Toroidal compactifications of Hilbert modular varieties

Fritz Hörmann
Department of Mathematics and Statistics
McGill University

Montréal, April 9, 2011

1 Torus embeddings

2 Hilbert modular varieties and their boundary components

3 Toroidal compactification - analytic theory

4 Algebraic theory

affine Torus embeddings

```
k
M
T= spec(k[M*])
M = X* (T)
```

a field
a lattice $\left(\cong \mathbb{Z}^{n}\right)$
a split torus over k
the cocharacter group of T

We want to look at a certain type of (partial) compactifications of T, called torus embeddings.
$R \quad$ a discrete valuation ring (k-algebra)
K quotient field
x a point in $T(K)$ which does not extend to R
Goal: Look for open embeddings $T \hookrightarrow \bar{T}$ such that x extends to a section $x \in \widetilde{T}(R)$.
The valuation on K induces a linear morphism $\nu_{x}: M^{*} \rightarrow \mathbb{Z}$. Therefore the subring defining the open embedding above must not contain m^{*} with $\nu_{x}\left(m^{*}\right)<0$.

affine Torus embeddings

- $\bar{T}:=\operatorname{spec}\left(k\left[\nu_{x}^{-1} \mathbb{Z}_{\geq 0}\right]\right)$.
- more generally: Replace $\nu_{x}^{-1} \mathbb{Z}_{\geq 0}$ by any saturated (in order to get an open embedding) submonoid $\subsetneq M$ such that ν_{x} is non-negative.
All these \bar{T} have the property that the action of T (by multiplication) extends to them

Proposition

The following are equivalent
1 affine open dense embeddings $T \hookrightarrow \bar{T}$ such that the action of T extends
2 finitely generated submonoids of M^{*}
3 polyhedral cones $\sigma=\mathbb{R}_{\geq 0} v_{1}+\cdots+\mathbb{R}_{\geq 0} v_{n} \subset M_{\mathbb{R}}$, which do not contain a line (here $v_{i} \in M$)

$$
\begin{aligned}
& \sigma \mapsto \quad \sigma^{\vee}=\left\{y \in M^{*} \mid\langle x, y\rangle \geq 0 \forall x \in \sigma\right\} \mapsto \quad T_{\sigma}:=\operatorname{spec}\left(k\left[\sigma^{\vee}\right]\right) \\
& \text { E.g.: } \mathbb{R}_{\geq 0} \nu_{x} \leftrightarrow \operatorname{spec}\left(k\left[\nu_{x}^{-1} \mathbb{Z}_{\geq 0}\right]\right)
\end{aligned}
$$

general Torus embeddings

Drop the assumption of affine - can we get something proper?

$$
\begin{array}{ll}
& \sigma, \tau \subset M_{\mathbb{R}} \\
& \sigma \subseteq \tau \\
\rightsquigarrow \quad & \text { natural map } T_{\tau} \rightarrow T_{\sigma}
\end{array}
$$

Given a collection $\Delta:=\left\{\sigma_{i}\right\}$ with $\sigma_{i} \subset M_{\mathbb{R}}$, we can glue along all these natural maps (i.e. take the direct limit). Call this T_{Δ}.
T_{Δ} separated, if $\sigma \cap \tau$ for two r.p.c. in Δ is either empty or a common face of σ and τ which is included in T_{τ}. We call Δ a partial polyhedral cone decomposition in this case (and assume also that with $\sigma \in \Delta$, it contains all of the faces).
T_{Δ} proper, if for all possibe ν_{x} as above there is a cone σ with $\nu_{x} \in \sigma$, i.e. if $\bigcup_{\sigma \in \Delta} \sigma=M_{\mathbb{R}}$.

