Computing Hilbert modular forms

John Voight
University of Vermont

Second Montreal-Toronto Workshop in Number Theory Fields Institute
9 April 2011

Main algorithm

Theorem (Dembélé, Dembélé-Donnelly, Greenberg-V, V)

There exists an algorithm which, given a

```
totally real field F,
a weight }k\in(\mp@subsup{\mathbb{Z}}{\geq2}{}\mp@subsup{)}{}{[F:\mathbb{Q}]}\mathrm{ , and
a nonzero ideal }\mathfrak{N}\subseteq\mp@subsup{\mathbb{Z}}{F}{}\mathrm{ ,
```

computes the space $S_{k}(\mathfrak{N})$ of Hilbert cusp forms of weight k and level \mathfrak{N} over F as a Hecke module.

In other words, there exists an explicit finite procedure which takes as input the field F, the weight k, and the ideal \mathfrak{N} encoded in bits (in the usual way), and outputs: a finite set of sequences $\left(a_{\mathfrak{p}}(f)\right)_{\mathfrak{p}}$ encoding the Hecke eigenvalues for each cusp form constituent f in $S_{k}(\mathfrak{N})$, where $a_{\mathfrak{p}}(f) \in E_{f} \subseteq \overline{\mathbb{Q}}$.

Example

Let $F=\mathbb{Q}(\sqrt{5})$, with $w=(1+\sqrt{5}) / 2$. Let $k=(2,2)$ and write simply $S_{2}(\mathfrak{N})=S_{2,2}(\mathfrak{N})$.

For ideals $\mathfrak{N} \subset \mathbb{Z}_{F}=\mathbb{Z} \oplus \mathbb{Z} w$ with $N(\mathfrak{N}) \leq 30$ we have $\operatorname{dim} S_{2}(\mathfrak{N})=0$.

Let $\mathfrak{N}=(2 w-7)$ with $N(\mathfrak{N})=31$. Then $\operatorname{dim} S_{2}(\mathfrak{N})=1$.

π	2	$w+2$	3	$w+3$	$w-4$	\ldots	$2 w+5$	$2 w-7$
$N \mathfrak{p}$	4	5	9	11	11	\ldots	31	31
$a_{\mathfrak{p}}$	-3	-2	2	4	-4	\ldots	8	-1

Here, $\mathfrak{p}=(\pi)$.
The numbers $a_{\mathfrak{p}}$ satisfy $a_{\mathfrak{p}}=N \mathfrak{p}+1-\# A\left(\mathbb{F}_{\mathfrak{p}}\right)$ where

$$
A: y^{2}+x y+w y=x^{3}+(w+1) x^{2}+w x
$$

and $\mathbb{F}_{\mathfrak{p}}$ denotes the residue class field of \mathfrak{p}.

Geometry

In these lectures, for simplicity we restrict to forms of parallel weight $k=(2, \ldots, 2)$.
To compute with the space $S_{2}(N)$ of classical (elliptic) cusp forms of level N, one approach is to use the geometry of the modular curve $X_{0}(N)=\Gamma_{0}(N) \backslash \mathcal{H}^{*}$, where $\mathcal{H}^{*}=\mathcal{H} \cup \mathbb{P}^{1}(\mathbb{Q})$ denotes the completed upper half-plane.

A cusp form $f \in S_{2}(N)$ corresponds to a holomorphic differential form $f(z) d z$ on $X_{0}(N)$ and so by the theorem of Eichler-Shimura arises naturally in the space $H^{1}\left(X_{0}(N), \mathbb{C}\right)$.

In a similar way, a Hilbert cusp form $f \in S_{2}(\mathfrak{N})$ gives rise to a holomorphic differential n-form $f\left(z_{1}, \ldots, z_{n}\right) d z_{1} \ldots d z_{n}$ on the Hilbert modular variety $X_{0}(\mathfrak{N})$. But now $X_{0}(\mathfrak{N})$ has dimension n and f arises in $H^{n}\left(X_{0}(\mathfrak{N}), \mathbb{C}\right)$. Yikes!

