite the problem in the standard form:

min
$$\tau_1 + \tau_2$$

s.t. $2\tau_1 \ge ||Ax - b||^2$, $\tau_2 \ge \sum_{i=1}^n y_i$, $y_i \ge |x_i|, i = 1, ..., n$.

2 Construct the s.c.barrier

$$-\ln\left(2\tau_{1}-\|Ax-b\|^{2}
ight)-\ln\left(au_{2}-\sum_{i=1}^{n}y_{i}
ight)-\sum_{i=1}^{n}\ln\left(y_{i}^{2}-x_{i}^{2}
ight)$$

with parameter $\nu = 2n + 2$.

The most important problem: $\min_{x \in Q} f(x)$ with $f \in C_1$.

Complexity: $O\left(\frac{L^2R^2}{\epsilon^2}\right)$ calls of oracle.

The most important problem: $\min_{x \in Q} f(x)$ with $f \in C_1$.

Complexity: $O\left(\frac{L^2R^2}{\epsilon^2}\right)$ calls of oracle.

For a simpler problem $(f \in \mathcal{C}_2)$ we have $O\left(\frac{M^{1/2}R}{\epsilon^{1/2}}\right)$ calls.

The most important problem: $\min_{x \in Q} f(x)$ with $f \in C_1$.

Complexity: $O\left(\frac{L^2R^2}{\epsilon^2}\right)$ calls of oracle.

For a simpler problem $(f \in \mathcal{C}_2)$ we have $O\left(\frac{M^{1/2}R}{\epsilon^{1/2}}\right)$ calls.

For $\epsilon=10^{-2}$ the factor varies from 10 to 10000.

Can we decrease the gap?

The most important problem: $\min_{x \in Q} f(x)$ with $f \in C_1$.

Complexity: $O\left(\frac{L^2R^2}{\epsilon^2}\right)$ calls of oracle.

For a simpler problem $(f \in \mathcal{C}_2)$ we have $O\left(\frac{M^{1/2}R}{\epsilon^{1/2}}\right)$ calls.

For $\epsilon = 10^{-2}$ the factor varies from 10 to 10000.

Can we decrease the gap? (No way in BB-framework!)

The most important problem: $\min_{x \in Q} f(x)$ with $f \in C_1$.

Complexity: $O\left(\frac{L^2R^2}{\epsilon^2}\right)$ calls of oracle.

For a simpler problem $(f \in \mathcal{C}_2)$ we have $O\left(\frac{M^{1/2}R}{\epsilon^{1/2}}\right)$ calls.

For $\epsilon=10^{-2}$ the factor varies from 10 to 10000. Can we decrease the gap? (No way in BB-framework!)

Simple Theorem. For $f \in C_1(\mathbb{R}^n)$ there exists $f_{\epsilon} \in C_2(\mathbb{R}^n)$:

- $f(x) \le f_{\epsilon}(x) \le f(x) + \epsilon$ for any $x \in \mathbb{R}^n$,
- $M(f_{\epsilon}) = \frac{1}{2\epsilon} L^2(f).$

The most important problem: $\min_{x \in Q} f(x)$ with $f \in C_1$.

Complexity: $O\left(\frac{L^2R^2}{\epsilon^2}\right)$ calls of oracle.

For a simpler problem $(f \in \mathcal{C}_2)$ we have $O\left(\frac{M^{1/2}R}{\epsilon^{1/2}}\right)$ calls.

For $\epsilon = 10^{-2}$ the factor varies from 10 to 10000. Can we decrease the gap? (No way in BB-framework!)

Simple Theorem. For $f \in C_1(\mathbb{R}^n)$ there exists $f_{\epsilon} \in C_2(\mathbb{R}^n)$:

- $f(x) \le f_{\epsilon}(x) \le f(x) + \epsilon$ for any $x \in \mathbb{R}^n$,
- $M(f_{\epsilon}) = \frac{1}{2\epsilon} L^2(f).$

Can we do this in a systematic way?

The most important problem: $\min_{x \in Q} f(x)$ with $f \in C_1$.

Complexity: $O\left(\frac{L^2R^2}{\epsilon^2}\right)$ calls of oracle.

For a simpler problem $(f \in \mathcal{C}_2)$ we have $O\left(\frac{M^{1/2}R}{\epsilon^{1/2}}\right)$ calls.

For $\epsilon=10^{-2}$ the factor varies from 10 to 10000. Can we decrease the gap? (No way in BB-framework!)

Simple Theorem. For $f \in C_1(\mathbb{R}^n)$ there exists $f_{\epsilon} \in C_2(\mathbb{R}^n)$:

- $f(x) \le f_{\epsilon}(x) \le f(x) + \epsilon$ for any $x \in \mathbb{R}^n$,
- $M(f_{\epsilon}) = \frac{1}{2\epsilon} L^2(f).$

Can we do this in a systematic way? (Then we pass to $O\left(\frac{LR}{\epsilon}\right)$.)

Let $Q_d \subseteq E_d$ be a bounded convex dual feasible set and $\phi(u)$ be a convex function. Consider

$$f(x) = \max_{u \in Q_d} \{ \langle Ax - b, u \rangle - \phi(u) \},$$

Let $Q_d \subseteq E_d$ be a bounded convex dual feasible set and $\phi(u)$ be a convex function. Consider

$$f(x) = \max_{u \in Q_d} \{ \langle Ax - b, u \rangle - \phi(u) \},$$

Let us choose prox-function d(u) (strongly convex and positive) and define

$$f_{\mu}(x) = \max_{u \in Q_d} \{ \langle Ax - b, u \rangle - \phi(u) - \mu \cdot d(u) \}, \quad \mu > 0.$$

Let $Q_d \subseteq E_d$ be a bounded convex dual feasible set and $\phi(u)$ be a convex function. Consider

$$f(x) = \max_{u \in Q_d} \{ \langle Ax - b, u \rangle - \phi(u) \},$$

Let us choose prox-function d(u) (strongly convex and positive) and define

$$f_{\mu}(x) = \max_{u \in Q_d} \{\langle Ax - b, u \rangle - \phi(u) - \mu \cdot d(u) \}, \quad \mu > 0.$$

Denoting $D_d = \max_{u \in Q_d} d(u)$, we get $f(x) \ge f_{\mu}(x) \ge f(x) - \mu D_d$.

