iiiii oddollol

Backgroun

Optimizing $\Sigma(D)$

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

Optimizing

Optimal Relay
Precoder—Case I:

Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when k_{Σ}

Canalusian

Joint optimization of input covariance and relay precoder for full-duplex amplify-and-forward relay channels

Ramy H. Gohary and Halim Yanikomeroglu

Collaborative work: Research In Motion (RIM) and Carleton University Ottawa, Ontario, Canada

November 2010

The KKT conditions
Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica

Summarv

Optimizing

Optimal Relay
Precoder—Case I:
Φ = 0

Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when k_{Σ}

0----

Introduction

The wireless channel:

- Advantage: Flexible communication between transmitter-receiver pairs.
- Challenges: Channel variations and weak received signal.

Gohary and Yanikomeroglu

Introduction

Background

Optimizin

The KKT condition Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica

_

Summary

relay precod

Optimal Relay
Precoder—Case I:
Φ = 0

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when K_{Σ} :

Conclusion

Introduction

 The challenges of the wireless channel can be mitigated using relays. The KKT condition
Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica

Summar

Optimizing relay precode

Optimal Relay Precoder—Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Optimal D when $k_{\Sigma} =$

Canalusian

What is a relay?

- Intermediate node to assist communication between transmitter and receiver.
- Capable of transmitting, receiving and processing signals.
- Fixed or mobile.
- Relay has power budget and operates over certain frequency band.
- Relay may be full or half duplex.
- Popular relay design objectives:
 - · Minimize communication errors.
 - Maximize rate at which data can be reliably communicated; i.e., achieve channel capacity.

Background

Ontimizing

 $\Sigma(D)$

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

Optimizing
relay precode
Optimal Relay
Precoder—Case I: $\Phi = 0$

Case II: $\Phi \neq 0$ Special D with rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when $k_{\Sigma} =$

Conclusion

- Relay channel introduced by van der Meulen in 1968 and first published in 1971.
- The capacity of general, even scalar, relay channel is an open problem.
- Only the capacity of particular channels is known; e.g.,
 - Degraded relay channels using block Markov signalling. (Cover and El-Gamal 1979)
 - Reversely degraded relay channels, relay remains silent. (Cover and El-Gamal 1979)
- More recent work: (Kramer, Gastpar and Gupta 2005)

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

Optimizing
relay precode
Optimal Relay
Precoder—Case I:

Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when $k_{\Sigma} =$

Conclusion

Background

- · Other signalling techniques:
 - Compress and forward using block Markov signalling (Cover and El-Gamal 1979)
 - · Amplify-and-forward relaying.
- One of the least computationally demanding relaying techniques.
- Under certain conditions was shown to outperform sophisticated decode-and-forward and compress-and-forward (El-Gamal, Mohseni and Zahedi, 2006).

Background

Optimizin

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode

Precoder—Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Special D wit

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

2

Canalusian

System model

 We follow the general AWGN model in (El-Gamal, Mohseni and Zahedi, 2006):

Transmitter sends Gaussian vectors with potentially correlated entries.

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode
Optimal Relay
Precoder—Case I:

 $\Phi = 0$ Case II: $\Phi \neq 0$

Special D with rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when k_{Σ}

Conclusion

System model

- Transmitter sends data in the form of length-k vectors,
 X.
- Relay processes its observed signal, Y₁ by a strictly lower triangular matrix; e.g.,

$$DX = \begin{bmatrix} 0 & 0 & 0 & 0 \\ d_{21} & 0 & 0 & 0 \\ d_{31} & d_{32} & 0 & 0 \\ d_{41} & d_{42} & d_{43} & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix};$$

Relay does not decode the received signal.

ii ii oddolioi

Background

Optimizing $\Sigma(D)$

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode

Optimal Relay

Precoder—Case I:

Φ = 0

Case II: $\Phi \neq 0$ Special D with

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when k_{Σ} =

Conclusion

- Covariance of transmitted Gaussian vectors is denoted by Σ = E{XX^T}.
- Relay uses a lower triangular k × k matrix, D, to process and forward received signal.
- Relay signal contaminated by Gaussian noise, $Z_1 \sim \mathcal{N}(0, NI_k)$
- Receiver signal contaminated by Gaussian noise, $Z \sim \mathcal{N}(0, NI_k)$
- What is the maximum rate achieved by the amplify-and-forward scheme?