Theorem

The following define equivalent categories
1 open dense embeddings $T \hookrightarrow \bar{T}$ such that the action of T extends
$\boxed{1}$ partial polyhedral cone decompositions Δ of M^{*}.
Morphisms in the second case are refinements.
T_{Δ} smooth, if all r.p.c. in Δ are generated by part of a basis of M^{*}.
T_{Δ} projective, if there is a piecewise linear function $\mu: \bigcup \sigma \rightarrow \mathbb{R}$ with integral values on M, such that the $\sigma \in \Delta$ are the maximal sets on which μ is linear (together with the faces of those) which satisfied a certain convexity property.

Stratification

For each cone $\sigma \in \Delta$ there is an associated stratum $T_{[\sigma]}$, isomorphic to the quotient of T having cocharacter lattice $M /(<\sigma>\cap M)$. It embedds by the obvious map

$$
\operatorname{spec}\left(k\left[\sigma^{\perp} \cap M^{*}\right]\right) \rightarrow \operatorname{spec}\left(k\left[\sigma^{\vee} \cap M^{*}\right]\right)
$$

Properties:

- $T_{\Delta}=\bigcup_{\sigma \in \Delta} T_{[\sigma]}$.
- $\sigma \subseteq \tau \Leftrightarrow \overline{T_{[\tau]}} \subseteq \overline{T_{[\sigma]}}$.

■ $\kappa=\sigma \cap \tau \Leftrightarrow \overline{T_{[\sigma]}} \cap \overline{T_{[\tau]}}=\overline{T_{[\kappa]}}$.

The functor

Obviously:

$$
T(S)=\left\{\pi: M_{S} \rightarrow\left(\mathcal{O}_{S}, \times\right) \text { morphism of monoids }\right\}
$$

We have:
$T_{\Delta}(S)=\left\{\begin{array}{ll}M^{\prime} \subset M_{S} & \text { a subsheaf of monoids, } \\ \pi: M^{\prime} \rightarrow\left(\mathcal{O}_{s}, \times\right) & \text { a (strict) morphism of } \\ & \text { sheaves of monoids such that } \\ & \forall s \in S: M_{s}^{\prime}=\sigma^{\vee} \cap M \text { for some } \sigma \in \Delta\end{array}\right\}$
ϕ a strict morphism of monoids if $\phi(e)=e$ and $\phi(x)$ invertible $\Leftrightarrow x$ invertible.

Monodromy

Given a holomorphic map (with "bounded image")

$$
\mu: B_{1}^{*}(0) \rightarrow T(\mathbb{C})=M_{\mathbb{C}} / M
$$

defines a monodromy element $x \in M$ (image of 1 under the monodromy representation $\left.\mathbb{Z}=\pi_{1}\left(B_{1}^{*}(0)\right) \rightarrow M\right)$.

Lemma

μ extends to $B_{1}(0) \rightarrow T(\mathbb{C})_{\Delta}$ if and only if $x \in \operatorname{supp}(\Delta)$.
Roughly: Via the embedding $B_{1}^{*}(0) \hookrightarrow \mathbb{G}_{m}(\mathbb{C}), \mu$ "looks like" the cocharacter x.

1 Torus embeddings

2 Hilbert modular varieties and their boundary components

3 Toroidal compactification - analytic theory

4 Algebraic theory

The symmetric space

Fix the following data:
$F \quad$ totally real field of degree n
$\mathcal{L} \quad$ fixed ideal of \mathcal{O}_{F}
$V \quad$ projective \mathcal{O}_{F}-module of rank 2 with a \mathcal{L}^{-1}-valued symplectic form $\langle,\rangle_{\mathcal{O}_{F}}$
i.e. an isomorphism $\Lambda_{\mathcal{O}_{F}}^{2} V \cong \mathcal{L}$
$\langle v, w\rangle \operatorname{tr}_{F \mid \mathbb{Q}}\langle v, w\rangle_{\mathcal{O}_{F}}$
$G \quad\left\{g \in \operatorname{Res}_{F \mid \mathbb{Q}} \operatorname{GL}_{F}\left(V_{\mathbb{Q}}\right) \mid \operatorname{det}(g) \in \mathbb{G}_{m, \mathbb{Q}}\right\}$
$=\operatorname{Res}_{F \mid \mathbb{Q}} \mathrm{GL}_{F}\left(V_{\mathbb{Q}}\right) \cap \operatorname{GSp}\left(V_{\mathbb{Q}}\right)$
$D \quad\left\{\right.$ polarized \mathcal{O}_{F}-Hodge structures on $\left.V_{\mathbb{C}}\right\}$
$=G(\mathbb{R})^{+} / K \cdot Z$
$V_{\mathbb{R}}=\bigoplus_{\rho \in \operatorname{Hom}(F, \mathbb{R})} V^{\rho}$ with
V^{ρ} isomorphic to \mathbb{R}^{2} with the F-representation induced by ρ.