Let $Q_d \subseteq E_d$ be a bounded convex dual feasible set and $\phi(u)$ be a convex function. Consider

$$f(x) = \max_{u \in Q_d} \{ \langle Ax - b, u \rangle - \phi(u) \},$$

Let us choose prox-function d(u) (strongly convex and positive) and define

$$f_{\mu}(x) = \max_{u \in Q_d} \{ \langle Ax - b, u \rangle - \phi(u) - \mu \cdot d(u) \}, \quad \mu > 0.$$

Denoting
$$D_d = \max_{u \in Q_d} d(u)$$
, we get $f(x) \ge f_{\mu}(x) \ge f(x) - \mu D_d$.

Note:
$$M(f_{\mu}) = \frac{1}{2\mu} ||A||^2$$
, with $||A|| = \max_{\|x\| \le 1, \|u\| \le 1} \langle Ax, u \rangle$.

Let $Q_d \subseteq E_d$ be a bounded convex dual feasible set and $\phi(u)$ be a convex function. Consider

$$f(x) = \max_{u \in Q_d} \{ \langle Ax - b, u \rangle - \phi(u) \},$$

Let us choose prox-function d(u) (strongly convex and positive) and define

$$f_{\mu}(x) = \max_{u \in Q_d} \{\langle Ax - b, u \rangle - \phi(u) - \mu \cdot d(u) \}, \quad \mu > 0.$$

Denoting
$$D_d = \max_{u \in Q_d} d(u)$$
, we get $f(x) \ge f_{\mu}(x) \ge f(x) - \mu D_d$.

Note:
$$M(f_{\mu}) = \frac{1}{2\mu} ||A||^2$$
, with $||A|| = \max_{\|x\| \le 1, \|u\| \le 1} \langle Ax, u \rangle$.

Function f_{μ} must be computable!

Example

Consider
$$f(x) = \max_{1 \le j \le m} |\langle a_j, x \rangle - b^{(j)}|$$
.

Example

Consider
$$f(x) = \max_{1 \le j \le m} |\langle a_j, x \rangle - b^{(j)}|.$$

1. $E_d = R^m, \ \phi(u) = \langle b, u \rangle,$
 $f(x) = \max_{u \in R^m} \left\{ \sum_{j=1}^m u^{(j)} [\langle a_j, x \rangle - b^{(j)}] : \sum_{j=1}^m |u^{(j)}| \le 1 \right\}.$

Example

Consider
$$f(x) = \max_{1 \le j \le m} |\langle a_j, x \rangle - b^{(j)}|$$
.

1.
$$E_d = R^m$$
, $\phi(u) = \langle b, u \rangle$,
 $f(x) = \max_{u \in R^m} \left\{ \sum_{j=1}^m u^{(j)} [\langle a_j, x \rangle - b^{(j)}] : \sum_{j=1}^m |u^{(j)}| \le 1 \right\}$.

2. $E_d = R^{2m}$, $\phi(u)$ is a linear, Q_d is a simplex:

$$f(x) = \max_{u \in R_{+}^{2m}} \{ \sum_{j=1}^{m} (u_1^{(j)} - u_2^{(j)}) \cdot [\langle a_j, x \rangle - b^{(j)}] : \sum_{j=1}^{m} (u_1^{(j)} + u_2^{(j)}) = 1 \}.$$

Application: Consider

$$\min_{x \in \Delta_n} \left[f(x) \stackrel{\mathrm{def}}{=} \max_{1 \leq j \leq m} \langle a_j, x \rangle \right],$$

where $\Delta_n \in \mathbb{R}^n$ is a standard simplex.

Application: Consider $\min_{x \in \Delta_n} \left| f(x) \stackrel{\text{def}}{=} \max_{1 \le i \le m} \langle a_j, x \rangle \right|$,

where $\Delta_n \in \mathbb{R}^n$ is a standard simplex. For the standard subgradient method, we can guarantee

$$f(x_N) - f^* \le \frac{\sqrt{\ln n}}{\sqrt{N+1}} \cdot \max_{i,j} |a_j^{(i)}|.$$

Application: Consider $\min_{x \in \Delta_n} \left| f(x) \stackrel{\text{def}}{=} \max_{1 \leq j \leq m} \langle a_j, x \rangle \right|$

where $\Delta_n \in \mathbb{R}^n$ is a standard simplex. For the standard subgradient method, we can guarantee

$$f(x_N) - f^* \leq \frac{\sqrt{\ln n}}{\sqrt{N+1}} \cdot \max_{i,j} |a_j^{(i)}|.$$

Note that $f(x) = \max_{u \in \Delta_m} \langle Au, x \rangle$. For the smoothing technique, let us use the *entropy function*:

$$d(u) = \ln m + \sum_{i=1}^n u^{(i)} \ln u^{(i)}, \quad u \in \Delta_m.$$

Application: Consider $\min_{x \in \Delta_n} \left| f(x) \stackrel{\text{def}}{=} \max_{1 \le j \le m} \langle a_j, x \rangle \right|$,

where $\Delta_n \in \mathbb{R}^n$ is a standard simplex. For the standard subgradient method, we can guarantee

$$f(x_N) - f^* \le \frac{\sqrt{\ln n}}{\sqrt{N+1}} \cdot \max_{i,j} |a_j^{(i)}|.$$

Note that $f(x) = \max_{u \in \Delta_m} \langle Au, x \rangle$. For the smoothing technique, let us use the *entropy function*:

$$d(u) = \ln m + \sum_{i=1}^n u^{(i)} \ln u^{(i)}, \quad u \in \Delta_m.$$

Then $f_{\mu}(x) = \mu \ln \left[\frac{1}{m} \sum_{j=1}^{m} e^{\langle a_j, x \rangle / \mu} \right]$, and we obtain the following rate of convergence:

$$f(x_N) - f^* \le \frac{4\sqrt{\ln n \cdot \ln m}}{N} \cdot \max_{i,j} |a_j^{(i)}|.$$

Problem: $f(x) \to \min_{x \in Q}$, where f is convex function and $\|\nabla f(x) - \nabla f(y)\|^* \le M(f)\|x - y\| \ \forall x, y \in Q$ (closed, convex).

