On the Optimization of Condition-Based Maintenance Decisions

Andrew Jardine, Dragan Banjevic & Neil Montgomery

The Fields Institute May 3, 2011

Part I - Theory

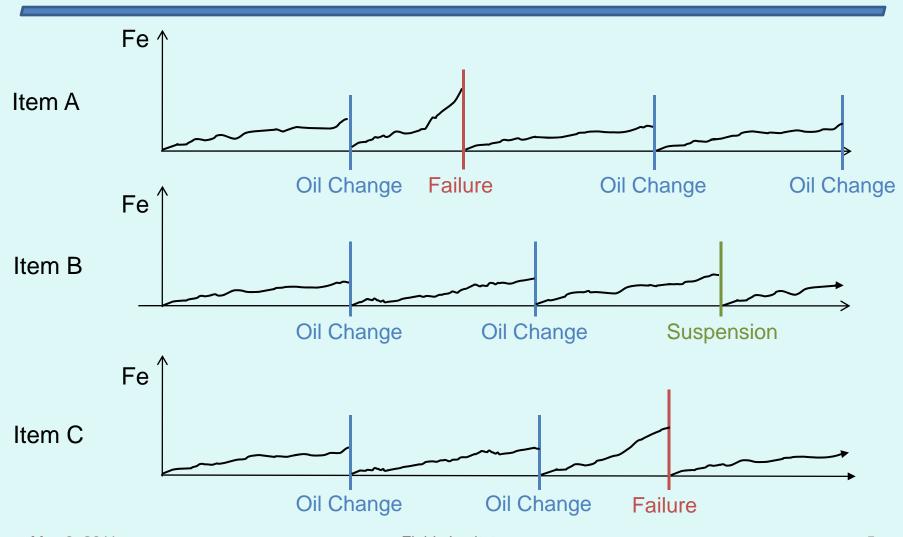
Problem Definition

- To optimize the replacement policy for a critical item:
 - Diesel engine
 - Gearbox
 - Pump
- that is subject to condition monitoring:
 - Oil Analysis
 - Vibration analysis
 - Infrared thermography...
- Goal: calculate conditional reliability function, remaining expected life (RUL), and ...
 produce a decision rule to minimize the average longrun cost per unit time

Data Required

- Lifetime "Events" data:
 - Installations
 - Failures
 - Suspensions
 - Minor maintenance actions (e.g. oil changes)
- Condition monitoring "Inspections" data.
- Assumption: replacements (planned, or due to failure) are "as-good-as-new"

Data Example



Model Definition

T – time to failure

Z(t) – covariate process with finite number of states

A joint model for failure time and covariates:

$$(N(t), Z(t)), \text{ where } N(t) = I(T > t),$$

a non-homogeneous Markov process.

What describes a Markov process?

Transition probabilities:

$$P_{ij}(s,t) = P(T > t, Z(t) = j | T > s, Z(s) = i)$$

$$= P(T > t | T > s, Z(s) = i)P(Z(t) = j | T > t, Z(s) = i)$$

Consider: $P_{ij}(t, t + \Delta t)$.

"Survival Model" (Hazard Rate Model)

$$P(t < T \le t + \Delta t | T > t, Z(t) = i) = h(t, i)\Delta t$$

"Covariate Process Model" (Transition Rate Model)

$$P(Z(t + \Delta t) = j | T > t + \Delta t, Z(t) = i) = \lambda_{ij}(t)\Delta t$$

Conditional Reliability Function

$$R(s, x, i) = P(T > s + x | T > s, Z(s) = i)$$

$$= R(s, \delta, i) \sum_{k} p_{ik}(s, \delta) R(s + \delta, x - \delta, k)$$

$$p_{ik}(s, \delta) = \lambda_{ij}(t)\delta \qquad \delta - \text{small}$$

$$R(s, \delta, i) = \exp\left\{-\int_{s}^{s + \delta} h(u, i) du\right\} = 1 - h(s, i)\delta$$

Remaining Expected Life:

$$E(T - s|T > s, Z(s) = i) = \int_0^\infty R(s, x, i)dx$$

Hazard Rate Model

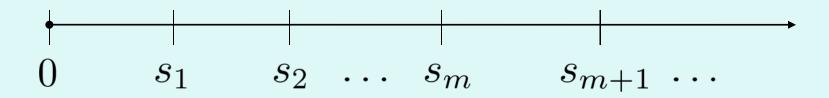
Weibull PHM:

$$h(t,Z(t)) = \underbrace{\frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta-1}}_{\text{Contribution of age}} e^{\gamma_1 \, Z_1(t) + \dots + \gamma_n \, Z_n(t)}$$

Parameters estimated using maximum likelihood.