The symmetric space

Definition of \mathcal{O}_{F}-Hodge structure

$F^{0}:=V^{-1,0}$ defines a \mathcal{O}_{F}-Hodge structure if one of the equivalent conditions hold

1 The representation $h: \mathbb{S} \rightarrow G L\left(V_{\mathbb{R}}\right)$ giving the Hodge structure factorizes via $G_{\mathbb{R}}$
2 The action of \mathcal{O}_{F} on V induces endomorphims of Hodge structures
3 For each ρ, there is a $F^{0, \rho} \subset V_{\mathbb{C}}^{\rho}$ (1-dimensional) such that $F^{0}=\bigoplus_{\rho} F^{0, \rho}$.
4 The complex torus $A:=V_{\mathbb{Z}} \backslash V_{\mathbb{C}} / F^{0}$ is an \mathcal{O}_{F}-complex torus.

The symmetric space

Definition of polarization for \mathcal{O}_{F}-Hodge structures

Each $F^{0, \rho} \subset V_{\mathbb{C}}^{\rho}$ induces a sign $\operatorname{sgn} \frac{\langle v, \bar{v}\rangle}{2 \pi i}$, where $v \in F^{0, \rho}$ is any non-zero element. We call the Hodge structure polarized if:
1 All signs above are positive

The Borel embedding

Relaxing the condition on $F^{0}:=V^{-1,0}$ of polarized Hodge structure but not the condition of \mathcal{O}_{F}-compatibility - F^{0} is just defined by a collection of 1-dimensional subspaces $F^{0, \rho} \subset V_{\mathbb{C}}^{\rho}$.
Therefore we get the open Borel embedding:

$$
D \hookrightarrow D^{\vee}=\left(\operatorname{Res}_{F: \mathbb{Q}} \mathbb{P}_{F}\left(V_{\mathbb{Q}}\right)\right)(\mathbb{C}) \cong \prod \mathbb{P}\left(V_{\mathbb{C}}^{\rho}\right)
$$

The closure \bar{D} of the image decomposes into boundary components, which are products of boundary components of the $\mathbb{H} \subset \mathbb{P}\left(V_{\mathbb{C}}^{\rho}\right)$ (either a real point or \mathbb{H} itself). To each such boundary component one associates a real parabolic in $G_{\mathbb{R}}$. If $G_{\mathbb{R}}$ is simple only $G_{\mathbb{R}}$ and maximal parabolics of occur, otherwise products of those. For the compactification of the quotients $D / G(\mathbb{Z})^{+}$only those boundary components whose parabolic is definied over \mathbb{Q} matter. These are just the points

$$
I \in\left(\operatorname{Res}_{F: \mathbb{Q}} \mathbb{P}_{F}\left(V_{\mathbb{Q}}\right)\right)(\mathbb{Q})=\mathbb{P}_{F}\left(V_{\mathbb{Q}}\right)
$$

Siegel domain realization

The study of boundary components is intimately related to the realizations of D as a Siegel domain (of the first kind).