Gohary and Yanikomeroglu

THE OCCUPATION

Background

Optimizing $\Sigma(D)$

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode

Optimal Relay

Precoder—Case I: $\Phi = 0$

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Summary

Conclusion

The design problem

Relay transmitted signal:

$$X_1 = DY_1 = D(aX + Z_1) = aDX + DZ_1.$$

· Received signal:

$$Y = X + bX_1 + Z = (I + abD)X + bDZ_1 + Z.$$

- Signal covariance: $E\{(I + abD)XX^{T}(I + abD)^{T}\} = (I + abD)\Sigma(I + abD)^{T}$
- Noise covariance: $E\{(bDZ_1 + Z)(bDZ_1 + Z)^T\} = N(I + b^2DD^T)$

when k_{Σ}

Oummai

Conclusion

The design problem

- Power constraints:
 - For transmitter: $Tr(E\{XX^T\}) = Tr(\Sigma) \le c_1$.
 - For relay:

$$\text{Tr}\big(\mathsf{E}\{X_1^{\mathsf{T}}X_1^{\mathsf{T}}\}\big) = a^2N\,\text{Tr}(D\Sigma D^{\mathsf{T}}) + N\,\text{Tr}(DD^{\mathsf{T}}) \leq c_2.$$

How to find jointly optimal Σ and D?

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Example:

Summary

relay precode
Optimal Relay
Precoder—Case I:
Φ = 0

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when $k_{\Sigma} =$

Conclusion

Optimizing Σ and D

Signal covariance:

$$\mathsf{E}\{(I+abD)XX^T(I+abD)^T\} = (I+abD)\Sigma(I+abD)^T$$

Noise covariance:

$$\mathsf{E}\{(bDZ_1 + Z)(bDZ_1 + Z)^T\} = N(I + b^2DD^T)$$

Design problem:

$$\max_{\Sigma,D} \quad \log \frac{\det \Bigl((I + abD) \Sigma (I + abD^T) + N(I + b^2DD^T) \Bigr)}{\det \Bigl(N(I + b^2DD^T) \Bigr)}$$

$$\begin{split} \text{subject to} \quad \Sigma \succeq 0, \qquad & \text{Tr}(\Sigma) \leq c_1, \\ \quad & \text{Tr}(\textit{a}^2\textit{D}\Sigma\textit{D}^T + \textit{NDD}^T) \leq c_2, \\ \quad & \textit{D}_{ij} = 0, \quad j \geq i, \end{split}$$

Special D with rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when $k_{\Sigma}=$

Conclusion

Optimizing Σ for fixed D

• For fixed D, original optimization becomes equivalent to

$$\begin{split} \max_{\Sigma} & \log \det \Big(H \Sigma H^T + I \Big), \\ \text{subject to} & \Sigma \succeq 0, & \operatorname{Tr}(\Sigma) \leq c_1, \\ & \operatorname{Tr}(D \Sigma D^T) \leq c_3, \end{split}$$

where
$$H = \frac{1}{\sqrt{N}}(I + b^2DD^T)^{-1/2}(I + abD)$$
 and $c_3 = \frac{1}{a^2}(c_2 - N \operatorname{Tr}(DD^T))$.

- Problem is convex in Σ.
- For strictly positive c_1 and c_3 , the relative interior of the feasible set not empty.
- KKT conditions are necessary and sufficient for optimality.

Optimizing $\Sigma(D)$

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

Optimizing relay precode Optimal Relay Precoder—Case I:

Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Optimal D

Summary

Conclusion

Optimizing Σ for fixed D

$$\begin{split} \max_{\Sigma} & \log \det \Bigl(H \Sigma H^T + I \Bigr), \\ \text{subject to} & \Sigma \succeq 0, \quad \text{Tr}(\Sigma) \leq c_1, \\ & \text{Tr}(D \Sigma D^T) \leq c_3, \end{split}$$

The Lagrangian corresponding to the optimization problem is

$$\begin{split} L(\Sigma, \mu_1, \mu_2, \Phi) &= -\log \det \big(H \Sigma H^T + I \big) + \mu_1 \big(\mathrm{Tr}(\Sigma) - c_1 \big) \\ &+ \mu_2 \big(\mathrm{Tr}(D \Sigma D^T) - c_3 \big) - \mathrm{Tr}(\Phi \Sigma). \end{split}$$

The KKT conditions

• Gradient of Lagrangian:

$$\nabla_{\Sigma} L(\Sigma, \mu_1, \mu_2, \Phi) = -H^T H(I + \Sigma H^T H)^{-1} + \mu_1 I + \mu_2 D^T D - \Phi = 0$$