Computing with higher dimensional varieties (and higher degree cohomology groups) is not an easy task.

General strategy

Langlands functoriality predicts that $S_{2}(\mathfrak{N})$ as a Hecke module occurs in the cohomology of other "modular" varieties. We use a principle called the Jacquet-Langlands correspondence, which allows us to work with varieties of complex dimension 0 or 1 by considering twisted forms of GL_{2} over F.

Let B be a quaternion algebra over F with discriminant \mathfrak{D} and let $\mathfrak{N} \subseteq \mathbb{Z}_{F}$ be coprime to \mathfrak{D}.

The Jacquet-Langlands correspondence implies the isomorphism of Hecke modules

$$
S_{2}^{B}(\mathfrak{N}) \hookrightarrow S_{2}(\mathfrak{D N})
$$

where $S_{2}^{B}(\mathfrak{N})$ denotes the space of quaternionic cusp forms for B (of weight 2) and level \mathfrak{N}. The image consists exactly of those forms which are new at all primes $\mathfrak{p} \mid \mathfrak{D}$.

Quaternionic modular forms: Notation

Quaternionic modular forms are, roughly speaking, analytic functions on the ideles of B with a certain left- and right-invariance.

Let v_{1}, \ldots, v_{n} be the real places of F, and suppose that B is split at v_{1}, \ldots, v_{r} and ramified at v_{r+1}, \ldots, v_{n}, i.e.

$$
\iota_{\infty}: B \hookrightarrow B_{\infty}=B \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{\sim} \mathrm{M}_{2}(\mathbb{R})^{r} \times \mathbb{H}^{n-r}
$$

where \mathbb{H} denotes the division ring of real Hamiltonians. Let

$$
K_{\infty}=\left(\mathbb{R}^{\times} \mathrm{SO}_{2}(\mathbb{R})\right)^{r} \times\left(\mathbb{H}^{\times}\right)^{n-r} \subseteq B_{\infty}
$$

be the stabilizer of $(\sqrt{-1}, \ldots, \sqrt{-1}) \in \mathcal{H}^{r}$.
Let $\mathcal{O}_{0}(1) \subseteq B$ be a maximal order and let $\mathcal{O}=\mathcal{O}_{0}(\mathfrak{N}) \subset \mathcal{O}_{0}(1)$ be an Eichler order of level \mathfrak{N}.
Let $\widehat{\mathbb{Z}}=\lim _{n} \mathbb{Z} / n \mathbb{Z}=\prod_{p}^{\prime} \mathbb{Z}_{p}$ and let \uparrow denote tensor with $\widehat{\mathbb{Z}}$.

Quaternionic modular forms: Definition

Modular forms on B are analytic functions on $B_{\infty}^{\times} \times \widehat{B}^{\times}$which are invariant on the left by B^{\times}and transform on the right by $K_{\infty} \times \widehat{\mathcal{O}}^{\times}$on the right in a specified way.

A (quaternionic) modular form of parallel weight 2 and level \mathfrak{N} for B is an analytic function

$$
\phi: B_{\infty}^{\times} \times \widehat{B}^{\times} \rightarrow \mathbb{C}
$$

such that for all $(g, \widehat{\alpha}) \in B_{\infty}^{\times} \times \widehat{B}^{\times}$, we have:
(i) $\phi(g, \widehat{\alpha} \widehat{u})=\phi(g, \widehat{\alpha})$ for all $\widehat{u} \in \widehat{\mathcal{O}}^{\times}$;
(ii) $\phi(g \kappa, \widehat{\alpha})=\left(\prod_{i=1}^{r} \frac{j\left(\kappa_{i}, \sqrt{-1}\right)^{2}}{\operatorname{det} \kappa_{i}}\right) \phi(g, \widehat{\alpha})$ for all $\kappa \in K_{\infty}$; and
(iii) $\phi(\gamma g, \gamma \widehat{\alpha})=\phi(g, \widehat{\alpha})$ for all $\gamma \in B^{\times}$.