Consider the filtration given by I:

$$
0 \subset I \subset V
$$

of saturated \mathcal{O}_{F}-lattices. Since $\Lambda^{2}(V) \cong \mathcal{L}$, the lattice

$$
U^{\prime}=I^{\otimes 2} \otimes_{\mathcal{O}_{F}} \mathcal{L}
$$

acts as square zero elements shifting the filtration by 1 . We let the algebraic group $\mathbb{G}_{a}\left(U_{\mathbb{Q}}^{\prime}\right)$ act unipotently via exponentials of these.
Define

$$
\begin{array}{ll}
P^{\prime} & \{g \in G \mid g I \subseteq I\}, \text { the parabolic associated with I } \\
& =\mathbb{G}_{m} \cdot \operatorname{Res}_{F: \mathbb{Q}} \mathbb{G}_{m} \cdot \mathbb{G}_{a}\left(U_{\mathbb{Q}}\right) \\
G^{\prime} & \mathbb{G}_{a}\left(U_{\mathbb{Q}}^{\prime}\right) \rtimes \mathbb{G}_{m} \subseteq P^{\prime} \\
D^{\prime} & \left\{\mathcal{O}_{F} \text {-mixed Hodge structures w.r.t. I }\right\} \cong U_{\mathbb{C}}^{\prime}
\end{array}
$$

Siegel domain realization / Boundary map

Ad hoc definition:
$F^{0} \mathcal{O}_{F}$-mixed Hodge structures w.r.t. $I \Leftrightarrow F^{0, \rho} \neq I_{\mathbb{C}}^{\rho} \forall \rho$.
This condition may also be formulated as $h: \mathbb{S}_{\mathbb{C}} \rightarrow \mathrm{GL}_{\mathbb{C}}$ (appropriately defined)
factorizing through $G^{\prime}(\mathbb{C})$.
Boundary map
We have an inclusion

$$
D \rightarrow D^{\prime}
$$

such that

$$
D=\left\{x \in D^{\prime} \cong U_{\mathbb{C}}^{\prime} \mid \Im(x) \in C^{\prime}\right\}
$$

where $C^{l} \subset U_{\mathbb{R}}^{\prime}$ is the cone of totally positive elements. This is a Siegel domain of the first kind.
Note: $\Im(x)$ well-defined.

The analytic boundary and the Baily-Borel compactification

On $D \subset D^{\prime} \cong U_{\mathbb{C}}^{\prime}$ one may define the "distance" to the boundary point I as follows

$$
d^{\prime}(x)=\frac{1}{\left|N_{F: \mathbb{Q}} \Im(x)\right|},
$$

where we chose any F-linear identification of $U_{\mathbb{Q}}$ with F.
This distance defines a topology on $\widetilde{D}=D \cap \bigcap_{I \in \mathbb{P}_{F}\left(V_{Q}\right)} /$ such that $\widetilde{D} / G(\mathbb{Z})^{+}$becomes the structure of a normal projective (but singular) complex variety, the Baily-Borel compactification. Its boundary consists of finitely many cusps (class number of \mathcal{O}_{F})

1 Torus embeddings

2 Hilbert modular varieties and their boundary components

3 Toroidal compactification - analytic theory

4 Algebraic theory

Summary

For each $I \in \mathbb{P}_{F}\left(V_{\mathbb{Q}}\right)$, we have

$$
\begin{gathered}
G \hookleftarrow G^{\prime} \\
D \hookrightarrow D^{\prime} \\
D \subseteq D^{\prime}=\left(D^{\prime}\right)^{\vee} \subseteq D^{\vee}
\end{gathered}
$$

$D / G(\mathbb{Z})^{+} \quad$ Hilbert modular variety - want to compactify it.
$D^{\prime} / G^{\prime}(\mathbb{Z})^{+}$ is a torus - know how to compactify it!

Toroidal compactification: Glue the closure of $D / G^{\prime}(\mathbb{Z})^{+}$in $\left(D^{\prime} / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta_{\text {, }}}$ for some r.p.c.d $\Delta_{\text {, }}$ to $D / G(\mathbb{Z})^{+}$via the quotient map.

Analytic investigation of boundary

Given a holomorphic map

$$
\mu: B_{1}^{*}(0) \rightarrow D / G(\mathbb{Z})^{+}
$$

which does not extend to $B_{1}(0)$.