· Primal feasibility:

$$\Sigma \succeq 0$$
, $\text{Tr}(\Sigma) \leq c_1$, $\text{Tr}(D\Sigma D^T) \leq c_3$

Dual feasibility:

$$\Phi\succeq 0,\quad \mu_1\geq 0,\quad \mu_2\geq 0$$

· Complementarity slackness:

$$\operatorname{Tr}(\Phi\Sigma) = 0, \quad \mu_1(\operatorname{Tr}(\Sigma) - c_1) = 0, \quad \mu_2(\operatorname{Tr}(D\Sigma D^T) - c_3) = 0.$$

4日 → 4周 → 4 三 → 4 目 → 9 Q P

Conclusion

Solving the KKT conditions

• Solving $\nabla_{\Sigma} L = 0$ yields

$$\Sigma = (\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1}.$$

• Since $H^TH \succ 0$, $\Phi \succeq 0$ and $\Sigma \succeq 0$, we have

$$\mu_1 I + \mu_2 D^T D = (\Sigma + (H^T H)^{-1}) + \Phi \succ 0.$$

- Since D^TD is rank deficient, $\mu_1 > 0$.
- Hence, $\mu_1(\operatorname{Tr}(\Sigma) c_1) = 0$ yields

$$\operatorname{Tr}(\Sigma)=c_1.$$

Transmitter must use all available power.

Solving the KKT conditions

Yanikomeroglu

Backgroup

Optimizing $\Sigma(D)$

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

Optimizing

Optimal Relay
Precoder—Case I:
Φ = 0

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Summary

Conclusion

From complementarity slackness, we have

$$\Phi \Sigma = \Sigma \Phi = 0.$$

· Using,

$$\Sigma = (\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1}.$$

· it follows that

$$((\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1})\Phi = 0.$$

• What choices of μ_1, μ_2, Φ solve this equation?

Solving the KKT conditions

• What choices of μ_1, μ_2, Φ solve

$$((\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1})\Phi = 0$$
?

- Choosing $(\mu_1 I + \mu_2 D^T D \Phi)^{-1} = (H^T H)^{-1}$ does not work, because in this case $\Sigma = 0$ and $\text{Tr}(\Sigma) \neq c_1$.
- · We have two possibilities:
 - Case I:

$$\Phi = 0$$

Case II:

$$\Phi \neq 0$$
,

and thus

$$\Phi \in \mathcal{N} \Big((\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1} \Big).$$

We will study these cases separately.

Summary

Conclusion

Solving the KKT conditions—Case I: $\Phi = 0$

For any Φ,

$$\Sigma = (\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1}.$$

• When $\Phi = 0$: $(\nu_1 = 1/\mu_1 \text{ and } \nu_2 = \mu_2/\mu_1, \, \mu_1 > 0.)$

$$\Sigma = \nu_1 (I + \nu_2 D^T D)^{-1} - (H^T H)^{-1}$$

• Since $Tr(\Sigma) = c_1$,

$$\nu_1 = \frac{c_1 + \operatorname{Tr}((H^T H)^{-1})}{\operatorname{Tr}((I + \nu_2 D^T D)^{-1})}.$$

- Is there a solution of the KKT system with $\Phi = 0$?
- Study ν_2 to solve KKT system.

Summary

Conclusion

Solving the KKT conditions—Case I: $\Phi = 0$

Consider the conditions:

$$\operatorname{Tr}(D\Sigma D^T) \leq c_3$$
 and $\mu_2(\operatorname{Tr}(D\Sigma D^T) - c_3) = 0$.

• When $\Phi = 0$, first condition becomes

$$\frac{\text{Tr}\big(D^TD(I+\nu_2D^TD)^{-1}\big)}{\text{Tr}\Big(\big(I+\nu_2D^TD\big)^{-1}\Big)} \leq \frac{c_3+\text{Tr}\big(D^TD(H^TH)^{-1}\big)}{c_1+\text{Tr}\Big((H^TH)^{-1}\Big)}.$$

- What is the effect of ν_2 on this constraint?
- Lemma: Left hand side monotonically decreasing in ν_2 .

Numerica Example:

Summary

Optimizing

Optimal Relay
Precoder—Case I:

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when K_{Σ} =

Conclusion

Algorithm for solving the KKT system when $\Phi = 0$.

