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Introduction e Advantage: Flexible communication between
transmitter-receiver pairs.

e Challenges: Channel variations and weak received

signal.
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Optimal Relay
Precoder—Case |
(] 0
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e The challenges of the wireless channel can be
mitigated using relays.

Transmitter

«{@]@
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Introduction

he KKT conditions

Case I: &

Casell: ® # 0

What is a relay?

Intermediate node to assist communication between
transmitter and receiver.

Capable of transmitting, receiving and processing
signals.

Fixed or mobile.

Relay has power budget and operates over certain
frequency band.

Relay may be full or half duplex.

Popular relay design objectives:

e Minimize communication errors.
e Maximize rate at which data can be reliably
communicated; i.e., achieve channel capacity.
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Background

Background

Relay channel introduced by van der Meulen in 1968
and first published in 1971.

The capacity of general, even scalar, relay channel is
an open problem.
Only the capacity of particular channels is known; e.g.,
e Degraded relay channels using block Markov signalling.
(Cover and El-Gamal 1979)
e Reversely degraded relay channels, relay remains
silent. (Cover and EI-Gamal 1979)

More recent work: (Kramer, Gastpar and Gupta 2005)
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sackaroun « Other signalling techniques:

e Compress and forward using block Markov signalling
a0 (Cover and El-Gamal 1979)
cele e o Amplify-and-forward relaying.

e One of the least computationally demanding relaying
techniques.

e Under certain conditions was shown to outperform
Preer e sophisticated decode-and-forward and
@ £ 0 compress-and-forward (EI-Gamal, Mohseni and
Zahedi, 2006).
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Background

he KKT conditions

System model

o We follow the general AWGN model in (EI-Gamal,
Mohseni and Zahedi, 2006):

Z; ~ N(O,N)

Z ~ N(O,N)

E Y R
ransmitter X Receiver

e Transmitter sends Gaussian vectors with potentially
correlated entries.
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System model

¢ Transmitter sends data in the form of length-k vectors,
X.

e Relay processes its observed signal, Y; by a strictly
lower triangular matrix; e.g.,

0 0 0 0]y
d21 0 0 0 Y2

DX = :
d3; d3» O O |y3
dg1 dgz dgz Of [y4

¢ Relay does not decode the received signal.
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Background

System model

Covariance of transmitted Gaussian vectors is denoted
by ¥ = E{XXT}.

Relay uses a lower triangular k x k matrix, D, to
process and forward received signal.

Relay signal contaminated by Gaussian noise,

Z1 ~ N(0,NIy)

Receiver signal contaminated by Gaussian noise,

Z ~ N(0,Nly)

What is the maximum rate achieved by the
amplify-and-forward scheme?
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Background

The design problem

Z; ~ N(0,N)
Z ~ N(O,N)
Y, Xy
) .
Y .
ransmitter X 1 + 4 Receiver

Relay transmitted signal:

X1 =DY; = D(aX + Zl) = aDbX + DZ;.

Received signal:

Y =X +bX; +Z = (I +abD)X + bDZ; + Z.

Signal covariance:

E{(I + abD)XXT (I +abD)T} =
Noise covariance:

E{(bDZ; + Z)(bDZ; +Z)"} =

(I +abD)Z(l + abD)"

N(I +b?DDT)
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Background

s o Power constraints:

Casell: @ # 0 .
e For transmitter: Tr(E{XXT}) = Tr(X) < c;.
e For relay:

Tr(E{X1X{ }) = a?NTr(DXD") + N Tr(DD") < c,.
e How to find jointly optimal ¥ and D?
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e Signal covariance:

Background E{(I + abD)XXT (I +abD)"} = (I + abD)x(l + abD)"
e Noise covariance;:

e e E{(bDZ; +Z)(bDZ; + Z)"} = N(I +b?DDT)

Casell: ® # 0

e Design problem:

det((l +abD)X(l + abDT) + N(I + b2DDT)>
max log
*D det(N(I + b2DDT)>
subjectto X >0, Tr(X) < ¢y,