Let $M_{2}^{B}(\mathfrak{N})$ denote the space of such forms.

Quaternionic modular forms: Upper and lower half-planes

Modular forms on B are analytic functions on $B_{\infty}^{\times} \times \widehat{B}^{\times}$which are invariant on the left by B^{\times}and transform by $K_{\infty} \times \widehat{\mathcal{O}}^{\times}$in a specified way. Such a function uniquely defines a function on the quotient

$$
B_{\infty}^{\times} / K_{\infty} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}
$$

We identify $B_{\infty}^{\times} / K_{\infty} \rightarrow\left(\mathcal{H}^{ \pm}\right)^{r}=(\mathbb{C} \backslash \mathbb{R})^{r}$ by $g \mapsto z=g(\sqrt{-1}, \ldots, \sqrt{-1})$.

Thus, a modular form is equivalently a function

$$
f:\left(\mathcal{H}^{ \pm}\right)^{r} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times} \rightarrow \mathbb{C}
$$

which is holomorphic in the first variable and locally constant in the second one and such that

$$
f\left(\gamma z, \gamma \widehat{\alpha} \widehat{\mathcal{O}}^{\times}\right)=\left(\prod_{i=1}^{r} \frac{j\left(\gamma_{i}, z_{i}\right)^{2}}{\operatorname{det} \kappa_{i}}\right) f\left(z, \widehat{\alpha} \widehat{\mathcal{O}}^{\times}\right)
$$

for all $\gamma \in B^{\times}$and $\left(z, \widehat{\alpha} \widehat{\mathcal{O}}^{\times}\right) \in\left(\mathcal{H}^{ \pm}\right)^{r} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}$.

Quaternionic Shimura variety: Upper half-plane

Now we include the invariance on the right. Let $X_{0}^{B}(\mathfrak{N})(\mathbb{C})=B^{\times} \backslash\left(B_{\infty}^{\times} / K_{\infty} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}\right)=B^{\times} \backslash\left(\left(\mathcal{H}^{ \pm}\right)^{r} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}\right)$.

By Eichler's theorem of norms, we have

$$
\operatorname{nrd}\left(B^{\times}\right)=F_{(+)}^{\times}=\left\{a \in F^{\times}: v_{i}(a)>0 \text { for } i=r+1, \ldots, n\right\}
$$

In particular, $B^{\times} / B_{+}^{\times} \cong(\mathbb{Z} / 2 \mathbb{Z})^{r}$, where

$$
B_{+}^{\times}=\left\{\gamma \in B: \operatorname{nrd}(\gamma) \in F_{+}^{\times}\right\} .
$$

The group B_{+}^{\times}acts on \mathcal{H}^{r}, therefore we may identify

$$
X_{0}^{B}(\mathfrak{N})(\mathbb{C})=B_{+}^{\times} \backslash\left(\mathcal{H}^{r} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}\right)
$$

and a modular form on $\left(\mathcal{H}^{ \pm}\right)^{r} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}$can be uniquely recovered from its restriction to $\mathcal{H}^{r} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}$.

Quaternionic Shimura variety: Components

Now we have a natural (continuous) projection map

$$
X_{0}^{B}(\mathfrak{N})(\mathbb{C})=B_{+}^{\times} \backslash\left(\mathcal{H}^{r} \times \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}\right) \rightarrow B_{+}^{\times} \backslash \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}
$$

The reduced norm gives a surjective map

$$
\mathrm{nrd}: B_{+}^{\times} \backslash \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times} \rightarrow F_{+}^{\times} \backslash \widehat{F}^{\times} / \widehat{\mathbb{Z}}_{F}^{\times} \cong \mathrm{Cl}^{+} \mathbb{Z}_{F}
$$

where $\mathrm{Cl}^{+} \mathbb{Z}_{F}$ denotes the strict class group of \mathbb{Z}_{F}, i.e. the ray class group of \mathbb{Z}_{F} with modulus equal to the product of all real (infinite) places of F. Strong approximation implies that this map is a bijection if B is indefinite (but in general it is not if B is indefinite). Accordingly, our description will depend on if B is definite or indefinite.