Algorithm:

- Set $\nu_2 = 0$.
- If $\frac{\operatorname{Tr} D^T D}{k} \leq \frac{c_3 + \operatorname{Tr} \left(D^T D (H^T H)^{-1} \right)}{c_1 + \operatorname{Tr} \left((H^T H)^{-1} \right)}$
 - Is $\Sigma = \frac{c_1 + \text{Tr}\left((H^T H)^{-1}\right)}{k}I (H^T H)^{-1} \succeq 0$?
 - Yes: KKT system solved with $\Phi = 0$.
 - No: no solution of KKT system exists with Φ = 0.
- If not, increase ν₂ until

$$\frac{\operatorname{Tr}(D^TD(I+\nu_2D^TD)^{-1})}{\operatorname{Tr}\left((I+\nu_2D^TD)^{-1}\right)} = \frac{c_3 + \operatorname{Tr}(D^TD(H^TH)^{-1})}{c_1 + \operatorname{Tr}\left((H^TH)^{-1}\right)}.$$

Check resulting Σ for positive definiteness.

Summary

relay precode
Optimal Relay
Precoder—Case I:

Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Summar

Conclusion

Solving the KKT conditions—Case II: $\Phi \neq 0$

- In this case $\Phi \in \mathcal{N}\Big((\mu_1 I + \mu_2 D^T D \Phi)^{-1} (H^T H)^{-1}\Big).$
- Let $\Phi = U_{\Phi} \Lambda_{\Phi} U_{\Phi}^{T}$.
- Let U[⊥]_Φ span the null space of Φ.
- If Λ_{Σ} denotes the eigenvalues of Σ , then

$$\Sigma = (\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1} = U_{\Phi}^{\perp} \Lambda_{\Sigma} (U_{\phi}^{\perp})^T.$$

• Let $\operatorname{rank}(\Sigma) = k_{\Sigma}$.

Summary

Conclusion

Case II: $\Phi \neq 0$

Manipulating

$$(\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1} = U_{\Phi}^{\perp} \Lambda_{\Sigma} (U_{\phi}^{\perp})^T,$$

we obtain

$$(U_{\Phi}^{\perp})^{T}(\mu_{1}I + \mu_{2}D^{T}D)(H^{T}H)^{-1}U_{\Phi}^{\perp}\Lambda_{\Sigma}^{-1} = \Lambda_{\Sigma}^{-1} - (U_{\Phi}^{\perp})^{T}(\mu_{1}I + \mu_{2}D^{T}D)U_{\Phi}^{\perp}.$$

- · Hence, either
 - $k_{\Sigma} > 1$ and

$$(U_{\Phi}^{\perp})^T (\mu_1 I + \mu_2 D^T D) (H^T H)^{-1} U_{\Phi}^{\perp} \Lambda_{\Sigma}^{-1}$$
 symmetric, or

- $k_{\Sigma} = 1$.
- Cases of $k_{\Sigma} = 1$ and $k_{\Sigma} > 1$ considered separately.

Gohary and Yanikomeroglu

Deeleman

Optimizing

The KKT condition

Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode
Optimal Relay
Precoder—Case I:

Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

WIICH KS

Canaluaiam

The case of $k_{\Sigma} > 1$:

- The matrix D is strictly lower triangular.
- Conclude that D^TD and H^TH do not commute.
- · Hence, to satisfy

$$\begin{split} \Lambda_{\Sigma}^{-1} - (U_{\Phi}^{\perp})^{T} (\mu_{1}I + \mu_{2}D^{T}D)(H^{T}H)^{-1}U_{\Phi}^{\perp}\Lambda_{\Sigma}^{-1} \\ &= (U_{\Phi}^{\perp})^{T} (\mu_{1}I + \mu_{2}D^{T}D)U_{\Phi}^{\perp}, \end{split}$$

 μ_2 must be equal to zero.

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode

Optimal Relay

Precoder—Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when $k_{\Sigma} =$

Conclusion

Case II: $\Phi \neq 0$ —Implications

When $\Phi \neq 0$ and $k_{\Sigma} > 1$:

- Conclusion 1: $\mu_2 = 0$.
- Conclusion 2:

$$\Lambda_{\Sigma}^{-1} - \mu_{1} (U_{\Phi}^{\perp})^{T} (H^{T} H)^{-1} U_{\Phi}^{\perp} \Lambda_{\Sigma}^{-1} = \mu_{1} I_{k_{\Sigma}}.$$
 (1)