Transition Rate Model

Time range split into intervals:



$$\lambda_{ij}(t) = \lambda_{ij}^{(m)}$$
 for $s_m \le t \le s_{m+1}$

The $\lambda_{ij}^{(m)}$ are estimated using maximum likelihood:

$$\hat{\lambda}_{ij}^{(m)} = \frac{n_{ij}^{(m)}}{A_i^{(m)}}, \quad i \neq j \quad - \text{ occurrence/exposure rate}$$

May 3, 2011 Fields Institute 10

Decision Model

Decision rule:

- Always replace at failure time T
- At time t, replace preventively if:

$$h(t, Z(t)) \ge d$$

d – decision risk level

$$T_d = \min\{t : h(t, Z(t)) \ge d\}$$

- Stopping time: $\min\{T, T_d\}$

Optimal Decision Risk Level

- Average cost per unit time:

$$\Phi(d) = \frac{C_f P(T \le T_d) + C_p P(T > T_d)}{E(\min\{T_d, T\})}$$

 C_f and C_p are the failure and preventive replacement costs.

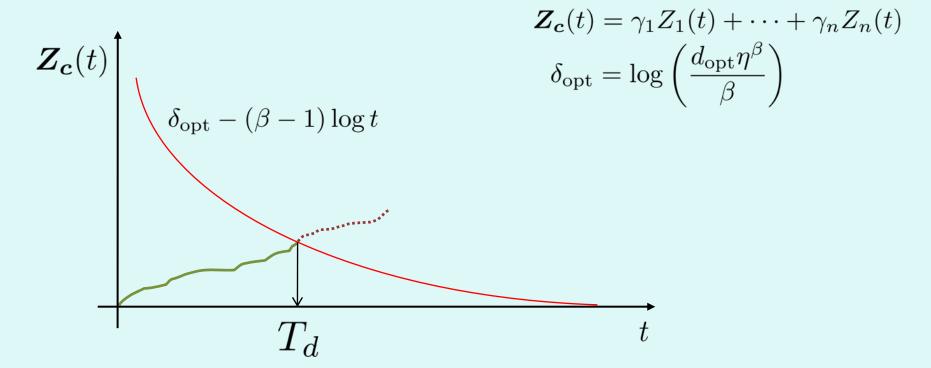
- Optimal decision risk level d_{opt} :

$$\Phi(d_{\text{opt}}) = \min_{d} \Phi(d)$$

Optimal Policy Display

Replace, if at time t:

$$Z_c(t) \ge \delta_{\text{opt}} - (\beta - 1) \log t$$



May 3, 2011 Fields Institute 13

Part II - Applications

Where it started - 1982



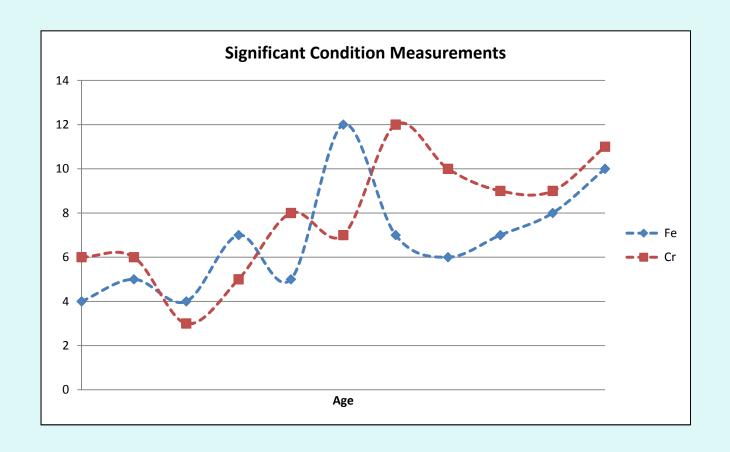
Estimated Hazard Rate at Removal

Number	Flight Hours	Fe	Cr	Hazard Rate
1	11770	5	6	0.043
2	11660	2	6	0.012
3	8460	12	2.4	0.0071
4*	12630	8	1	0.0014
5	7710	8	0	0.00094
6*	9240	2	3	0.00029
7*	5660	10	1	0.00020
8*	7190	2	2.5	0.000073