Quaternionic Shimura variety: Indefinite case

First, suppose that B is indefinite. Then the space $X_{0}^{B}(\mathfrak{N})(\mathbb{C})$ is the disjoint union of connected Riemannian manifolds of dimension r indexed by $\mathrm{Cl}^{+} \mathbb{Z}_{F}$.

Let the ideals $\mathfrak{a} \subseteq \mathbb{Z}_{F}$ form a set of representatives for $\mathrm{Cl}^{+} \mathbb{Z}_{F}$, and let $\hat{a} \in \widehat{\mathbb{Z}}_{F}$ be such that $\widehat{a} \widehat{\mathbb{Z}}_{F} \cap \mathbb{Z}_{F}=\mathfrak{a}$. (For the trivial class $\mathfrak{a}=\mathbb{Z}_{F}$, we choose $\widehat{a}=\widehat{1}$). There exists $\widehat{\alpha} \in \widehat{B}^{\times}$such that $\operatorname{nrd}(\widehat{\alpha})=\widehat{a}$. We let $\mathcal{O}_{\mathfrak{a}}=\widehat{\alpha} \widehat{\mathcal{O}} \widehat{\alpha}^{-1} \cap B$ so that $\mathcal{O}_{(1)}=\mathcal{O}$, and we put $\Gamma_{\mathfrak{a}}=\mathcal{O}_{\mathfrak{a},+}^{\times}=\widehat{\mathcal{O}}_{\mathfrak{a}}^{\times} \cap B_{+}^{\times}$. Then we have

$$
X_{0}^{B}(\mathfrak{N})(\mathbb{C})=\bigsqcup_{[\mathfrak{a}] \in \mathrm{Cl}^{+}\left(\mathbb{Z}_{F}\right)} B_{+}^{\times}\left(\mathcal{H}^{r} \times \widehat{\alpha} \widehat{\mathcal{O}}^{\times}\right) \xrightarrow{\sim} \bigsqcup_{[\mathfrak{a}] \in \mathrm{Cl}^{+}\left(\mathbb{Z}_{F}\right)} \Gamma_{\mathfrak{a}} \backslash \mathcal{H}^{r}
$$

where the last identification is obtained via the bijection

$$
\begin{aligned}
B_{+}^{\times} \backslash\left(\mathcal{H}^{r} \times \widehat{\alpha} \widehat{\mathcal{O}}^{\times}\right) & \sim \\
B_{+}^{\times}\left(z, \widehat{\alpha} \widehat{\mathcal{O}} \widehat{\mathcal{O}}^{\times}\right) & \mapsto z .
\end{aligned}
$$

Shimura curves

Then the space $X(\mathbb{C})=X_{0}^{B}(\mathfrak{N})(\mathbb{C})$ is the disjoint union of Riemannian manifolds of dimension r indexed by $\mathrm{Cl}^{+} \mathbb{Z}_{F}$.

Let $r=1$. Then the space

$$
X(\mathbb{C})=\bigsqcup_{[\mathfrak{a}] \in \mathrm{Cl}^{+}\left(\mathbb{Z}_{F}\right)} \Gamma_{\mathfrak{a}} \backslash \mathcal{H}=\bigsqcup_{[\mathfrak{a}] \in \mathrm{Cl}^{+}\left(\mathbb{Z}_{F}\right)} X_{\mathfrak{a}}(\mathbb{C})
$$

is the disjoint union of Riemann surfaces indexed by $\mathrm{Cl}^{+} \mathbb{Z}_{F}$, where $\mathcal{O}_{\mathfrak{a}}=\widehat{\alpha} \widehat{\mathcal{O}} \widehat{\alpha}^{-1} \cap B$ and $\Gamma_{\mathfrak{a}}=\mathcal{O}_{\mathfrak{a},+}^{\times}$.