Problem: $f(x) \to \min_{x \in Q}$, where f is convex function and $\|\nabla f(x) - \nabla f(y)\|^* \le M(f)\|x - y\| \ \forall x, y \in Q \ (\text{closed, convex}).$ Primal Gradient Method (PGM): $x_{k+1} = T(x_k)$, where $T(x_k) = \arg\min_{x \in Q} [f(x_k) + \langle f(x_k), x - x_k \rangle + \frac{1}{2} M(f) \|x - x_k\|^2].$

> f(x)

Problem: $f(x) \to \min_{x \in Q}$, where f is convex function and $\|\nabla f(x) - \nabla f(y)\|^* \le M(f)\|x - y\| \ \forall x, y \in Q$ (closed, convex).

Primal Gradient Method (PGM): $x_{k+1} = T(x_k)$, where

$$T(x_k) = \arg\min_{x \in Q} \left[\underbrace{f(x_k) + \langle f(x_k), x - x_k \rangle + \frac{1}{2}M(f)||x - x_k||^2}_{\geq f(x)}\right].$$

Therefore
$$f(T(x_k)) + \frac{1}{2}M(f)\|x^* - T(x_k)\|^2$$

 $\leq f(x_k) + \langle f(x_k), x^* - x_k \rangle + \frac{M(f)}{2}\|x^* - x_k\|^2 \leq f^* + \frac{M(f)}{2}\|x^* - x_k\|^2.$

Problem: $f(x) \to \min_{x \in Q}$, where f is convex function and $\|\nabla f(x) - \nabla f(y)\|^* < M(f)\|x - y\| \ \forall x, y \in Q$ (closed, convex).

Primal Gradient Method (PGM):
$$x_{k+1} = T(x_k)$$
, where

$$T(x_k) = \arg\min_{x \in Q} \left[\underbrace{f(x_k) + \langle f(x_k), x - x_k \rangle + \frac{1}{2}M(f)||x - x_k||^2}_{\geq f(x)}\right].$$

Therefore
$$f(T(x_k)) + \frac{1}{2}M(f)\|x^* - T(x_k)\|^2$$

 $\leq f(x_k) + \langle f(x_k), x^* - x_k \rangle + \frac{M(f)}{2}\|x^* - x_k\|^2 \leq f^* + \frac{M(f)}{2}\|x^* - x_k\|^2.$

Rate of convergence:

$$\sum_{i=0}^{k} [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2 \implies f(x_k^*) - f^* \le \frac{M(f)||x^* - x_0||^2}{2(k+1)}.$$

Problem: $f(x) \to \min_{x \in Q}$, where f is convex function and $\|\nabla f(x) - \nabla f(y)\|^* < M(f)\|x - y\| \ \forall x, y \in Q$ (closed, convex).

Primal Gradient Method (PGM):
$$x_{k+1} = T(x_k)$$
, where
$$T(x_k) = \arg\min_{x \in Q} \underbrace{[f(x_k) + \langle f(x_k), x - x_k \rangle + \frac{1}{2}M(f)\|x - x_k\|^2]}_{\geq f(x)}.$$

Therefore
$$f(T(x_k)) + \frac{1}{2}M(f)\|x^* - T(x_k)\|^2$$

 $\leq f(x_k) + \langle f(x_k), x^* - x_k \rangle + \frac{M(f)}{2}\|x^* - x_k\|^2 \leq f^* + \frac{M(f)}{2}\|x^* - x_k\|^2.$

Rate of convergence:

$$\sum_{i=0}^{k} [f(x_i) - f^*] \le \frac{M(f)}{2} \|x^* - x_0\|^2 \implies f(x_k^*) - f^* \le \frac{M(f) \|x^* - x_0\|^2}{2(k+1)}.$$

Main feature: moderate local improvement.

Problem: $f(x) \to \min_{x \in Q}$, where f is convex function and $\|\nabla f(x) - \nabla f(y)\|^* < M(f)\|x - y\| \ \forall x, y \in Q$ (closed, convex).

Primal Gradient Method (PGM):
$$x_{k+1} = T(x_k)$$
, where
$$T(x_k) = \arg\min_{x \in \mathcal{X}} \sup_{x \in \mathcal{X}} |f(x_k)| + |f(x_$$

$$T(x_k) = \arg\min_{x \in Q} \left[\underbrace{f(x_k) + \langle f(x_k), x - x_k \rangle + \frac{1}{2} M(f) ||x - x_k||^2}_{\geq f(x)} \right].$$

Therefore
$$f(T(x_k)) + \frac{1}{2}M(f)\|x^* - T(x_k)\|^2$$

 $\leq f(x_k) + \langle f(x_k), x^* - x_k \rangle + \frac{M(f)}{2}\|x^* - x_k\|^2 \leq f^* + \frac{M(f)}{2}\|x^* - x_k\|^2.$

Rate of convergence:

$$\sum_{i=0}^{k} [f(x_i) - f^*] \le \frac{M(f)}{2} \|x^* - x_0\|^2 \implies f(x_k^*) - f^* \le \frac{M(f) \|x^* - x_0\|^2}{2(k+1)}.$$

Main feature: moderate local improvement.