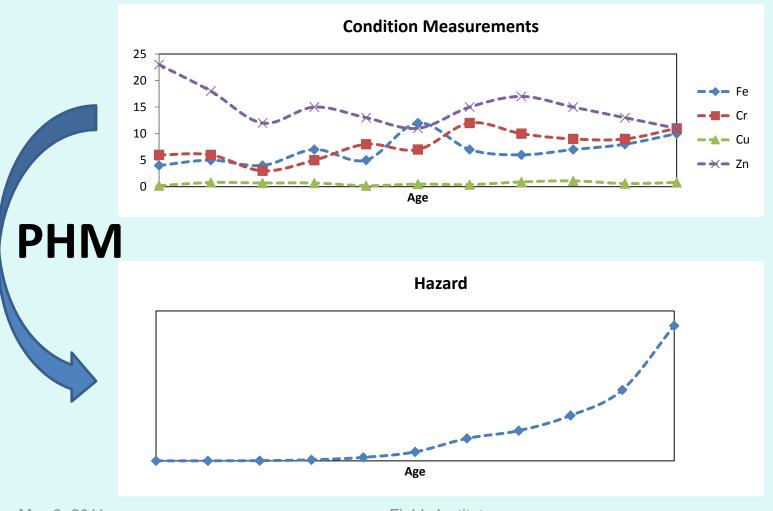
^{*} Doubtful Removal

$$h(t, Z(t)) = \frac{4.47}{24100} \left(\frac{t}{24100}\right)^{3.47} e^{0.41Z_1 + 0.98Z_2}$$
 $Z_1 = \text{Fe concentration}$ $Z_2 = \text{Cr concentration}$

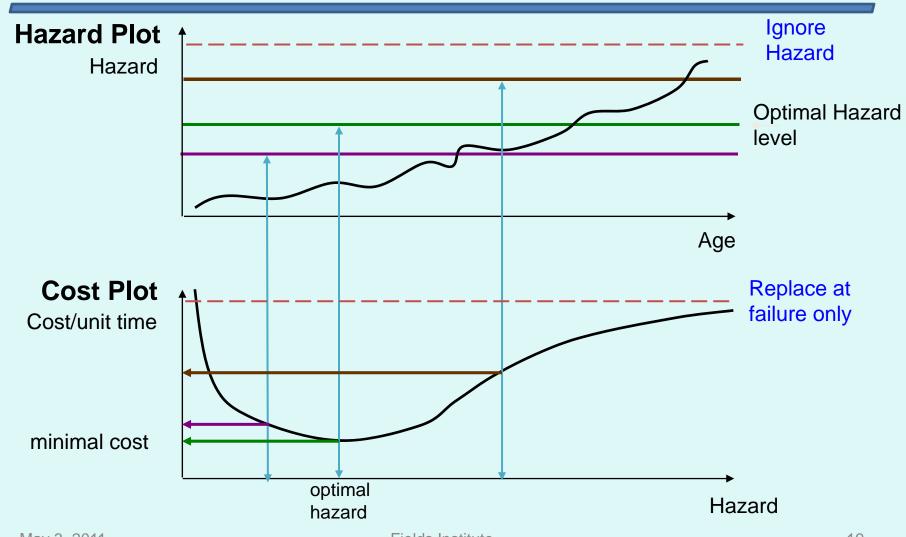
From Data to Hazard



From Data to Hazard



Optimal Policy: Optimal Hazard Level



Optimal Decision Chart

May 3, 2011

Condition-Based Maintenance

Irving Pulp and Paper: Executive Summary

Analysis of Goulds 3175L Pumps Bearings Vibration Data

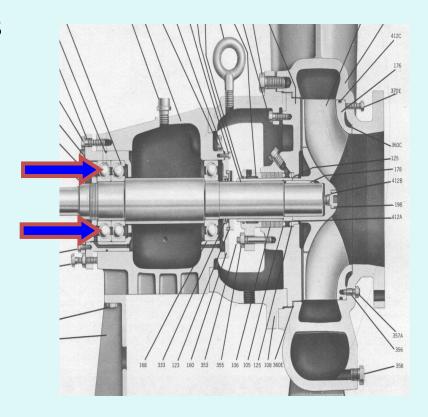
 56 vibration measurements provided by accelerometer

Using <EXAKT>:

2 measurements significant

A Check:

- Had <EXAKT> model been applied to previous histories
- Savings obtained = 33 %



May 3, 2011 Fields Institute 22

Using EXAKT Decision Chart

May 3, 2011 Fields Institute 23

EXAKT at Irving Pulp & Paper

- Irving P&P have installed the software for everyday use, and have developed a tool to link the relevant databases.
- Steps were taken to make small modifications to the pumps to improve reliability.
- No pump failures for several years, after 15 failures in previous 5 years for 12 pumps.