Hence, $(U_{\Phi}^{\perp})^T (H^T H)^{-1} U_{\Phi}^{\perp}$ must be diagonal. Therefore:

$$U_{\Phi}^{\perp}=U_{H_{\Phi}}.$$

- Conclusion 3: Eigenvectors of Σ and Φ form complementary subsets of eigenvectors of H^TH.
- From (1)

$$\Lambda_{\Sigma} = \frac{1}{\mu_1} I_{k_{\Sigma}} - \Lambda_{H_{\Sigma}}^{-1}$$
; and

$$\Lambda_{\Phi} = \mu_1 I_{k_{\Phi}} - \Lambda_{H_{\Phi}}.$$

Case II: $\Phi \neq 0$ —Implications

Gohary and Yanikomeroglu

ii ii oddolloi

Ontimizing

 $\Sigma(D)$

Case I: Φ = 0

Case II: $\Phi \neq 0$

Numerica Examples

. .

Ontimizing

Optimal Relay
Precoder—Case I:

Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Optimal *D* when *k*← =

Summar

Conclusion

When $\Phi \neq 0$ and $k_{\Sigma} > 1$:

Conclusion 4:

$$\Lambda_{H_{\Sigma}} \succ \mu_1 I_{k_{\Sigma}}$$
 and $\mu_1 I_{k_{\Phi}} \succ \Lambda_{H_{\Phi}} \succ 0$.

- That is, eigenvalues values of Φ and Σ must be distinct.
- · The Lagrange multiplier

$$\mu_1 = rac{k_\Sigma}{c_1 + ext{Tr}(\Lambda_{H_\Sigma}^{-1})}.$$

Precoder—Case I:

Case II: $\Phi \neq 0$

 $\Phi \neq 0, k_{\overline{2}} > 1$

Algorithm for solving the KKT system when $\Phi \neq 0$ and $k_{\Sigma} > 1$

Algorithm:

- Arrange eigenvalues of H^TH in descending order.
- Set $k_{\Sigma} = 2$,
 - Assign first k_Σ eigenvalues of H^TH to Λ_H
 - Assign remaining $k_{\Phi} = k k_{\Sigma}$ eigenvalues of $H^{T}H$ to $\Lambda_{H_{\Phi}}$
 - Compute $\mu_1 = \frac{k_{\Sigma}}{c_1 + \text{Tr}(\Lambda_{\mu}^{-1})}$
 - If $\Lambda_{H_{\Sigma}} > \mu_1 I_{K_{\Sigma}}$ and $\bar{\mu}_1 I_{K_{\Phi}} > \Lambda_{H_{\Phi}} > 0$, construct Σ

$$\Lambda_{\Sigma} = rac{1}{\mu_1} I_{k_{\Sigma}} - \Lambda_{H_{\Sigma}}^{-1}$$
; and

the eigenvectors of H^TH .

• If, for this k_{Σ} , μ_1 does not satisfy the constraint, $k_{\Sigma} \leftarrow k_{\Sigma} + 1$, repeat.

Case II: $\Phi \neq 0$ and $k_{\Sigma} = 1$

• The input covariance

$$\Sigma = c_1 w w^T, \qquad \qquad w^T w = 1. \tag{2}$$

• When $\nu_2 > 0$, we must have

$$w^T D^T D w = c_3/c_1.$$

- Notice that $c_3/c_1 \leq \lambda_{\max}(D^T D)$.
- The general expression of Σ is

$$\Sigma = (\mu_1 I + \mu_2 D^T D - \Phi)^{-1} - (H^T H)^{-1}.$$

 Using (2), repeated application of the matrix inversion lemma yields

$$\mathbf{w}^T \mathbf{H}^T \mathbf{H} (\mu_1 \mathbf{I} + \mu_2 \mathbf{D}^T \mathbf{D})^{-1} = \gamma \mathbf{w}^T.$$

4日 → 4周 → 4 三 → 4 三 → 9 へ ○

• γ and w are generalized eigenvalue-eigenvector pair of $(\mu_1 I + \mu_2 D^T D)^{-1} H^T H$.

0.....

Conclusion

Algorithm for solving the KKT system when $\Phi \neq 0$ and $k_{\Sigma} = 1$

- Search for a pair $(\mu_1, \mu_2) \in (0, 1/c_1) \times [0, 1/c_3 \mu_1 c_1/c_3).$
- For each pair, find w to be a generalized eigenvectors of $(\mu_1 I + \mu_2 D^T D)^{-1} H^T H$.
- If $c_3/c_1 w^T D^T D w > \epsilon$ or $c_3/c_1 w^T D^T D w < 0$, repeat.

