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NONSMOOTH EQUATIONS

are those defined by

H(x) = 0

where H : IRn → IRn is a continuous vector-valued mapping.

Vast majority of applications in optimization, variational inequali-

ties, complementarity and equilibrium problems reduce to nonlin-

ear equations with nonsmooth mappings H. This also includes

Robinson’s formalism of generalized equations, which can be

written in the standard equation form (via, e.g., the projection

operator) while with intrinsically nonsmooth mappings H
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SMOOTH NEWTON’S METHOD

applies to nonlinear equations with H ∈ C1.

Newton’s iterations

xk+1 := xk + dk for all k = 0,1,2, . . .

where x0 ∈ IRn is a given starting point and where dk ∈ IRn is a

solution to the linear system of equations

H ′(xk)d = −H(xk)

A lot is known about the classical Newton’s method: fast local

convergence, etc
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B-DIFFERENTIABLE NEWTON’S METHOD

developed by Pang et al. Assuming that H is directionally dif-

ferentiable, the direction dk in the iteration scheme

xk+1 := xk + dk, k = 0,1,2, . . .

is a solution to the subproblem

H ′(xk; d) = −H(xk)

via the directional derivative H ′(xk; d). Known results for the

B-differentiable Newton’s method are established under pretty

restrictive assumptions; in particular, under the strong differen-

tiability at the solution point
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SEMISMOOTH NEWTON’S METHODS

developed by Kummer, Qi and Sun, et al. for the Lipschitz

continuous and directionally differentiable mappings H under the

so-called semismoothness. There are two basic versions following

the scheme

Akd = −H(xk)

for determining the iterative direction, where either Ak ∈ ∂CH(xk)

(element of the Clarke’s generalized Jacobian) or Ak ∈ ∂BH(xk)

(element of the B-subdifferential). These constructions will be

discussed below. The B-subdifferential method is better but it

has troubles with solvability of the generalized Newton equation.

We develop another approach by using advanced tools of varia-

tional analysis involving graphical derivatives
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TOOLS OF VARIATIONAL ANALYSIS

Given a set-valued map F : IRn ⇒ IRm, its outer limit at x̄ is

Lim sup
x→x̄

F (x) :=
{
y ∈ IRm

∣∣∣ ∃xk → x̄, yk → y s.t. yk ∈ F (xk), ∀ k
}

The graphical derivative of F at (x̄, ȳ) ∈ gphF is

DF (x̄, ȳ)(u) := Limsup
t↓0

F (x̄ + tu)− ȳ

t
, u ∈ IRn

The coderivative of F at (x̄, ȳ) ∈ gphF is

D∗F (x̄, ȳ)(v) :=
{
w ∈ IRn

∣∣∣ (w,−v) ∈ N
(
(x̄, ȳ); gphF

)}
, v ∈ IRm

defined via the normal cone

N(z̄;Ω) = Limsup
z→x̄

[
cone

(
z −Π(z;Ω)

)]
for Ω = gphF and z̄ = (x̄, ȳ), where Π(xz;Ω) stands for the
Euclidean projection
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PROPERTIES OF DERIVATIVES AND CODERIVATIVES

• If F is smooth, then

DF (x̄)(u) = ∇F (x̄)u, D∗F (x̄)(v) = ∇F (x̄)Tv

• If F is directionally differentiable, then

DF (x̄)(u) =
{
F ′(x̄;u)

}
, u ∈ IRn

• Both derivatives and coderivatives satisfy calculus rules while

full calculus has been developed for coderivatives in general non-

smooth and nonconvex settings
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THE GENERALIZED NEWTON ALGORITHM

We propose to the following generalized Newton equation (GNE)

−H(xk) ∈ DH(xk)(dk), k = 0,1,2, . . .

to find directions dk. Then

THE ALGORITHM

• STEP 1: Choose a starting point x0 ∈ IRn

• STEP 2: Check a suitable termination criterion

• STEP 3: Compute dk ∈ IRn such that the GNE holds

• STEP 4: Set xk+1 := xk + dk, k ← k + 1, and go to Step 1
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METRIC REGULARITY

A set-valued mapping F : IRn →→ IRm is metrically regular around

(x̄, ȳ) ∈ gphF if there are neighborhoods U of x̄ and V of ȳ as

well as a number µ > 0 such that

dist
(
x;F−1(y)

)
≤ µdist

(
y;F (x)

)
, ∀x ∈ U, y ∈ V

This property (related to error bounds, Hoffman estimates, is

crucial for many aspects of variational analysis and optimization.