Interpretation:

Problem: $f(x) \to \min_{x \in Q}$, where f is convex function and $\|\nabla f(x) - \nabla f(y)\|^* < M(f)\|x - y\| \ \forall x, y \in Q$ (closed, convex).

Primal Gradient Method (PGM):
$$x_{k+1} = T(x_k)$$
, where

$$T(x_k) = \arg\min_{x \in Q} \left[\underbrace{f(x_k) + \langle f(x_k), x - x_k \rangle + \frac{1}{2}M(f)||x - x_k||^2}_{\geq f(x)}\right].$$

Therefore
$$f(T(x_k)) + \frac{1}{2}M(f)\|x^* - T(x_k)\|^2$$

 $\leq f(x_k) + \langle f(x_k), x^* - x_k \rangle + \frac{M(f)}{2}\|x^* - x_k\|^2 \leq f^* + \frac{M(f)}{2}\|x^* - x_k\|^2.$

Rate of convergence:

$$\sum_{i=0}^{k} [f(x_i) - f^*] \le \frac{M(f)}{2} \|x^* - x_0\|^2 \implies f(x_k^*) - f^* \le \frac{M(f) \|x^* - x_0\|^2}{2(k+1)}.$$

Main feature: moderate local improvement.

Interpretation: Practitioners, Industry, etc.

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

$$\begin{aligned} v_{k+1} &= \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} \|x - x_0\|^2 \right\} \\ & \textbf{Theorem: Let } x_i = T(v_i). \ \ \text{Then } \sum_{i=0}^k [f(x_i) - f^*] \leq \frac{M(f)}{2} \|x^* - x_0\|^2. \end{aligned}$$

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$.

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} \|x^* - x_0\|^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed, $\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} ||x - v_{k+1}||^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\begin{aligned} v_{k+1} &= \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} \|x - x_0\|^2 \right\} \\ & \textbf{Theorem: Let } x_i = T(v_i). \text{ Then } \sum_{i=0}^k [f(x_i) - f^*] \leq \frac{M(f)}{2} \|x^* - x_0\|^2. \\ & \textbf{Proof: 1. Let us prove by induction that } \sum_{i=0}^k f(x_i) \leq \psi_k^*. \text{ Indeed,} \\ & \psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle \\ & \geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle \\ & \geq \sum_{i=0}^k f(x_i) + f(x_{k+1}). \end{aligned}$$

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \sum_{i=0}^k f(x_i) + f(x_{k+1}).$$
2. Note that $\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2.$

$$\geq \sum_{i=0}^{r} f(x_i) + f(x_{k+1}).$$
ote that $\psi_i^* < (k+1)f^* + \frac{M(f)}{2} ||x^*||$

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \sum_{i=0}^k f(x_i) + f(x_{k+1}).$$
2. Note that $\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2.$

2. Note that
$$\psi_k^* \le (k+1)f^* + \frac{M(f)}{2} ||x^* - x_0||^2$$
.

This method: 1. Updates the model.

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \sum_{i=0}^k f(x_i) + f(x_{k+1}).$$
2. Note that $\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2.$

2. Note that
$$\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} ||x^* - x_0||^2$$
.

This method: 1. Updates the *model*. 2. Is not monotone.

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \sum_{i=0}^k f(x_i) + f(x_{k+1}).$$
2. Note that $\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2.$

2. Note that
$$\psi_k^* \le (k+1)f^* + \frac{M(f)}{2} ||x^* - x_0||^2$$
.

This method: 1. Updates the *model*. 2. Is not monotone.

3. Does not need x_i .

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \sum_{i=0}^k f(x_i) + f(x_{k+1}).$$
2. Note that $\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2.$

2. Note that
$$\psi_k^* \le (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2$$
.

This method: 1. Updates the *model*. 2. Is not monotone.

3. Does not need x_i . 4. Has the same efficiency as PGM.

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \sum_{i=0}^k f(x_i) + f(x_{k+1}).$$
2. Note that $\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2.$

2. Note that
$$\psi_k^* \le (k+1)f^* + \frac{M(f)}{2} ||x^* - x_0||^2$$
.

This method: 1. Updates the *model*. 2. Is not monotone.

3. Does not need x_i . 4. Has the same efficiency as PGM.

Interpretation:

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \sum_{i=0}^k f(x_i) + f(x_{k+1}).$$
2. Note that $\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2.$

2. Note that
$$\psi_k^* \le (k+1)f^* + \frac{M(f)}{2} ||x^* - x_0||^2$$
.

This method: 1. Updates the *model*. 2. Is not monotone.

3. Does not need x_i . 4. Has the same efficiency as PGM.

Interpretation: Academic Science.

$$v_{k+1} = \arg\min_{x \in Q} \left\{ \psi_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle] + \frac{M(f)}{2} ||x - x_0||^2 \right\}$$

Theorem: Let $x_i = T(v_i)$. Then $\sum_{i=0}^k [f(x_i) - f^*] \le \frac{M(f)}{2} ||x^* - x_0||^2$. **Proof:** 1. Let us prove by induction that $\sum_{i=0}^k f(x_i) \le \psi_k^*$. Indeed,

$$\psi_{k+1}(x) = \psi_k(x) + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \psi_k^* + \frac{M(f)}{2} \|x - v_{k+1}\|^2 + f(v_{k+1}) + \langle f(v_{k+1}), x - v_{k+1} \rangle$$

$$\geq \sum_{i=0}^k f(x_i) + f(x_{k+1}).$$
2. Note that $\psi_k^* \leq (k+1)f^* + \frac{M(f)}{2} \|x^* - x_0\|^2.$

2. Note that
$$\psi_k^* \le (k+1)f^* + \frac{M(f)}{2} ||x^* - x_0||^2$$
.

This method: 1. Updates the *model*. 2. Is not monotone.

3. Does not need x_i . 4. Has the same efficiency as PGM.

Interpretation: Academic Science.