Gohary and Yanikomeroglu

iiiii oddotioi

Optimizing

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerical Examples

Summary

Optimizing

Optimal Relay Precoder—Case I:

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Summary

Conclusion

Numerical Example 1

- a = 4.5, N = 0.7,
- $c_1 = 10, k = 4, c_3 = \frac{1}{a^2} (c_2 N \operatorname{Tr}(D^T D)), D = \frac{\tilde{D}}{\operatorname{Tr}(\tilde{D})},$

$$\tilde{D} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

- For comparison, we use $\Sigma_T = \gamma_0 I$.
- γ₀ is chosen to satisfy one of Tr(Σ_T) ≤ c₁ and Tr(DΣ_TD^T) ≤ c₃ with equality.
- Rate expression: $R = \log_2 \det(H\Sigma H^T + I)$.

Gohary and Yanikomeroglu

IIII Oddelloi

Optimizino

The KKT condition

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerical Examples

Summary

Optimizing

Optimal Relay Precoder—Case I:

Case II: Φ ≠ 0

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Summary

Conclusion

Numerical Example 1

- For low c₂, optimal Σ is rank one.
- For high c₂, optimal Σ is full rank.

Goharv and Yanikomeroglu

Case I: $\Phi = 0$ Case II: Φ ≠ 0

Numerical Examples

Precoder—Case I:

Case II: $\Phi \neq 0$

 $\Phi \neq 0, k_{\overline{2}} > 1$

Numerical Example 2

- For low and high c_2 , optimal Σ is rank three. Relay power constraint not active.
- For intermediate c₂, optimal Σ is full rank.

Numerica Example:

Summary

Optimizing relay precode

Optimal Relay Precoder—Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when k_{Σ}

0----

Summary of covariance optimization

- The simplicity of amplify-and-forward relaying makes it appealing for industrial applications.
- Input covariance and relay precoder design is difficult to design jointly.
- For fixed relay precoder, the design of input covariance is convex optimization problem.
- Analytical solution of the problem of designing input covariance enables efficient search for jointly optimal relay precoders.

Numerica

Summary

Summary

relay precode
Optimal Relay
Precoder—Case I:
Φ = 0

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when k_{Σ}

Summar

Conclusio

Summary of covariance optimization

How to find analytical solution for input covariance?

- Solve the KKT optimality conditions.
- Show that there are two possibilities: $\Phi = 0$ or $\Phi \neq 0$.
- Study each possibility separately.

What about the relay precoder *D*?

Summary

Optimizing relay precoder

Optimal Relay Precoder—Case I:

 $\Phi = 0$ Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

WIICH KS

Conclusion

Optimizing the relay precoder

- Finding optimal relay precoder is still difficult.
- Non-convex problem with intricate structure.
- Finding a globally optimal solution may be too ambitious.
- Can we find close to optimal relay precoders?
- Our approach: use branch-and-bound-type technique.
 Consider the cases:
 - $\Phi = 0$ with $\nu_2 = 0$ and $\nu_2 > 0$.
 - $\Phi \neq 0$ and $\nu_2 = 0$ ($k_{\Sigma} > 1$).
 - $\Phi \neq 0$ and $\nu_2 \geq 0$ ($k_{\Sigma} = 1$).

Summary

Optimizing relay precode

Optimal Relay
Precoder—Case I:
Φ = 0

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Summary -

Conclusion

Case I: $\Phi = 0$

The design problem for fixed ν_1 and ν_2 :

$$\begin{split} \min_{D} & \log \det \left((I + b^2 D^T D) (I + \nu_2 D^T D) \right), \\ \text{subject to} & \nu_1 (I + \nu_2 D^T D)^{-1} \succeq (H^T H)^{-1}, \\ & \nu_1 \operatorname{Tr} \left((I + \nu_2 D^T D)^{-1} \right) = \operatorname{Tr} \left((H^T H)^{-1} \right) + c_1, \\ & \operatorname{Tr} \left(D^T D (a^2 \nu_1 (I + \nu_2 D^T D)^{-1} \right) \\ & - a^2 \operatorname{Tr} \left(D^T D (H^T H)^{-1} \right) + N \operatorname{Tr} (D^T D) = c_2, \\ & D_{ij} = 0, \quad j \geq i, \end{split}$$

where

$$H^{T}H = \frac{1}{N}(I + abD^{T})(I + b^{2}DD^{T})^{-1}(I + abD).$$

Numerica Examples

0-1:--:-

Optimal Relay
Precoder—Case I:
Φ = 0

 $\Phi = 0$ Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when k_{Σ}

Conclusion

Optimal Relay Precoder—Case I: $\Phi = 0$

- Proposition: For any $\nu_1 > 0$ and $\nu_2 \ge 0$, optimal relay precoder is at most rank-1.
- Implication: When Σ is full rank, optimal relay precoder is rank-1.
- Efficient algorithm for finding optimal rank-1 D and the corresponding ν_1 and ν_2 .