Tr(@®DXD' +NDD') < ¢y,
Dj=0, j=>i,

9
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he KKT conditions

Optimizing X for fixed D

¢ For fixed D, original optimization becomes equivalent to

max  log det(HZHT + I),

subjectto X >0, Tr(X) < cq,
Tr(DID') < ca,
where H = ﬁ(l +b?DDT)~Y/2(] 4 abD) and
cs = % (c2 — NTr(DDT)).
e Problem is convex in ¥.
e For strictly positive ¢, and cs, the relative interior of the
feasible set not empty.
e KKT conditions are necessary and sufficient for
optimality.
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Optimizing X for fixed D

T
mgx log det(H)ZH + I),
subjectto X >0, Tr(X) < cq,
T(DXD') < cs,

e The Lagrangian corresponding to the optimization

problem is

L(Z, 1, p2, @) = —logdet(HEHT +1)+ g (Tr(Z) —c4)
+ p12(Tr(DEDT) — ¢3) — Tr(SX).
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The KKT conditions

e Gradient of Lagrangian:

VZL(Zmul?,qu (D) = _HTH(I + ZHTH)_l

e Primal feasibility:
Y >0, M(X)<cy,

e Dual feasibility:

(DtO? MlZOa

e Complementarity slackness:

Tr(®X) =0,

pa (Tr(X) —c1) =0,

+ pl + DD —d =0

Tr(DXD") < c3

p2 >0

112(Tr(DED") —c3) = 0.
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Solving the KKT conditions

Solving VsL = 0 yields
Y = (ual + DD — )7t — (HTH) L.
SinceHTH = 0, » = 0and X > 0, we have
pal +poDTD = (Z+ (HTH)™) + & = 0.

Since DT D is rank deficient, pq > 0.
Hence, p1 (Tr(X) — c1) = 0 yields

Tr(X) = cs.

Transmitter must use all available power.
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Solving the KKT conditions

From complementarity slackness, we have
oY =Y =0.
Using,
T = (! +p2D'D — &)t — (HTH) ™%
it follows that

((,,Lll 4 D™D — )L (HTH)—l)cb —0.

What choices of u4, up, ® solve this equation?
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e What choices of 1, up, ® solve

((ull + DD — &)L - (HTH)—1>¢ — 07

Tze:f(‘T:‘:)undiliZns ° Choosing (Hll 4 NZDTD _ (D)_l — (HTH)_1 does not

Casell: ® # 0

work, because in this case ¥ = 0 and Tr(X) # ¢;.
e We have two possibilities:

e Casel:
=0
e Case ll:
d £0,
and thus

€ N((ml +12D"D — ®) 7 — (HTH) ).

o We will study these cases separately.
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Solving the KKT
conditions—Case I: =0

For any ¢,
T = (ml +p2D'D = @)t — (HTH)™%.
When & =0: (v; =1/u1 and vy = pp/p1, pg > 0.)
Y =u(l +,D'D)"t — (HTH)™?
Since Tr(X) = ¢y,

. Cy +Tr((HTH)—1)
' Tr((l +u2DTD)‘1>'

Is there a solution of the KKT system with & = 0?
Study v, to solve KKT system.
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Solving the KKT
conditions—Case I: =0

Consider the conditions:
Tr(DXD') <c3 and up(T(DED') —c3) =0.
When ¢ = 0O, first condition becomes
Tr(DTD(l +1,DTD)™1) _ Gt Tr(DTD(HTH)™)
Tr((l + VZDTD)_1> R +Tr<(HTH)—1) '

What is the effect of v, on this constraint?
Lemma: Left hand side monotonically decreasing in v,.