Lemma

(up to replacing μ by a finite cover)
A monodromy element $x \in G(\mathbb{Z})^{+}$(unique up to conjugation) is unipotent.

By the very structure of $G(\mathbb{Z})$, x fixes an \mathcal{O}_{F}-line $I \subset V$, hence $x \in U^{\prime}(\mathbb{Z})$ and μ lifts along the map

$$
D / G^{\prime}(\mathbb{Z})^{+} \rightarrow D / G(\mathbb{Z})^{+} .
$$

Analytic investigation of boundary

Lemma

x lies automatically in C^{\prime}
Sketch: If we consider x as a cocharacter of the torus $D^{\prime} / G^{\prime}(\mathbb{Z})^{+}$then μ "looks like" x via the inclusion $B_{1}^{*}(0) \subseteq \mathbb{G}_{m}(\mathbb{C})$. $\left.\Im(x(z))\right) \in U_{\mathbb{R}}^{\prime}$ is well defined (independent of the lift to $U_{\mathbb{C}}^{l}$) and is just $\Im(x(z)))=\left(-\frac{1}{2 \pi} \log |z|\right) \cdot x \in C^{\prime}$.

We have seen that μ extends to a map $B_{1}(0) \rightarrow\left(D^{\prime} / U^{\prime}\right)_{\Delta^{\prime}}$ if and only if $x \in \operatorname{supp}\left(\Delta^{\prime}\right)$. Hence to compactify $D / G(\mathbb{Z})^{+}$, the support of Δ^{\prime} should cover precisely C^{\prime}. Such a Δ^{\prime} is called a rational polyhedral cone decomposition of C^{\prime}. In general it will be infinite.

Toroidal compactification over \mathbb{C}

For each I, choose a r.p.c.d. Δ^{\prime} of $C^{\prime} \subset U_{\mathbb{R}}^{\prime}$.
Define $\left(D / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta^{\prime}}$ as the closure of $D / G^{\prime}(\mathbb{Z})^{+}$in $\left(D^{\prime} / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta^{\prime}}$.
Idea: Construct the quotient by an appropriate equivalence relation on

$$
\coprod_{l}\left(D / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta^{\prime}}
$$

For a $g \in G(\mathbb{Z})^{+}$with $g I=J$, we get a map

$$
\tilde{g}: D^{\prime} / G^{\prime}(\mathbb{Z})^{+} \rightarrow D^{J} / G^{J}(\mathbb{Z})^{+}
$$

inducing g on

$$
D / G^{\prime}(\mathbb{Z})^{+} \rightarrow D / G^{J}(\mathbb{Z})^{+}
$$

and hence projects to the identity on $D / G(\mathbb{Z})^{+}$.

Toroidal compactification over \mathbb{C}

Require that the maps \widetilde{g} extend to maps

$$
\left(D^{\prime} / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta^{\prime}} \rightarrow\left(D^{J} / G^{J}(\mathbb{Z})^{+}\right)_{\Delta^{J}}
$$

which is equivalent to the conditions:

- Δ^{\prime} is invariant under $P^{\prime}(\mathbb{Z})=\{g \in G(\mathbb{Z}) \mid g I=I\}$ (which boils down to invariance under $\left.\operatorname{Res}_{F \mid \mathbb{Q}}(\mathbb{Z})=\mathcal{O}_{F}^{*}\right)$
- $\left\{\Delta^{\prime}\right\}$ is determined by the choice of $\Delta_{I_{k}}$ for representatives $\left\{I_{k}\right\}$ of the ideal classes of F.

Toroidal compactification over \mathbb{C}

We define the following equivalence relation on $\coprod_{l}\left(D / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta^{\prime}}$: $x_{l} \sim y_{J}$ if

- x_{l} and y_{\jmath} are in the image of the same element $z \in D$ or
- $x_{l}=\widetilde{g} y_{J}$ for an elec.ment $g \in G(\mathbb{Z})^{+}$with $g I=J$.