Modeling of Diesel Engines

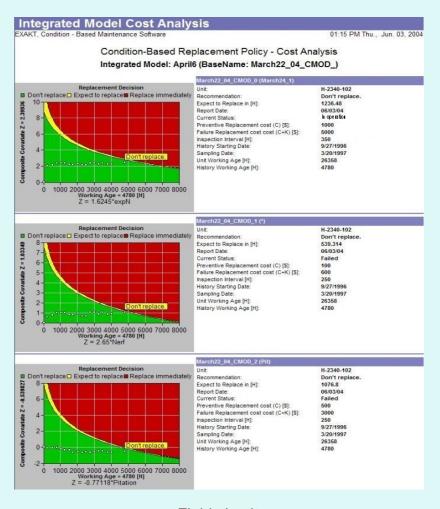
Diesel Engines: Failure Modes

	Type of Failure	Count	
0	Not Known	3	
1	Cooling System	13	
2	Fuel System	6	
3	Generator	9	
4	Accessories	9	
5	Cylinder Liners and Rings	24	
6	Valves and Running Gear	20	
7	Pistons, Articulations and Bearings	15	
8	Cylinder Heads	14	
9	Misc, including cylinder block failures.	12	

Unrelated to oil readings

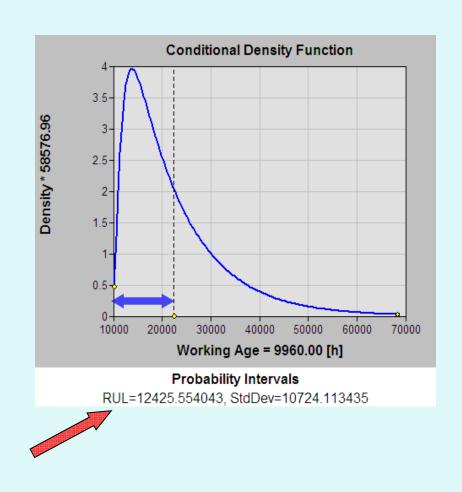
Possibly related to oil readings

Simultaneous decisions for each failure mode of a repairable system

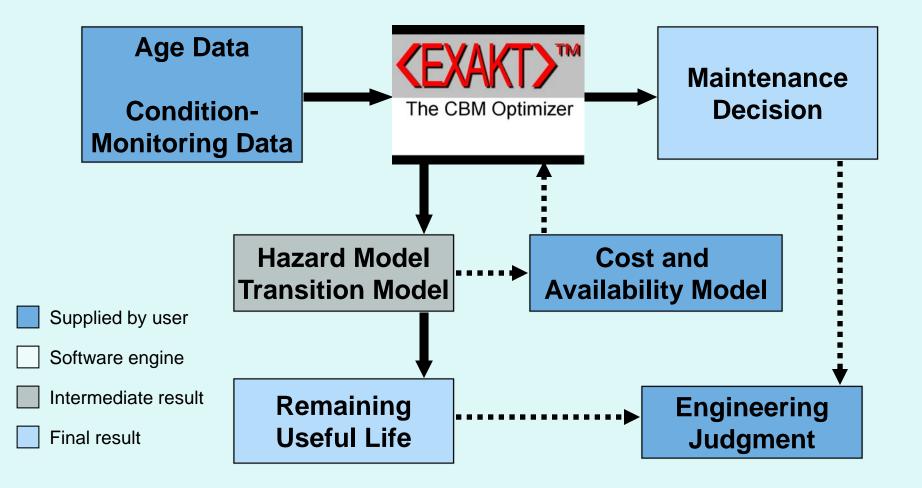


Conditional Density Function & Remaining Useful Life

- Shows the shape of the distribution of the time to failure given current conditions
- Expected time to failure (Remaining Useful Life, or RUL)



Summary: Principle of CBM Optimization



The MORE Consortium Members

Acknowledgements

- Professor Karen Fung
- Professor Viliam Makis
- Research Students at C-MORE

Thank you

Andrew Jardine, Dragan Banjevic & Neil Montgomery

University of Toronto | Department of Mechanical and Industrial Engineering