Can we combine the primal and dual strategy?

$$\psi_k(x) = \sum_{i=0}^k a_i [f(y_i) + \langle \nabla f(y_i), x - y_i \rangle] + \frac{1}{2} ||x - x_0||^2.$$

$$\psi_{k}(x) = \sum_{i=0}^{k} a_{i} [f(y_{i}) + \langle \nabla f(y_{i}), x - y_{i} \rangle] + \frac{1}{2} ||x - x_{0}||^{2}.$$

$$A_{k} f(x_{k}) \leq \psi_{k}^{*} \stackrel{\text{def}}{=} \min_{x \in R^{n}} \psi_{k}(x). \quad \left(A_{k} = \sum_{i=0}^{k} a_{i}. \right)$$

$$\psi_k(x) = \sum_{i=0}^k a_i [f(y_i) + \langle \nabla f(y_i), x - y_i \rangle] + \frac{1}{2} ||x - x_0||^2.$$

$$A_k f(x_k) \leq \psi_k^* \stackrel{\text{def}}{=} \min_{x \in R^n} \psi_k(x). \quad \left(A_k = \sum_{i=0}^k a_i. \right)$$

Note:
$$\psi_k(x^*) \le A_k f^* + \frac{1}{2} \|x^* - x_0\|^2 \Rightarrow f(x_k) - f^* \le \frac{\|x^* - x_0\|^2}{2A_k}$$
.

Estimate sequences: $\{\psi_k(x)\}$, $\{a_k\}$, $\{x_k\}$ such that

$$\psi_k(x) = \sum_{i=0}^k a_i [f(y_i) + \langle \nabla f(y_i), x - y_i \rangle] + \frac{1}{2} ||x - x_0||^2.$$

$$A_k f(x_k) \leq \psi_k^* \stackrel{\text{def}}{=} \min_{x \in R^n} \psi_k(x). \quad \left(A_k = \sum_{i=0}^k a_i. \right)$$

Note:
$$\psi_k(x^*) \le A_k f^* + \frac{1}{2} ||x^* - x_0||^2 \Rightarrow f(x_k) - f^* \le \frac{||x^* - x_0||^2}{2A_k}$$
.

Main properties: Let $v_k = \arg\min_{\mathbf{x} \in R^n} \psi_k(\mathbf{x})$.

Estimate sequences: $\{\psi_k(x)\}$, $\{a_k\}$, $\{x_k\}$ such that

$$\psi_k(x) = \sum_{i=0}^k a_i [f(y_i) + \langle \nabla f(y_i), x - y_i \rangle] + \frac{1}{2} ||x - x_0||^2.$$

$$A_k f(x_k) \leq \psi_k^* \stackrel{\text{def}}{=} \min_{x \in R^n} \psi_k(x). \quad \left(A_k = \sum_{i=0}^k a_i. \right)$$

Note:
$$\psi_k(x^*) \le A_k f^* + \frac{1}{2} ||x^* - x_0||^2 \Rightarrow f(x_k) - f^* \le \frac{||x^* - x_0||^2}{2A_k}$$
.

Main properties: Let $v_k = \arg\min_{\mathbf{x} \in R^n} \psi_k(\mathbf{x})$.

If
$$y_{k+1} = \frac{a_{k+1}v_k + A_kx_k}{a_{k+1} + A_k}$$
, then $\psi_{k+1}^* \ge A_{k+1}f(y_{k+1}) - \frac{a_{k+1}^2 \|\nabla f(y_{k+1})\|_*^2}{2}$.

Estimate sequences: $\{\psi_k(x)\}$, $\{a_k\}$, $\{x_k\}$ such that

$$\psi_{k}(x) = \sum_{i=0}^{k} a_{i} [f(y_{i}) + \langle \nabla f(y_{i}), x - y_{i} \rangle] + \frac{1}{2} ||x - x_{0}||^{2}.$$

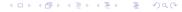
$$A_{k} f(x_{k}) \leq \psi_{k}^{*} \stackrel{\text{def}}{=} \min_{x \in \mathbb{R}^{n}} \psi_{k}(x). \quad \left(A_{k} = \sum_{i=0}^{k} a_{i}. \right)$$

Note:
$$\psi_k(x^*) \le A_k f^* + \frac{1}{2} ||x^* - x_0||^2 \Rightarrow f(x_k) - f^* \le \frac{||x^* - x_0||^2}{2A_k}$$
.

Main properties: Let $v_k = \arg\min_{\mathbf{x} \in R^n} \psi_k(\mathbf{x})$.

If
$$y_{k+1} = \frac{a_{k+1}v_k + A_kx_k}{a_{k+1} + A_k}$$
, then $\psi_{k+1}^* \ge A_{k+1}f(y_{k+1}) - \frac{a_{k+1}^2 \|\nabla f(y_{k+1})\|_*^2}{2}$.

If
$$x_{k+1} = y_{k+1} - \frac{\nabla f(y_{k+1})}{M(f)}$$
, then $f(y_{k+1}) \ge f(x_{k+1}) + \frac{\|\nabla f(y_{k+1})\|_*^2}{2M(f)}$.



- 1. Compute $v_k = \arg\min_{x \in R^n} \psi_k(x)$.
- 2. Assume that $f(x_k) \leq \frac{1}{A_k} \psi_k(v_k)$.
- 3. Find a_{k+1} : $\frac{a_{k+1}^2}{a_{k+1}+A_k} = \frac{1}{M(f)}$.
- 4. Define $y_{k+1} = \frac{a_{k+1}v_k + A_k x_k}{a_{k+1} + A_k}$. 5. Compute $x_{k+1} = y_{k+1} \frac{\nabla f(y_{k+1})}{M(f)}$.

$$\Rightarrow f(x_{k+1}) \leq \frac{1}{A_{k+1}} \psi_{k+1}^*.$$

- 1. Compute $v_k = \arg\min_{x \in R^n} \psi_k(x)$.
- 2. Assume that $f(x_k) \leq \frac{1}{A_k} \psi_k(v_k)$.
- 3. Find a_{k+1} : $\frac{a_{k+1}^2}{a_{k+1}+A_k} = \frac{1}{M(f)}$.
- 4. Define $y_{k+1} = \frac{a_{k+1}v_k + A_kx_k}{a_{k+1} + A_k}$. 5. Compute $x_{k+1} = y_{k+1} \frac{\nabla f(y_{k+1})}{M(f)}$.