There is the coderivative criterion [Mor84] for it:

F is metrically regular around (x̄, ȳ) if and only if

kerD∗F (x̄, ȳ)(z) = 0 i.e. 0 ∈ D∗F (x̄, ȳ)(z) =⇒ z = 0
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SOLVABILITY OF THE GENERALIZED NEWTON EQUATION

THEOREM. Assume that H : IRn → IRn is metrically regular

around x̄, i.e., kerD∗H(x̄) = {0}. Then there is a constant ε > 0

such that for all x ∈ Bε(x̄) the equation

−H(x) ∈ DH(x)(d)

admits a solution d ∈ IRn. Furthermore, the set S(x) of solutions

to it is computed by

S(x) = Limsup
t↓0, h→−H(x)

H−1
(
H(x) + th

)
− x

t
6= ∅
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BASIC CONDITIONS FOR THE ALGORITHM

(H1) There exist a constant C > 0, a neighborhood U of x̄, and a
neighborhood V of the origin in IRn such that the following
holds:

For all x ∈ U , z ∈ V , and for any d ∈ IRn with −H(x) ∈
DH(x)(d) there is a vector w ∈ DH(x)(z) such that

C‖d− z‖ ≤ ‖w + H(x)‖+ o(‖x− x̄‖)

(H2) There exists a neighborhood U of x̄ such that for all v ∈
DH(x)(x̄− x) we have

‖H(x)−H(x̄) + v‖ = o(‖x− x̄‖)
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SUPERLINEAR LOCAL CONVERGENCE

THEOREM. Let x̄ ∈ IRn be a solution to the nonsmooth equa-

tion H(x) = 0 for which the underlying mapping H : IRn → IRn

is metrically regular around x̄ and assumptions (H1) and (H2)

are satisfied. Then there is a number ε > 0 such that for all

x0 ∈ Bε(x̄) the following assertions hold:

(i) The Algorithm is well defined and generates a sequence {xk}
converging to x̄

(ii) The rate of convergence xk → x̄ is at least superlinear
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SUFFICIENT CONDITIONS FOR (H1)

We say that H : IRm → IRm is directionally bounded around z̄ if

lim sup
t↓0

∥∥∥∥∥H(x + tz)−H(x)

t

∥∥∥∥∥ <∞, ∀z ∈ IRn and x near x̄

This holds when H is either directionally differentiable or locally

Lipschitzian but not vice versa

PROPOSITION. Condition (H1) is satisfied if H is one-to-one,

directionally bounded, and metrically regular

There are many further sufficient conditions for the fulfillment of

all the above assumptions. Consider those related to the previous

developments on the generalized Newton method
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B-SUBDIFFERENTIAL AND GENERALIZED JACOBIAN

Given H : IRn → IRn locally Lipschitzian around x̄, define

SH := {x ∈ IRn
∣∣∣ H is differentiable at x

}
,

the B-subdifferential of H at x̄

∂BH(x̄) :=
{

lim
k→∞

H ′(xk)
∣∣∣ ∃ {xk} ⊂ SH , xk → x̄

}
and the generalized Jacobian

∂CH(x̄) := co
{
∂BH(x̄)

}
We have the strict inclusion

DH(x̄)(z) ⊂ ∂CH(x̄)z, ∀ z ∈ IRn.

COROLLARY. Let H be locally Lipschitzian around x̄. Then
condition (H1) is satisfied if detA 6= 0 for all A ∈ ∂CH(x̄)
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SEMISMOOTHNESS AND CONDITION (H2)

A mapping H : IRn → IRm, locally Lipschitzian and directionally

differentiable around x̄, is semismooth at this point if the limit

lim
h→z, t↓0

A∈∂CH(x̄+th)

{
Ah

}
exists for all z ∈ IRn

Semismoothness always implies (H2) but nor vise versa.

Both conditions (H1) and (H2) hold for non-semismooth, Lips-

chitzian, metrically regular, and one-to-one mappings

A number of examples are available in both Lipschitzian and

non-Lipschitzian cases
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APPLICATION TO B-DIFFERENTIABLE NEWTON METHOD

The subdifferential of f : IRn → IR is

∂f := Limsup
x→x̄

∂̂f(x)

where

∂̂f(x) :=
{
p ∈ IRn

∣∣∣∣ lim inf
u→x

f(u)− f(x)− 〈p, u− x〉
‖u− x‖

≥ 0
}

THEOREM. Let H : IRn → IRn be semismooth, one-to-one,

and metrically regular around a reference solution x̄ to H(x) = 0

satisfying

0 ∈ ∂〈z, H〉(x̄) =⇒ z = 0

Then the B-differentiable Newton method is well defined and

converges at least superlinearly to the solution x̄
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GLOBAL CONVERGENCE

THEOREM. Let x0 be a starting point of the Algorithm, and

Ω :=
{
x ∈ IRn

∣∣∣ ‖x− x0‖ ≤ r
}
, r > 0

Assume that:

• The mapping H : IRn → IRn is metrically regular on Ω with

modulus µ > 0

• The set-valued map DH(x)(z) uniformly on Ω converges to

{0} as z → 0 in the sense that: for all ε > 0 there is δ > 0 with

‖w‖ ≤ ε, ∀ w ∈ DH(x)(z), ‖z‖ ≤ δ, x ∈ Ω

• There is α ∈ (0,1/µ) such that

µ‖H(x0)‖ ≤ r(1− αµ)
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and for all x, y ∈ Ω we have the estimate

‖H(x)−H(y)− v‖ ≤ α‖x− y‖, ∀v ∈ DH(x)(y − x)

Then the Algorithm is well defined, the sequence of iterates {xk}
remains in Ω and converges to a solution x̄ ∈ Ω. Moreover, we

have the error estimate

‖xk − x̄‖ ≤
αµ

1− αµ
‖xk − xk−1‖
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