Therefore, a modular form of parallel weight 2 and level \mathfrak{N} is a tuple $\left(f_{\mathfrak{a}}\right)$ of functions $f_{\mathfrak{a}}: \mathcal{H} \rightarrow \mathbb{C}$, indexed by $[\mathfrak{a}] \in \mathrm{Cl}^{+} \mathbb{Z}_{F}$, such that for all \mathfrak{a}, we have

$$
f_{\mathfrak{a}}(\gamma z)=(c z+d)^{2} f_{\mathfrak{a}}(z)
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{\mathfrak{a}}$ and all $z \in \mathcal{H}$.

Shimura curves: Example

Let $F=\mathbb{Q}(w)$ be the (totally real) cubic field of prime discriminant 257, with $w^{3}-w^{2}-4 w+3=0$. Then F has Galois group S_{3} and $\mathbb{Z}_{F}=\mathbb{Z}[w]$. The field F has class number 1 but strict class number 2: the unit $(w-1)(w-2)$ generates the group $\mathbb{Z}_{F,+}^{\times} / \mathbb{Z}_{F}^{\times 2}$ of totally positive units modulo squares.
Let $B=\left(\frac{-1, w-1}{F}\right)$ be the quaternion algebra with $i^{2}=-1$, $j^{2}=w-1$, and $j i=-i j$. Then B has discriminant $\mathfrak{D}=(1)$ and is ramified at two of the three real places and unramified at the place with $w \mapsto 2.19869 \ldots$, corresponding to $\iota_{\infty}: B \hookrightarrow \mathrm{M}_{2}(\mathbb{R})$. The order \mathcal{O} with \mathbb{Z}_{F}-basis

$$
1,\left(w^{2}+w-3\right) i, \frac{\left(w^{2}+w\right)-8 i+j}{2}, \frac{\left(w^{2}+w-2\right) i+i j}{2}
$$

is an Eichler order of level $\mathfrak{N}=(w)^{2}$ where $N(w)=3$.

Shimura curves: Example

A fundamental domain for the action of Γ on \mathcal{H} is as follows.

Shimura curves: Example

The ideals (1) and $\mathfrak{a}=(w+1) \mathbb{Z}_{F}$ represent the classes in the strict class group $\mathrm{Cl}^{+} \mathbb{Z}_{F}$.

The ideal $J_{\mathfrak{a}}=2 \mathcal{O}+\left(\left(w^{2}+w+2\right) / 2-4 i+(1 / 2) j\right) \mathcal{O}$ has $\operatorname{nrd}\left(J_{\mathfrak{a}}\right)=\mathfrak{a}$.
The left order of $J_{\mathfrak{a}}$ is $\mathcal{O}_{L}\left(J_{\mathfrak{a}}\right)=\mathcal{O}_{\mathfrak{a}}$ with basis
$1,\left(w^{2}-2 w-3\right) i, \frac{\left(w^{2}+w\right)-8 i+j}{2}$,

$$
\frac{\left(174 w^{2}-343 w-348\right) i+\left(w^{2}-2 w-2\right) j+\left(-w^{2}+2 w+2\right) i j}{10}
$$

Shimura curves: Example

A fundamental domain for the action of $\Gamma_{\mathfrak{a}}$ on \mathcal{H} is as follows.

Shimura curves: Example

The orders \mathcal{O} and $\mathcal{O}_{\mathfrak{a}}$ are not isomorphic. So the groups Γ and $\Gamma_{\mathfrak{a}}$ are not conjugate as subgroups of $\mathrm{PSL}_{2}(\mathbb{R})$ but nevertheless are isomorphic as abstract groups: they both have signature $(1 ; 2,2,2,2)$, so that

$$
\Gamma \cong \Gamma_{\mathfrak{a}} \cong\left\langle\gamma, \gamma^{\prime}, \delta_{1}, \ldots, \delta_{4}: \delta_{1}^{2}=\cdots=\delta_{4}^{2}=\left[\gamma, \gamma^{\prime}\right] \delta_{1} \cdots \delta_{4}=1\right\rangle
$$