Introduction

_ _ _ _

Optimizing $\Sigma(D)$

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerical Examples

0.....

Ontimizina

Optimal Relay
Precoder—Case I:
Φ = 0

Case II: Φ ≠ 0

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Optimal *D* when $k_{\Sigma} =$

Summary

Canalusian

When $\Phi \neq 0$, we consider the following cases:

- $k_{\Sigma} > 1$ and $\nu_2 = 0$.
- $k_{\Sigma} = 1$ and $\nu_2 \ge 0$.

Introduction

Optimizing

The KKT conditions Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode
Optimal Relay
Precoder—Case I:

Case II: Φ ≠ 0

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Optimal D when $k_{\Sigma} =$

Summary

Conclusion

Design problem:

$$\begin{split} \min_{D} \quad & \det(\Lambda_{H_{\Sigma}}^{-1})) \\ \text{subject to} \quad & \operatorname{Tr}(\Lambda_{H_{\Sigma}}^{-1}) = \nu_{1}k_{\Sigma} - c_{1} \\ \quad & N\operatorname{Tr}(D^{T}D) + a^{2}\nu_{1}\operatorname{Tr}(U_{H_{\Sigma}}^{T}D^{T}DU_{H_{\Sigma}}) \\ \quad & - a^{2}\operatorname{Tr}(U_{H_{\Sigma}}^{T}D^{T}DU_{H_{\Sigma}}\Lambda_{H_{\Sigma}}^{-1}) \leq c_{2} \\ \quad & D_{ij} = 0, \quad \forall j \geq i. \end{split}$$

- $\Lambda_{H_{\Sigma}}$ denotes the diagonal matrix of largest k_{Σ} eigenvalues of H^TH .
- $H^TH = \frac{1}{N}(I + abD^T)(I + b^2DD^T)^{-1}(I + abD)$

Optimizing $\Sigma(D)$

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode
Optimal Relay
Precoder—Case I:

 $\Phi = 0$ Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Optimal D

Summar

Conclusion

In this case, we develop necessary conditions that an optimal precoder must satisfy:

- $\Lambda_{H_{\Sigma}} \succ \mu_1 I_{k_{\Sigma}}$ and $\mu_1 I_{k_{\Phi}} \succ \Lambda_{H_{\Phi}} \succ 0$.
- $\Lambda_{H_{\Sigma}} = \gamma_1 I_{k_1} \oplus \gamma_1 I_{k_2}, k_1 + k_2 = k_{\Sigma}.$
- Can we find precoders that satisfy these conditions?

Gohary and Yanikomeroglu

Introduction

Optimizin

The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

relay precode
Optimal Relay
Precoder—Case I:
Φ = 0

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

0.....

0----

Optimal Rank-1 relay precoders—Case II: $\Phi \neq 0$, $k_{\Sigma} > 1$

- To satisfy necessary conditions, $k_{\Sigma} = k 1$.
- Explicit expression for optimal rank-1 D parametrized by one parameter, ν₁
- Efficient algorithm for finding optimal ν_1
- Design of optimal rank-1 relay precoder does not depend on particular left and right singular vectors.

Gohary and Yanikomeroglu

introduction

Optimizing

 $\Sigma(D)$ The KKT conditions

Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Summary

Optimizing
relay precode
Optimal Relay
Precoder—Case I:

Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Summary

Conclusion

Special precoders with rank(D) > 1 for $\Phi \neq 0, k_{\Sigma} > 1$

- Can we find precoders that satisfy necessary optimality conditions with rank(D) > 1?
- Use

$$D = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ \sigma_1 & 0 & \cdots & 0 & 0 \\ 0 & \sigma_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_{k-1} & 0 \end{bmatrix}.$$

- Choice yields tridiagonal H^TH.
- Lemma: Eigenvalues of tridiagonal matrices are distinct unless some off-diagonal entries are zero.

Special *D* with rank(*D*) > 1 for $\Phi \neq 0, k_{\Sigma} > 1$

Using lemma, we show that setting

$$\sigma_{2i} = 0,$$
 $i = 1, ..., \frac{k}{2} - 1,$
 $\sigma_{2i-1} = 0,$ $i = 1, ..., r,$
 $\sigma_{2i-1} = \sigma,$ $i = r + 1, ..., \frac{k}{2}.$

yields D that satisfy necessary optimality conditions.