Note:
$$a(t) \approx A'(t)$$
. Hence, $A'(t) = \left(\frac{A(t)}{M(t)}\right)^{1/2} \Rightarrow A(t) \approx \frac{t^2}{4M(t)}$.

 $\Rightarrow f(x_{k+1}) \leq \frac{1}{A_{k+1}} \psi_{k+1}^*.$

- 1. Compute $v_k = \arg\min_{x \in R^n} \psi_k(x)$.
- 2. Assume that $f(x_k) \leq \frac{1}{A_k} \psi_k(v_k)$.
- 3. Find a_{k+1} : $\frac{a_{k+1}^2}{a_{k+1}+A_k} = \frac{1}{M(f)}$.
- 4. Define $y_{k+1} = \frac{a_{k+1}v_k + A_kx_k}{a_{k+1} + A_k}$. 5. Compute $x_{k+1} = y_{k+1} \frac{\nabla f(y_{k+1})}{M(f)}$.

$$\Rightarrow f(x_{k+1}) \leq \frac{1}{A_{k+1}} \psi_{k+1}^*.$$

Note: $a(t) \approx A'(t)$. Hence, $A'(t) = \left(\frac{A(t)}{M(t)}\right)^{1/2} \Rightarrow A(t) \approx \frac{t^2}{4M(t)}$.

Interpretation:

- 1. Compute $v_k = \arg\min_{x \in R^n} \psi_k(x)$.
- 2. Assume that $f(x_k) \leq \frac{1}{A_k} \psi_k(v_k)$.
- 3. Find a_{k+1} : $\frac{a_{k+1}^2}{a_{k+1}+A_k} = \frac{1}{M(f)}$.
- 4. Define $y_{k+1} = \frac{a_{k+1}v_k + A_kx_k}{a_{k+1} + A_k}$. 5. Compute $x_{k+1} = y_{k+1} \frac{\nabla f(y_{k+1})}{M(f)}$.

$$\Rightarrow f(x_{k+1}) \leq \frac{1}{A_{k+1}} \psi_{k+1}^*.$$

Note:
$$a(t) \approx A'(t)$$
. Hence, $A'(t) = \left(\frac{A(t)}{M(f)}\right)^{1/2} \Rightarrow A(t) \approx \frac{t^2}{4M(f)}$.

Interpretation: Efficient collaboration of Theory and Practice organized by the wise government.

- 1. Compute $v_k = \arg\min_{x \in R^n} \psi_k(x)$.
- 2. Assume that $f(x_k) \leq \frac{1}{A_k} \psi_k(v_k)$.
- 3. Find a_{k+1} : $\frac{a_{k+1}^2}{a_{k+1}+A_k} = \frac{1}{M(f)}$.
- 4. Define $y_{k+1} = \frac{a_{k+1}v_k + A_k x_k}{a_{k+1} + A_k}$. 5. Compute $x_{k+1} = y_{k+1} \frac{\nabla f(y_{k+1})}{M(f)}$.

$$\Rightarrow f(x_{k+1}) \leq \frac{1}{A_{k+1}} \psi_{k+1}^*.$$

Note: $a(t) \approx A'(t)$. Hence, $A'(t) = \left(\frac{A(t)}{M(t)}\right)^{1/2} \Rightarrow A(t) \approx \frac{t^2}{4M(t)}$.

Interpretation: Efficient collaboration of Theory and Practice organized by the wise government.

Expected outcome: achieve the maximal performance in 10 years instead of 100.

Problem formulation:
$$\min\{\phi(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) : x \in R^n\},\$$

- function f is differentiable $(f \in C_2)$,
- function Ψ is closed and convex on \mathbb{R}^n .

Problem formulation: $\min\{\phi(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) : x \in R^n\},\$

- function f is differentiable $(f \in C_2)$,
- function Ψ is closed and convex on \mathbb{R}^n .

Note: in general $f + \Psi \not\in \mathcal{C}_1$. (No complexity bounds in BB-framework!)

Problem formulation: $\min\{\phi(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) : x \in R^n\},\$

- function f is differentiable $(f \in C_2)$,
- function Ψ is closed and convex on \mathbb{R}^n .

Note: in general $f + \Psi \notin C_1$. (No complexity bounds in BB-framework!)

Examples:

$$\Psi(x) = \begin{cases} 0, & \text{if } x \in Q, \\ +\infty, & \text{otherwise.} \end{cases}$$

Problem formulation: $\min\{\phi(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) : x \in R^n\},\$

- function f is differentiable $(f \in C_2)$,
- function Ψ is closed and convex on \mathbb{R}^n .

Note: in general $f + \Psi \notin C_1$. (No complexity bounds in BB-framework!)

Examples:

- $\Psi(x) = \begin{cases} 0, & \text{if } x \in Q, \\ +\infty, & \text{otherwise.} \end{cases}$
- \blacksquare Ψ is a barrier function for Q.

Problem formulation: $\min\{\phi(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) : x \in R^n\},\$

- function f is differentiable $(f \in C_2)$,
- function Ψ is closed and convex on \mathbb{R}^n .

Note: in general $f + \Psi \notin C_1$. (No complexity bounds in BB-framework!)

Examples:

- $\Psi(x) = \begin{cases} 0, & \text{if } x \in Q, \\ +\infty, & \text{otherwise.} \end{cases}$
- \blacksquare Ψ is a barrier function for Q.
- Ψ is a simple nonsmooth function (e.g. $||x||_1$).