P Algorithm for solving the KKT

Gohary and

Yanikomeroglu SyStem When (D - O
Algorithm:
e Setrp, =0.
£ D7D ca+Tr(DTD(HTH)~?)
S
c1+Tr((HTH)*1)

he KKT conditions [ ] I

Tyy—1
e ISy = W| — (HTH)_l = 07?

e Yes: KKT system solved with ¢ = 0.
e No: no solution of KKT system exists with & = 0.

¢ If not, increase v, until

T(D'D(14+1,D'D)™!)  c3+T(D'D(HTH)™)

Tr((l + VQDTD)_1> oot Tr((HTH)—l)

e Check resulting X for positive definiteness.
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Solving the KKT
conditions—Case Il: ® # 0

In this case ¢ ¢ N((ull + D™D — )71 — (HTH)_l)-

Let ® = UpAoUJ.
Let U3 span the null space of ®.
If Ay denotes the eigenvalues of ¥, then

T = (pal +42D'D = @)t — (HTH) ™ = UgAs(Ug)"

Let rank(X) = ky.
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e Manipulating
(ual + p2DTD — @)™ — (HTH) ™ = UgAs(UZ)T,
we obtain
(U$)T (ual + 12D DYHTH) UG AT =
Ast = (U$)" (nal + 12D D)Ug.

e Hence, either
e ks > 1 and

(U)T (pual + 12DTD)(HTH)TUZ AT symmetric, or

L k): =1.
e Cases of ky = 1 and ky > 1 considered separately.
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e The matrix D is strictly lower triangular.
e Conclude that D"D and HTH do not commute.

e Hence, to satisfy

Ast = (Ug)T (sl + 2D D)(HTH) TUgAS!

1o must be equal to zero.

= (Ug)T (1l + 12D D)Ug,
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Case Il: ® # O—Implications

When ¢ # 0 and ky > 1:
e Conclusion 1: u, = 0.
e Conclusion 2:

AFt = 1 (Ug)  (HTH)HUGATY = ki -

Hence, (Ug)T (HTH)~1UZ must be diagonal.
Therefore:
Us = Up,.

e Conclusion 3: Eigenvectors of ¥ and ¢ form

complementary subsets of eigenvectors of HTH.

e From (1)

1
Ay = —I. — AL and
Ml > Hz

Ao = palky — NHg-

(1)
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When ¢ # 0 and ky > 1:
e Conclusion 4:

he KKT conditions
Casel: ® = 0

EERl® 7 0 /\H): - ,ul|k): and ,u1|k¢ ~ /\H¢ > 0.
e That s, eigenvalues values of ® and ¥ must be distinct.

e The Lagrange multiplier

¢+ Tr(AR)

K1
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Algorithm for solving the KKT
system when ® 0 and ky > 1

Algorithm;

« Arrange eigenvalues of HTH in descending order.
e Setky = 2,
e Assign first ks eigenvalues of HTH to Ay,

e Assign remaining ke = k — ks eigenvalues of HTH to
Aro

e Compute iy = #f/\;l)
N

o If Apg >l and  pale, = An, > 0, construct
1
Ay = — g, — A_l;and
/J]_ >N Hs
the eigenvectors of HTH.

e If, for this ks, 111 does not satisfy the constraint,
ks < ks + 1, repeat.
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Casell: » #0and ky =1

The input covariance
Y =coww', wiw = 1. 2)
When v, > 0, we must have
wDTDw = c3/cy.

Notice that c3/c; < Amax(DTD).
The general expression of ¥ is

Y = (ual + DD —d)"t — (HTH)™L.

Using (2), repeated application of the matrix inversion
lemma yields

WTHTH (gl + poDTD) L = T,

~ and w are generalized eigenvalue-eigenvector pair of
(pal + poDTD)"THTH.
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Optimal Relay
Precoder—Case |
(] 0

Casell: ® # 0

Algorithm for solving the KKT
system when ® #0and ky =1

e Search for a pair
(11, 12) € (0,1/c1) x [0,1/C3 — paCy/C3).

e For each pair, find w to be a generalized eigenvectors
of (1] + uDTD)"IHTH.

e Ifcs/ci —Ww'D'Dw > eorcz/c; —w'D'Dw < 0,
repeat.
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Gohary and Z; ~N(0,N)
Yanikomeroglu
Z ~ N(0,N)
ransmitter X 1 + Y @
caer e 40 ea=45N=07, .
s * c1=10,k=4,c3 = %(c; ~NT(D'D)), D = -5

For comparison, we use ¥t = vol.