Theorem (Hirzebruch, Mumford)

If each Δ^{\prime} is smooth, the quotient $\left(D / G(\mathbb{Z})^{+}\right)_{\Delta}$ of this equivalence relation is a smooth compact analytic orbifold.

By introducing levels and requiring the Δ^{\prime} to be projective, one gets smooth projective complex varieties.
Remark: The map $\left(D / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta^{\prime}} \rightarrow\left(D / G(\mathbb{Z})^{+}\right)_{\Delta}$ factors through $\left(D / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta^{\prime}} /\left(P^{\prime}(\mathbb{Z}) / G^{\prime}(\mathbb{Z})^{+}\right) \simeq\left(D / G^{\prime}(\mathbb{Z})^{+}\right)_{\Delta^{\prime}} / \mathcal{O}_{F}^{*}$.

1 Torus embeddings

2 Hilbert modular varieties and their boundary components

3 Toroidal compactification - analytic theory

4 Algebraic theory

Hilbert modular varieties

S a scheme over $\operatorname{spec}(\mathbb{Q})$

$$
X(S)=\left\{\begin{array}{ll}
A & \mathcal{O}_{F} \text {-abelian scheme over } S \\
\rho: & \text { Hom } \\
& \text { mapping polarizations to totally positive elements }
\end{array}\right\}
$$

defines a Deligne-Mumford stack over \mathbb{Q} with an isomorphism

$$
X(\mathbb{C}) \rightarrow D / G(\mathbb{Z})^{+}
$$

Recipe: Pullback the natural \mathcal{O}_{F}-Hodge structure on $H_{d R}^{1}(A)$ along

$$
V_{\mathbb{C}} \xrightarrow{\beta_{\mathbb{C}}} H_{1}(A, \mathbb{Z}) \otimes \mathbb{C} \xrightarrow{\text { period }} H_{1}^{d R}(A),
$$

where $\beta: V \rightarrow H_{1}(A, \mathbb{Z})$ is an isomorphism compatible with \mathcal{O}_{F}-action and polarization.
Note: β is precisely determined up to $G(\mathbb{Z})^{+}$.

A simple kind of one-motives

Definition

An one-motive M of dimension $(n, 0, n)$ is a morphism $\alpha: \underline{X} \rightarrow T$ from a locally constant etale sheaf of lattices \underline{X} of dimension n to a torus T of dimension n.

Idea: Understand degenerating abelian varieties by representing them as quotients $T / \alpha(\underline{Y})$ where α is (infintesimally) close to the boundary of T (which we understand).
Define ${ }^{t} M:=\left(\alpha^{\prime}: X^{*}(T) \rightarrow \underline{Y}^{*} \otimes \mathbb{G}_{m}\right)$.
Morphisms are commutative diagrams:

A simple kind one-motives over \mathbb{C}

Define $(S=\operatorname{spec}(\mathbb{C}))$:

Define (S arbitrary):

$$
H_{1}^{d R}(M):=\operatorname{Lie}(T) \oplus \underline{Y} \otimes_{\mathbb{Z}} \mathcal{O}_{S}
$$

Have an isomorphism $(S=\operatorname{spec}(\mathbb{C})$):

$$
\text { period: } \begin{aligned}
H_{1}(M, \mathbb{Z}) \otimes \mathbb{C} & \rightarrow H_{1}^{d R}(M) \\
\gamma & \left.\mapsto\left(\omega \mapsto \int_{\gamma} \omega, \pi(\gamma)\right)\right)
\end{aligned}
$$