Problem formulation: $\min\{\phi(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) : x \in R^n\},\$

- function f is differentiable $(f \in C_2)$,
- function Ψ is closed and convex on \mathbb{R}^n .

Note: in general $f + \Psi \notin C_1$. (No complexity bounds in BB-framework!)

Examples:

- $\Psi(x) = \begin{cases} 0, & \text{if } x \in Q, \\ +\infty, & \text{otherwise.} \end{cases}$
- \blacksquare Ψ is a barrier function for Q.
- Ψ is a simple nonsmooth function (e.g. $||x||_1$).

Main Assumption: The problem $\min_{x} [q(x) + \Psi(x)]$ is easy. (q is a "simple" quadratic function.)

Modified tools: Composite Gradient Mapping

For any $y \in \text{dom } \Psi$ define

$$m_L(y;x) = f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2 + \Psi(x),$$

$$T_L(y) = \arg \min_{x \in \mathbb{R}^n} m_L(y;x),$$

where L is a positive constant.

Modified tools: Composite Gradient Mapping

For any $y \in \text{dom } \Psi$ define

$$m_L(y;x) = f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2 + \Psi(x),$$

$$T_L(y) = \arg \min_{x \in \mathbb{R}^n} m_L(y;x),$$

where L is a positive constant. Then the direction

$$g_L(y) = L \cdot (y - T_L(y))$$

is a constrained analogue of the gradient of smooth function.

Modified tools: Composite Gradient Mapping

For any $y \in \text{dom } \Psi$ define

$$m_L(y;x) = f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2 + \Psi(x),$$

$$T_L(y) = \arg \min_{x \in \mathbb{R}^n} m_L(y;x),$$

where L is a positive constant. Then the direction

$$g_L(y) = L \cdot (y - T_L(y))$$

is a constrained analogue of the gradient of smooth function.

Main property: If $L \ge M(f)$ then

$$\phi(y) - \phi(T_L(y)) \ge \frac{1}{2L} ||g_L(y)||^2.$$

Basic Gradient Methods for Composite Functions

Basic Gradient Methods for Composite Functions

Primal Gradient Method

Consider the method: $x_{k+1} = T_{M(f)}(x_k)$, $k \ge 0$. Then

$$\sum_{i=0}^{k} [\phi(x_i) - \phi^*] \leq 2M(f) ||x^* - x_0||^2.$$

Basic Gradient Methods for Composite Functions

Primal Gradient Method

Consider the method: $x_{k+1} = T_{M(f)}(x_k), k \ge 0$. Then

$$\sum_{i=0}^{k} [\phi(x_i) - \phi^*] \leq 2M(f) ||x^* - x_0||^2.$$

Dual Gradient Method. Consider the method

$$v_{k+1} = \arg\min_{x \in R^n} \{ \hat{\psi}_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle + \Psi(x)] + \frac{M(f)}{2} \|x - x_0\|^2 \}.$$

Define $x_i = T_{M(f)}(v_i)$. Then $\sum_{i=0}^k [\phi(x_i) - \phi^*] \le 2M(f) ||x^* - x_0||^2$.

Primal Gradient Method

Consider the method: $x_{k+1} = T_{M(f)}(x_k), k \ge 0$. Then

$$\sum_{i=0}^{k} [\phi(x_i) - \phi^*] \leq 2M(f) ||x^* - x_0||^2.$$

Dual Gradient Method. Consider the method

$$v_{k+1} = \arg\min_{x \in R^n} \{ \hat{\psi}_k(x) \equiv \sum_{i=0}^k [f(v_i) + \langle f(v_i), x - v_i \rangle + \Psi(x)] + \frac{M(f)}{2} ||x - x_0||^2 \}.$$

Define
$$x_i = T_{M(f)}(v_i)$$
. Then $\sum_{i=0}^k [\phi(x_i) - \phi^*] \le 2M(f) ||x^* - x_0||^2$.

Same as for $\Psi \equiv 0!$

Main change: New definition of the model

$$\hat{\psi}_k(x) = \sum_{i=0}^k a_i [f(x_i) + \langle f(x_i), x - x_i \rangle + \Psi(x)] + \frac{1}{2} ||x - x_0||^2.$$

Main change: New definition of the model

$$\hat{\psi}_k(x) = \sum_{i=0}^k a_i [f(x_i) + \langle f(x_i), x - x_i \rangle + \Psi(x)] + \frac{1}{2} ||x - x_0||^2.$$

The scheme becomes as follows:

- 1. Compute $v_k = \arg\min_{x \in R^n} \hat{\psi}_k(x)$.
- 2. Compute a_k from equation $\frac{a_k^2}{A_k + a_k} = \frac{2}{M(f)}$.
- 3. Define $y_k = \frac{A_k x_k + a_k v_k}{A_k + a_k}$ and compute $x_{k+1} = T_{M(f)}(y_k)$.

Main change: New definition of the model

$$\hat{\psi}_k(x) = \sum_{i=0}^k a_i [f(x_i) + \langle f(x_i), x - x_i \rangle + \Psi(x)] + \frac{1}{2} ||x - x_0||^2.$$

The scheme becomes as follows:

- 1. Compute $v_k = \arg\min_{x \in R^n} \hat{\psi}_k(x)$.
- 2. Compute a_k from equation $\frac{a_k^2}{A_k + a_k} = \frac{2}{M(f)}$.
- 3. Define $y_k = \frac{A_k x_k + a_k v_k}{A_k + a_k}$ and compute $x_{k+1} = T_{M(f)}(y_k)$.

Rate of convergence: $\phi(x_k) - \phi^* \le \frac{2M(f)\|x_0 - x^*\|^2}{(k+1)^2}$.