70 is chosen to satisfy one of Tr(X1) < c; and
Tr(DX1DT) < c3 with equality.

Rate expression: R = log, det(HXHT +1).

[ ]
2
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10
]
[72]
) 8t
©
The KKT conditions E
Casel: ® =0 S 6
Casell:  #£ 0 =
©)
Numerical o
Examples g 4
(%]
=
m 2r . i 1
o —— Optimal Covariance
Optimal Relay ——ldentity Covariance
Precoder—Case | 0 L L T .
S 0 5 10 15 20 25
Casell: ® #£ 0 CZ

e For low c,, optimal X is rank one.
e For high c,, optimal X is full rank.
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Numerical
Examples

Optimal Relay
Precoder—Case |
(] 0

Casell: ® # 0

Numerical Example 2

12

10

——Optimal Covariance ||
——Identity Covariance

0 5 10 15 20 25
C2

R, Bits per Channel Use
(2]

e For low and high c,, optimal X is rank three. Relay
power constraint not active.

e For intermediate c,, optimal X is full rank.
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- e The simplicity of amplify-and-forward relaying makes it
Cosnt 0 =0 appealing for industrial applications.

e Input covariance and relay precoder design is difficult to
design jointly.

Summary

¢ For fixed relay precoder, the design of input covariance
is convex optimization problem.

e Analytical solution of the problem of designing input
covariance enables efficient search for jointly optimal
relay precoders.
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Summary

Summary of covariance
optimization

How to find analytical solution for input covariance?
e Solve the KKT optimality conditions.
e Show that there are two possibilities: ® =0 or ¢ # 0.
e Study each possibility separately.

What about the relay precoder D?
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Optimizing
relay precoder
Optimal Ay

Optimizing the relay precoder

Finding optimal relay precoder is still difficult.
Non-convex problem with intricate structure.

Finding a globally optimal solution may be too
ambitious.

Can we find close to optimal relay precoders?
Our approach: use branch-and-bound-type technique.
Consider the cases:

e ®=0withun, =0and v, > 0.

e ®£0and v, =0 (ks > 1).

e ®£0and v, >0 (ks = 1).
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The design problem for fixed v, and v5:
min Iogdet((l +b?DTD)(I +1/2DTD)),
wwwe subjectto vi(l+1,DTD) = (HTH) ™,
e v Tr((1+12,DTD)™) = Tr(HTH) ™) + ¢,
Tr(DTD(azul(I n Z/ZDTD)_]')
—a?Tr(D'D(HTH) ) + NTr(D'D) = cy,
Dj =0, j>i,

coder—Case I:

® =0

Casell: ® #£ 0

where

HTH = %(I +abD")(I +b?DD") (I + abD).
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; ¢ Proposition: For any v, > 0 and v, > 0, optimal relay
precoder is at most rank-1.
e Implication: When X is full rank, optimal relay precoder
is rank-1.
opmarte e Efficient algorithm for finding optimal rank-1 D and the
o5 corresponding v, and vs.
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Casell: d#£0

When ¢ # 0, we consider the following cases:
e ky >1andwv, =0.
° k)::].andl/zzo.
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Design problem:

min
D

om0 =0 subject to

Optimal Relay
Precoder—Case

(] 0
Casell: ® # 0

Casell: ® #£0,ky > 1

det(Ay;))

Tr(ALD) = viks — €1

N Tr(D"D) + avy Tr(U{}_DTDUy, )
—a*Tr(U], DTDUuALY) < ¢y

Dj=0, Vj>i.