"mixed" Hilbert modular varieties

Choose $I \subset V$.
$X^{\prime}(S)=\left\{\begin{array}{ll}M & \mathcal{O}_{F} \text {-one-motive over } S \\ \rho: & \text { Hom } \\ \iota: & I_{S} \rightarrow \underline{\mathcal{O}_{F}}\left(M,{ }^{t} M\right) \rightarrow \mathcal{L} \quad \mathcal{O}_{F} \text {-iso. of etale sheaves }\end{array}\right\}$ etale sheaves $\}$ iso.
defines a split torus over \mathbb{Q} (with cocharacter group U^{\prime}) with isomorphism:

$$
X^{\prime}(\mathbb{C}) \rightarrow D^{\prime} / G^{\prime}(\mathbb{Z})^{+}
$$

Recipe: Pullback the natural mixed \mathcal{O}_{F}-Hodge structure along:

$$
V_{\mathbb{C}} \xrightarrow{\beta_{\mathrm{C}}} H^{1}(M, \mathbb{Z}) \otimes \mathbb{C} \xrightarrow{\text { period }} H_{d R}^{1}(M)
$$

where $\beta: V \rightarrow H_{1}(M, \mathbb{Z})$ is an iso. compatible with \mathcal{O}_{F}-action and respecting the subspaces / pointwise.
Note: β is precisely determined up to $G^{\prime}(\mathbb{Z})^{+}$.

Comparison over \mathbb{C}

Over \mathbb{C}, given $(M=(\alpha: Y \rightarrow T), \rho)$, we can define

$$
A:=T(\mathbb{C}) / \alpha(Y)
$$

Then $\left(A, \rho^{\prime}\right)$ is a polarized \mathcal{O}_{F}-abelian variety precisely if $\left(^{*}\right)(M, \rho) \in D^{\prime} / G^{\prime}(\mathbb{Z})^{+}$lies actually in $D / G^{\prime}(\mathbb{Z})^{+}$
Under this condition, the map "forget the weight filtration":

$$
D^{\prime} / G^{\prime}(\mathbb{Z})^{+} \supset D / G^{\prime}(\mathbb{Z})^{+} \rightarrow D / G(\mathbb{Z})^{+}
$$

maps (M, ρ) to $\left(A^{\prime}, \rho^{\prime}\right)$.
We saw: $\left(^{*}\right)$ is satisfied, if (A, ρ) is close enough to the boundary in $X^{\prime}(\mathbb{C})_{\Delta^{\prime}}$.

Algebraic comparison

We can apply the "torus embedding" functor to the algebraic torus X^{\prime} to get a torus embedding $X^{\prime} \rightarrow X_{\Delta^{\prime}}^{\prime}$ even defined over \mathbb{Q}.
$R \quad$ a complete discrete valuation ring (\mathbb{Q}-algebra)

K quotient field
$x=(M, \rho, \iota) \quad$ a point in $X^{\prime}(K)$ which does not extend to R
$\left({ }^{* *}\right)$ The corr. point extends to the partial compactification $\left(X^{\prime}\right)_{\Delta^{\prime}}$.
(this is the obvious algebraic analogue of (*))

Theorem (Mumford)

$\left\{\begin{array}{l}(A, \rho) \in X(K) \text { extending to } \\ \text { an } \mathcal{O}_{F} \text {-semi-abelian scheme over } R \\ \text { with } A_{R / I} \cong \mathbb{G}_{m} \otimes I\end{array}\right\} \cong\left\{\begin{array}{l}\left(M, \rho^{\prime}, \iota\right) \in X^{\prime}(K) \\ \text { s. t. }(* *) \text { is satisfied }\end{array}\right\}$

This construction is compatible with the complex map $D \subset D^{\prime}$, e.g. if $R=\operatorname{spec}(\mathbb{C}[[X]]), I=(X)$ and the map giving $x=(M, \rho, \iota)$ over R converges on $B_{1}^{*}(0)$.

Algebraic toroidal compactification

Theorem (Mumford, Rapoport)

The previous construction (for more general complete rings) can be used to glue an algebraic model X_{Δ} of $\left(D / G(\mathbb{Z})^{+}\right)_{\Delta}$ such that there are
 boundary strata.
Over \mathbb{C} and in the interior the formal isomorphisms converge locally and give just the map $D / G^{\prime}(\mathbb{Z})^{+} \rightarrow D / G(\mathbb{Z})^{+}$.