In particular, both $X_{(1)}(\mathbb{C})$ and $X_{\mathfrak{a}}(\mathbb{C})$ have genus 1 , so

$$
\operatorname{dim} H^{1}(X(\mathbb{C}), \mathbb{C})=\operatorname{dim} H^{1}\left(X_{(1)}(\mathbb{C}), \mathbb{C}\right)+\operatorname{dim} H^{1}\left(X_{\mathfrak{a}}(\mathbb{C}), \mathbb{C}\right)=4
$$

We choose a basis of characteristic functions on γ, γ^{\prime} as a basis for $H^{1}\left(X_{(1)}(\mathbb{C}), \mathbb{C}\right)$ and similarly for $H^{1}\left(X_{\mathfrak{a}}(\mathbb{C}), \mathbb{C}\right)$.
The theorem of Eichler-Shimura applied to each component yields an isomorphism

$$
S_{2}(\mathfrak{N}) \oplus \overline{S_{2}(\mathfrak{N})} \xrightarrow{\sim} H^{1}(X(\mathbb{C}), \mathbb{C})
$$

so $\operatorname{dim} S_{2}(\mathfrak{N})=2$.

Shimura curves: Example

We now compute Hecke operators (a black box). Let $H=H^{1}(X(\mathbb{C}), \mathbb{C})$. Complex conjugation acts on H by

$$
H \left\lvert\, W_{\infty}=\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\right.
$$

Now consider the Hecke operator $T_{\mathfrak{p}}$ where $\mathfrak{p}=(2 w-1)$ and $N(\mathfrak{p})=7$. Then \mathfrak{p} represents the nontrivial class in $\mathrm{Cl}^{+} \mathbb{Z}_{F}$, and

$$
H \left\lvert\, T_{\mathfrak{p}}=\left(\begin{array}{cccc}
0 & 0 & -3 & 2 \\
0 & 0 & -2 & -4 \\
-4 & -2 & 0 & 0 \\
2 & -3 & 0 & 0
\end{array}\right) \quad\right. \text { and } \quad H^{+} \left\lvert\, T_{\mathfrak{p}}=\left(\begin{array}{cc}
0 & -2 \\
-8 & 0
\end{array}\right) .\right.
$$

Therefore there are two eigenspaces for $T_{\mathfrak{p}}$ with eigenvalues $4,-4$. By contrast, the Hecke operator $T_{(2)}$ acts as the scalar 3 on H.

Shimura curves: Example

Continuing in this way, we find the following table of eigenvalues:

$N \mathfrak{p}$	3	7	8	9	19	25	37	41	43	47	49	53	61	61	61
$a_{\mathfrak{p}}(f)$	-1	4	3	-4	-4	-8	4	-6	-8	0	4	12	-8	2	4
$a_{\mathfrak{p}}(g)$	-1	-4	3	4	-4	8	-4	-6	8	0	-4	-12	8	2	-4

The form g is the quadratic twist of the form f by the nontrivial character of the strict class group $\operatorname{Gal}\left(F^{+} / F\right)$, where F^{+}is the strict class field of F. Note also that these forms do not arise from base change from \mathbb{Q}, since $a_{\mathfrak{p}}$ has three different values for the primes \mathfrak{p} of norm 61 .

Shimura curves: Example

We are then led to search for elliptic curves of conductor $\mathfrak{N}=(w)^{2}$, and we find two:

$$
\begin{aligned}
E_{f}: & y^{2}+\left(w^{2}+1\right) x y=x^{3}-x^{2} \\
& +\left(-36 w^{2}+51 w-18\right) x+\left(-158 w^{2}+557 w-317\right) \\
E_{g}: & y^{2}+\left(w^{2}+w+1\right) x y+y=x^{3}+\left(w^{2}-w-1\right) x^{2} \\
& +\left(4 w^{2}+11 w-11\right) x+\left(4 w^{2}+w-3\right)
\end{aligned}
$$

Each of these curves have nontrivial $\mathbb{Z} / 2 \mathbb{Z}$-torsion over F, and so can be proven to be modular. We match Hecke eigenvalues to find that E_{f} corresponds to f and E_{g} corresponds to g.