e An, denotes the diagonal matrix of largest ks
eigenvalues of HTH.
e HTH = (1 + abDT)(I + b?DDT)~1(l + abD)
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Casell: ®#£0,ky > 1

In this case, we develop necessary conditions that an
optimal precoder must satisfy:

° /\H): - ,ul|k): and ullko - AHo = 0.
° /\H); = ’Yllkl @’yllkz, ki + ko = Kks.
e Can we find precoders that satisfy these conditions?
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e precoders—Case Il: ® +# 0,
kz >1
S « To satisfy necessary conditions, ks =k — 1.
e Explicit expression for optimal rank-1 D parametrized
by one parameter, v,

e e Efficient algorithm for finding optimal v
fvﬁ;# « Design of optimal rank-1 relay precoder does not

depend on particular left and right singular vectors.
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e Can we find precoders that satisfy necessary optimality
conditions with rank(D) > 1?

Casel: ® = 0 ° Use _ N

Casell: ® 4 0 O O O O
op O 0 O
D=|0 o2 0O O
(0 0 -+ ox_1 Of
Spekc(igl)bwilth e Choice yields tridiagonal HH.
ran >
® 7 Okg>1 e Lemma: Eigenvalues of tridiagonal matrices are distinct

unless some off-diagonal entries are zero.
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e Using lemma, we show that setting
. k
=0 =1...,--1
D) 02 ) l ) ) 2 )
5(\#:\1 40 02i—-1 :07 i :17°°'7r7
. k
Ogi_1 = O, |:r-+1,“.,§.

yields D that satisfy necessary optimality conditions.
e Corresponding ranks of input covariances:

k Kk
Special D with = — = - —
ra;ﬁc(l;) >W|1 k): > + r, r :I.7 ey > 2.
@ #0ks >1

o Efficient algorithm to determine optimal ks and D.

¢ Global optimality not guaranteed. (Ongoing
investigation)
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Optimal D
whenky =1

Optimal Precoder Design
Problem
Whenky =1, ¥ =cyww'.
w generalized eigenvector of (HTH)~Y(u1l + u2DTD).
Design problem:

max ~ w'HTHw
subjectto  a’w'D'Dw +NTr(D'D) < ¢,
(HTH) " (pal + 12D D)W = w,
Dj=0, j>i.

Optimization over w, D, 1 and u».
Power constraint satisfied with equality because

1
WTHTHW = =(u1 + pow DT Dw).
Y
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cao 0 e Objective w' HT Hw upper bounded by Amax(HTH).

e Amax(HTH) is upper bounded by monotonically
increasing function of max singular value of D.

e For D with given norm, upper bound is maximized
when D is rank-1.

Casell: ® # 0

Optimal D
whenky =1
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The KKT conditions

S e Restrict D to be rank-1; i.e., D = suv'.
e Not necessarily optimal.
e We show that
©@2 2.2
a2+N ~  — N

a7 o Find explicit expressions for optimal 1, uo, and w.
Optimal D

whenky =1
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Summary of Relay Precoder

®=0,1,>0

¢750,l/2=0

Optimal Relay
Precoder—Case |
(] 0

Casell: ® # 0

Summary

Necessary Conds.

®+£0,1,>0

Entries k

Necessary Conds.

Optimization
rank(D*) =1

ks =k -1
rank(D) =1

D Subdiag.
r Interlacing

Il
INTE
N~ H-
=

rank(D) =1
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o Amplify-and-forward is an attractive relaying technique.

¢ Joint design of input covariance, ¥, and relay precoder,
D, difficult.

coero =0 e For fixed D, design problem convex in ¥.

e Obtain closed form solution of the KKT optimality
conditions.

e For each solution, study the corresponding relay
precoder design problem.

e e For some cases, the optimal expression for D can be
derived.

e For other cases, precoders that satisfy necessary
optimality conditions are available.

Conclusion
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