Corresponding ranks of input covariances:

$$k_{\Sigma} = \frac{k}{2} \pm r, \qquad r = 1, \dots, \frac{k}{2} - 2.$$

- Efficient algorithm to determine optimal k_{Σ} and D.
- Global optimality not guaranteed. (Ongoing investigation)

Numerica Example

Summar

relay precode

Optimal Relay

Precoder—Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Special *D* with rank(*D*) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

Optimal D when $k_{\Sigma} = 1$

Summary

Conclusion

Optimal Precoder Design Problem

- When $k_{\Sigma} = 1$, $\Sigma = c_1 ww^T$.
- w generalized eigenvector of $(H^T H)^{-1}(\mu_1 I + \mu_2 D^T D)$.
- Design problem:

$$\begin{aligned} & \text{max} & & w^T H^T H w \\ & \text{subject to} & & a^2 w^T D^T D w + N \text{Tr}(D^T D) \leq c_2 \\ & & & (H^T H)^{-1} (\mu_1 I + \mu_2 D^T D) w = \gamma w, \\ & & & D_{ij} = 0, \quad j \geq i. \end{aligned}$$

- Optimization over w, D, μ_1 and μ_2 .
- Power constraint satisfied with equality because

$$w^T H^T H w = \frac{1}{\gamma} (\mu_1 + \mu_2 w^T D^T D w).$$

Numerica

Summary

Optimizing relay precode Optimal Relay Precoder—Case I:

Case II: $\Phi \neq 0$

 $\Phi \neq 0, k_{\Sigma} > 1$ Optimal D

when $k_{\Sigma} = 1$

Conclusion

Insight into optimal D when $k_{\Sigma} = 1$

- Objective $w^T H^T H w$ upper bounded by $\lambda_{max}(H^T H)$.
- $\lambda_{max}(H^T H)$ is upper bounded by monotonically increasing function of max singular value of D.
- For D with given norm, upper bound is maximized when D is rank-1.

Numerica Examples

Summary

relay preco

Precoder—Case I: Φ = 0

Case II: $\Phi \neq 0$

 $\Phi \neq 0, k_{\Sigma} > 1$ Optimal *D*when $k_{\Sigma} = 1$

Cummor

Conclusion

Optimal rank-1 precoder when $k_{\Sigma} = 1$

- Restrict *D* to be rank-1; i.e., $D = \sigma u v^T$.
- Not necessarily optimal.
- We show that

$$\frac{c_2}{a^2+N} \le \sigma^2 \le \frac{c_2}{N}$$

• Find explicit expressions for optimal μ_1 , μ_2 and w.

The KKT condition Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Numerica Examples

Lxamples

Optimizina

Optimal Relay Precoder—Case I:

Case II: $\Phi \neq 0$

rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when k_{Σ}

Summary

Conclusion

Summary of Relay Precoder Optimization

$$\Phi=0, \nu_2 \geq 0 \qquad \text{rank}(D^*)=1$$

$$\Sigma^*(D) \qquad \Phi \neq 0, \nu_2 = 0 \qquad \qquad D \text{ Subdiag.}$$

$$r \text{ Interlacing }$$

$$Entries \qquad k_{\Sigma}=k-1$$

$$D \text{ Subdiag.}$$

$$r \text{ Interlacing }$$

$$Entries \qquad k_{\Sigma}=\frac{k}{2}\pm r,$$

$$r=1,\ldots,\frac{k}{2}-2.$$

$$\Phi \neq 0, \nu_2 \geq 0 \qquad \qquad \text{rank}(D)=1$$
 Necessary Conds.

Numerica Example

Summar

Optimizing relay precode Optimal Relay Precoder—Case I: $\Phi = 0$ Case II: $\Phi \neq 0$

Special D with rank(D) > 1 $\Phi \neq 0, k_{\Sigma} > 1$

when $k_{\Sigma} =$

Summa

Conclusion

Conclusion

- Amplify-and-forward is an attractive relaying technique.
- Joint design of input covariance, Σ, and relay precoder, D, difficult.
- For fixed D, design problem convex in Σ .
- Obtain closed form solution of the KKT optimality conditions.
- For each solution, study the corresponding relay precoder design problem.
- For some cases, the optimal expression for D can be derived.
- For other cases, precoders that satisfy necessary optimality conditions are available.