By Deligne's theory of canonical models, we know that $X(\mathbb{C})=X_{(1)}(\mathbb{C}) \sqcup X_{\mathfrak{a}}(\mathbb{C})$ has a model X_{F} over F, but the curves themselves are not defined over F : they are interchanged by the action of $\mathrm{Gal}\left(F^{+} / F\right)$. Nevertheless, the Jacobian of X_{F} is an abelian variety of dimension 2 defined over F which is isogenous to $E_{f} \times E_{g}$.

Definite quaternionic Shimura varieties

Now suppose that B is definite. Then the Shimura variety is simply

$$
X_{0}^{B}(\mathfrak{N})(\mathbb{C})=B^{\times} \backslash \widehat{B}^{\times} / \widehat{\mathcal{O}}^{\times}=\mathrm{Cl} \mathcal{O}
$$

and so is canonically identified with the set of right ideal classes of \mathcal{O}. The reduced norm map here is the map nrd : $\mathrm{ClO} \rightarrow \mathrm{Cl}^{+} \mathbb{Z}_{F}$ which is surjective but not a bijection, in general.

A modular form f on B of parallel weight 2 is thus completely determined by its values on a set of representatives of $\mathrm{Cl} \mathcal{O}$. Therefore, there is an isomorphism of complex vector spaces given by

$$
\begin{aligned}
M_{2}^{B}(\mathfrak{N}) \rightarrow & \bigoplus_{\substack{[I] \in \mathrm{Cl}(\mathcal{O}) \\
I=\widehat{\alpha} \cap B}} \mathbb{C} \\
f \mapsto & (f(\widehat{\alpha})) .
\end{aligned}
$$

Definite quaternionic Shimura varieties: Example

Consider the totally real quartic field $F=\mathbb{Q}(w)$ where $w^{4}-5 w^{2}-2 w+1=0$. Then F has discriminant $5744=2^{4} 359$ and Galois group S_{4}. We have $\mathrm{Cl}^{+} \mathbb{Z}_{F}=2\left(\right.$ but $\left.\mathrm{Cl} \mathbb{Z}_{F}=1\right)$.
The quaternion algebra $B=\left(\frac{-1,-1}{F}\right)$ is unramified at all finite places (and ramified at all real places). We compute a maximal order \mathcal{O} and find that $\# \mathrm{ClO}=4$.

We now compute the action of the Hecke operators: we identify the isomorphism classes of the $N \mathfrak{p}+1$ right ideals of norm \mathfrak{p} inside each right ideal I in a set of representatives for $\mathrm{Cl} \mathcal{O}$. We compute

$$
T_{\left(w^{3}-4 w-1\right)}=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 4 & 4 \\
2 & 2 & 0 & 0 \\
3 & 3 & 0 & 0
\end{array}\right) \quad \text { and } \quad T_{\left(w^{2}-w-4\right)}=\left(\begin{array}{cccc}
6 & 2 & 0 & 0 \\
8 & 12 & 0 & 0 \\
0 & 0 & 8 & 4 \\
0 & 0 & 6 & 10
\end{array}\right)
$$

representing the nontrivial and trivial classes, respectively.

Definite quaternionic Shimura varieties: Example

In this case, the space $E_{2}(1)$ of functions that factor through the reduced norm has dimension $\operatorname{dim} E_{2}(1)=2$, so $\operatorname{dim} S_{2}(1)=2$, and we find that this space is irreducible as a Hecke module and so has a unique constituent f.

We obtain the following table of Hecke eigenvalues:

π	$w^{3}-4 w-1$	$w-1$	$w^{2}-w-2$	$w^{2}-3$
$N \mathfrak{p}$	4	5	7	13
$a_{\mathfrak{p}}(f)$	0	t	$-2 t$	$-t$

Here t satisfies the polynomial $t^{2}-6=0$. We therefore predict the existence of an abelian variety over F with real multiplication by $\mathbb{Q}(\sqrt{6})$ and everywhere good reduction.