Main change: New definition of the model

$$\hat{\psi}_k(x) = \sum_{i=0}^k a_i [f(x_i) + \langle f(x_i), x - x_i \rangle + \Psi(x)] + \frac{1}{2} ||x - x_0||^2.$$

The scheme becomes as follows:

- 1. Compute $v_k = \arg\min_{x \in R^n} \hat{\psi}_k(x)$.
- 2. Compute a_k from equation $\frac{a_k^2}{A_k + a_k} = \frac{2}{M(f)}$.
- 3. Define $y_k = \frac{A_k x_k + a_k v_k}{A_k + a_k}$ and compute $x_{k+1} = T_{M(f)}(y_k)$.

Rate of convergence: $\phi(x_k) - \phi^* \le \frac{2M(f)\|x_0 - x^*\|^2}{(k+1)^2}$.

Example:
$$\phi(x) = \frac{1}{2} ||Ax - b||^2 + \sum_{i=1}^{n} |x^{(i)}|.$$

For breaking the BB-limitations, optimization methods need help!

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

■ Interior-point methods. Rewrite the problem in a standard form. Construct the s.c.barrier. Complexity: $O\left(\sqrt{\nu}\ln\frac{1}{\epsilon}\right)$.

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

- Interior-point methods. Rewrite the problem in a standard form. Construct the s.c.barrier. Complexity: $O\left(\sqrt{\nu}\ln\frac{1}{\epsilon}\right)$.
- **Smoothing technique.** Find a reasonable max-representation of the objective with computable smooth approximation. **Complexity:** $O\left(\frac{1}{\epsilon}\right)$.

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

- Interior-point methods. Rewrite the problem in a standard form. Construct the s.c.barrier. Complexity: $O\left(\sqrt{\nu}\ln\frac{1}{\epsilon}\right)$.
- Smoothing technique. Find a reasonable max-representation of the objective with computable smooth approximation. Complexity: $O\left(\frac{1}{\epsilon}\right)$.
- **Composite function.** Find a possibility to minimize a bad part of the objective. **Complexity:** $O\left(\frac{1}{\epsilon^{1/2}}\right)$.

For breaking the BB-limitations, optimization methods need help!

Possible approaches:

- Interior-point methods. Rewrite the problem in a standard form. Construct the s.c.barrier. Complexity: $O\left(\sqrt{\nu}\ln\frac{1}{\epsilon}\right)$.
- **Smoothing technique.** Find a reasonable max-representation of the objective with computable smooth approximation. **Complexity:** $O\left(\frac{1}{\epsilon}\right)$.
- **Composite function.** Find a possibility to minimize a bad part of the objective. **Complexity:** $O\left(\frac{1}{\epsilon^{1/2}}\right)$.

And some others!

1. Fix analytical form of functional components. (Too fragile!)

- 1. Fix analytical form of functional components. (Too fragile!)
- 2. Reformulations.

$$\mathcal{P} \longrightarrow \ldots \longrightarrow (f^*, x^*).$$

- 1. Fix analytical form of functional components. (Too fragile!)
- 2. Reformulations.

$$\mathcal{P} \longrightarrow \ldots \longrightarrow (f^*, x^*).$$

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

- 1. Fix analytical form of functional components. (Too fragile!)
- 2. Reformulations.

$$\mathcal{P} \longrightarrow \ldots \longrightarrow (f^*, x^*).$$

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

1 Check if *A* is symmetric and positive definite.

- Fix analytical form of functional components. (Too fragile!)
- 2. Reformulations.

$$\mathcal{P} \longrightarrow \ldots \longrightarrow (f^*, x^*).$$

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

- 1 Check if A is symmetric and positive definite.
- 2 Compute Cholesky factorization of this matrix: $A = LL^T$, where L is a lower-triangular matrix.

- Fix analytical form of functional components. (Too fragile!)
- 2. Reformulations.

$$\mathcal{P} \longrightarrow \ldots \longrightarrow (f^*, x^*).$$

Classical example: Cholesky decomposition

For solving the linear system Ax = b, we proceed as follows:

- 1 Check if A is symmetric and positive definite.
- 2 Compute Cholesky factorization of this matrix: $A = LL^T$, where L is a lower-triangular matrix.
- 3 Solve the systems Ly = b, $L^Tx = y$ by sequential elimination of variables.

Golden Rules

• Find a class of problems which can be solved very efficiently. (e.g. the class of linear systems with triangular matrices.)

Golden Rules

- Find a class of problems which can be solved very efficiently.
 (e.g. the class of linear systems with triangular matrices.)
- Describe the transformation rules for converting the initial problem into desired form.

Golden Rules

- Find a class of problems which can be solved very efficiently.
 (e.g. the class of linear systems with triangular matrices.)
- Describe the transformation rules for converting the initial problem into desired form.
- Describe the class of problems for which these transformation rules are applicable.

Golden Rules

- Find a class of problems which can be solved very efficiently.
 (e.g. the class of linear systems with triangular matrices.)
- Describe the transformation rules for converting the initial problem into desired form.
- Describe the class of problems for which these transformation rules are applicable.

We have seen how it works for

■ **IPM:** Newton for s.c.functions + rules for constructing s.c.b.

Golden Rules

- Find a class of problems which can be solved very efficiently.
 (e.g. the class of linear systems with triangular matrices.)
- Describe the transformation rules for converting the initial problem into desired form.
- Describe the class of problems for which these transformation rules are applicable.

We have seen how it works for

- **IPM:** Newton for s.c.functions + rules for constructing s.c.b.
- **Smoothing:** Fast GM + max representation.

Golden Rules

- Find a class of problems which can be solved very efficiently.
 (e.g. the class of linear systems with triangular matrices.)
- Describe the transformation rules for converting the initial problem into desired form.
- Describe the class of problems for which these transformation rules are applicable.

We have seen how it works for

- **IPM:** Newton for s.c.functions + rules for constructing s.c.b.
- **Smoothing:** Fast GM + max representation.
- **Composite functions:** Fast GM + exact minimization of difficult parts of the objective.